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A CRITERION OF IRRATIONALITY

Daniel Duverney

Abstract:We generalize P. Gordan’s proof of the transcendence of e ([3]; [5], p. 170),

and obtain a criterion of irrationality (Theorem 1 below). Using this criterion, we can

prove the irrationality of f(z) = 1 +
∑+∞

n=1
zn

v1 v2···vn qn(n+1)/2 , when z, q and vn satisfy

suitable hypotheses (see Theorem 2).

Résumé: Nous généralisons la démonstration de la transcendance de e par P. Gordan

([3]; [5], p. 170), pour obtenir un critère d’irrationalité (Théorème 1 ci-après). Nous en

donnons une application en prouvant l’irrationalité de f(z) = 1+
∑+∞

n=1
zn

v1 v2···vn qn(n+1)/2 ,

lorsque z, q et vn vérifient des hypothèses convenables (voir le Théorème 2).

1 – Notations

Let U = {u1, u2, ..., un, ...} be a sequence of non-zero complex numbers. We
put U0 = 1 and:

(1)
∀n ∈ IN− {0} :Un = u1 · u2 · · ·un

U−n = [Un]−1

Consider the complex function f defined by

(2) f(z) =
+∞
∑

n=0

zn

Un
.

We assume this series to fulfil d’Alembert’s criterion.
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A straightforward computation shows that

lim sup
k∈IN

(

+∞
∑

i=k+1

|u−1
k+1| · · · |u−1

i | |z|i−k
)

<∞ ,

and we put

(3) Mf(z) = sup
k∈IN

+∞
∑

i=k+1

|u−1
k+1| · · · |u−1

i | |z|i−k .

The sequence U being given, we define the U -Newton’s binomial, for complex

variables X and Y , by

(4) (X ⊕ Y )n =
n
∑

k=0

Uk
n X

k Y n−k

where

(5) Uk
n = Un U−k Uk−n .

Now let P be a polynomial with complex coefficients

P (X) =
n
∑

p=0

apX
p .

We put

(6) P (U) =
n
∑

p=0

ap Up ,

(7) P (X ⊕ Y ) =
n
∑

p=0

ap(X ⊕ Y )p ,

(8) P (U ⊕ z) =
n
∑

p=0

ap(U ⊕ z)p =
n
∑

p=0

ap

p
∑

k=0

Up Uk−p zp−k ,

(9) |P |(X) =
n
∑

p=0

|ap|Xp .
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One sees that, in fact, a number or a variable can be identified with a constant

sequence, and that the ordinary exponentiation is a special case of (1).

2 – Criterion of irrationality

Theorem 1. Let K = Q or Q[i
√
d]. Let A be the ring of the integers of

K. Let f(z) =
∑+∞

n=0
zn

Un and a, b ∈ K. Assume that there exists P ∈ K[X], such
that

(10) aP (U) + b P (U ⊕ z) ∈ A− {0} ,

(11) |b| ·Mf(z) · |P |(|z|) < 1 .

Then a+ b f(z) 6= 0.

Proof: An easy computation shows that

(12) Uk f(z) = (U ⊕ z)k + Uk
+∞
∑

i=k+1

U−i zi .

Let P (X) =
∑N

k=0 ak X
k. From (12) we get at once

P (U) f(z) = P (U ⊕ z) +
N
∑

k=0

ak Uk
+∞
∑

i=k+1

U−i zi .

Suppose that a+ b f(z) = 0. Then aP (U) + b P (U) f(z) = 0, whence

aP (U) + b P (U ⊕ z) + b
N
∑

k=0

ak Uk
+∞
∑

i=k+1

U−i zi = 0 .

Therefore

∣

∣

∣aP (U) + b P (U ⊕ z)
∣

∣

∣ ≤ |b|
N
∑

k=0

|ak| |z|k
+∞
∑

i=k+1

|u−1
k+1| · · · |u−1

i | |z|i−k .

Hence, using (3) and (11), we get

∣

∣

∣aP (U) + b P (U ⊕ z)
∣

∣

∣ ≤ |b| ·Mf(z) · |P |(|z|) < 1 .

But this is impossible, because x ∈ A and |x| < 1 ⇒ x = 0 ([7], Th. 2-1, p. 46).

Contradiction with (10).
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3 – U-derivation

Definition 1. Let f(X) =
∑

n≥0 anX
n be a formal series with complex

coefficients, and let U = {u1, u2, ..., un, ...} be a sequence of complex numbers.
The U -derivative of f is the formal series defined by:

∂Uf(X) =
∑

n≥1

an unX
n−1 .

Proposition 1. Let P be a polynomial of degree N . Then:

P (X ⊕ z) = P (z) +
∂UP (z)

U1
X +

∂2
UP (z)

U2
X2 + · · ·+ ∂N

U P (z)

UN
XN .

Proof: Just the same as the usual Taylor’s formula (see [2]).

Corollary 1. Let P be a polynomial of degree N ≥ n. Then P (X ⊕ z) has

valuation at least n if, and only if:

P (z) = ∂UP (z) = · · · = ∂n−1
U P (z) = 0 .

Moreover, in that case:

P (U ⊕ z) =
N
∑

k=n

∂k
UP (z) .

4 – An application

Theorem 2. Let K = Q or Q[i
√
d]. Let A be the ring of the integers of K.

Let m ∈ A, |m| > 1. Let V = {v1, v2, ..., vn, ...} be a sequence of elements of A,
with the following properties:

a) |vn| = exp(o(n));
b) There exists an infinite subset P = {B1,B2, ...} of the set of the prime
ideals of A, and a sequence N = {n1, n2, ...} of rational integers, such that
vni

∈ Bi for each i, and vn /∈ Bi if n < ni.

c) For every q ∈ IN∗, there exists infinitely many ni ∈ N such that vn /∈ Bi

for ni < n ≤ ni + q.
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Let f(z) = 1 +
+∞
∑

n=1

zn

v1 v2 · · · vnm
n(n+1)

2

.

Then, if z ∈ K∗, f(z) /∈ K.

Remark. By elementary considerations one can prove the irrationality of

f(z) in the case where z ∈ A− {0}, with |z| < |m| (see [8], Theorem 1).

Corollary 2. Let m ∈ A, |m| > 1 and h ∈ IN− {0}. Then, if z ∈ K∗,

+∞
∑

n=0

zn

(n!)hm
n(n+1)

2

/∈ K .

Corollary 2 is a well-known result; see [9], [1], [5]. On the other hand, the

following result seems to be new:

Corollary 3. Let m ∈ A, |m| > 1. Let p1, p2, ..., pn, ... be the sequence of

the prime numbers in IN. Then, if z ∈ K∗,

+∞
∑

n=1

zn

p1 p2 · · · pnm
n(n+1)

2

/∈ K .

It is likely that, if z ∈ K∗,
∑+∞

n=0
zn

p1 p2···pn
/∈ K, but it is surely much more

difficult to prove.

The proof of Theorem 2 rests on four lemmas; the proofs of lemmas 1 and 3

are elementary, and omitted.

Lemma 1. For every h ∈ IN∗, let

fh(z) =
+∞
∑

n=0

zn

Un
h

, z ∈ A− {0} ,

where un,h = un+h and Un
h = u1,h · u2,h · · ·un,h.

If there exists a ∈ A and b ∈ A− {0} such that a+ b f(z) = 0, then:

ah + bh fh(z) = 0 , ∀h ∈ IN∗, with:(13)

ah = Uh

(

a+ b
h−1
∑

n=0

zn

Un

)

∈ A ,(14)

bh = b zh ∈ A− {0} .(15)
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Lemma 2. Suppose that all the ui’s lie in A. Let B be a prime ideal of A,
such that Uh+1 /∈ B, b /∈ B and z /∈ B. Then ah /∈ B, or ah+1 /∈ B.

Proof of Lemma 2: If ah ∈ B and ah+1 ∈ B, as uh+1 /∈ B, we have:

Uh

(

a+ b
h−1
∑

n=0

zn

Un

)

∈ B and Uh

(

a+ b
h
∑

n=0

zn

Un

)

∈ B .

Subtracting these two numbers, we get b zh ∈ B, a contradiction.

Lemma 3. Let Pn(X) = Xn−1 ∑n
k=0 Γ

k
n z

n−k Xk. Then

Pn(z) = ∂UPn(z) = ... = ∂n−1
U Pn(z) = 0

if, and only if, the Γk
n’s are solution of the system:























Γ0
n + Γ1

n + · · ·+ Γn
n = 0

un−1 Γ
0
n + un Γ

1
n + · · ·+ u2n−1 Γ

n
n = 0

...

un−1 · · ·u1 Γ
0
n + un · · ·u2 Γ

1
n + · · ·+ u2n−1 · · ·un+1 Γ

n
n = 0 .

Lemma 4. Let M = (αij), 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1, be a matrix with

coefficients in A. Then the system

(16) M ·











Γ0
n

Γ1
n
...

Γn
n











=











0
0
...

0











admits a solution (Γ0
n,Γ

1
n, ...,Γ

n
n) such that:

Γi
n ∈ A for i = 0, 1, ..., n .(17)

0 < max |Γi
n| ≤ n

n
2Hn, with H = max |αij | .(18)

Moreover, if B is a prime ideal of A and αij ∈ B for every (i, j) such that
2 ≤ j ≤ i, while αj−1,j /∈ B for every j ∈ {2, ..., n+ 1}, then Γ0

n /∈ B.

Proof of Lemma 4: It is a well-known result of elementary linear algebra,

that the system (16) admits for solution

Γk
n = (−1)k∆n,k , 0 ≤ k ≤ n ,
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where ∆n,k is the determinant one obtains by canceling the (k+1)-th column of

M . Hence (17) is trivial, and (18) is Hadamard’s upper bound for the module of

a determinant [3].

The second part of the lemma results of the fact that we have only zeroes

(modulo B) under the diagonal of ∆n,0, while the terms on the diagonal are non

zero (modulo B).

Proof of Theorem 2: We can suppose that z ∈ A, as otherwise we may

replace z by Nz ∈ A and vn by vnN with a suitable rational integer N . Put

un = vnm
n and define Γk

n as a solution of the system







































Γ0
n + Γ1

n + · · ·+ Γn
n = 0

vn−1+h Γ
0
n + vn+hmΓ

1
n + · · ·+ v2n−1+hm

n Γn
n = 0

...

vn−1+h · · · v1+h Γ
0
n + vn+h · · · v2+hm

n−1 Γ1
n + · · ·+

+ · · ·+ v2n−1+h · · · vn+1+hm
(n−1)n Γn

n = 0 ,

with h > n which satisfies

(19) |Γk
n| ≤ n

n
2 |m|n3

(L3h)
n2
,

where

(20) Ln = max
1≤i≤n

|vi| .

The existence of such solutions follows from Lemma 4.

Suppose a+ b f(z) = 0 with (a, b) ∈ A2, and put

(21) Ph,n(X) =
Xn−1

m(n−1)h

n
∑

k=0

Γk
n z

n−k Xk .

To be able to apply Theorem 1, we have to obtain an upper bound for |bh|·M(fh)·
|Ph,n|(|z|). It is easy to see that M(fh) ≤ B, where B =

∑+∞
n=0 |z|n |m|−

n(n+1)
2 .

Hence, using (19), we get

|bh| ·M(fh) · |Ph,n|(|z|) ≤ |b| |z|hB
|z|2n−1

|m|(n−1)h
(n+ 1)n

n
2 |m|n3

(L3h)
n2
.

But from a) it results that L3h = exp(h ε(h)), with limh→∞ ε(h) = 0, and we get

|bh| ·M(fh) · |Ph,n|(|z|) ≤ |b|B|z|2n−1 (n+ 1)n
n
2 |m|n3

[ |z|
|m|(n−1)

exp(n2 ε(h))

]h

.
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Let us choose n such that |z|

|m|(n−2) ≤ 1
2 .

Such an n being fixed, there exists h0 ∈ IN such that

(22) h ≥ h0 =⇒ |bh| ·M(fh) · |Ph,n|(|z|) < 1 .

We choose h such that h > n and n+ h = ni, ni fulfilling the two conditions

b) and c) with q = n. Therefore, using Lemma 4, we get Γ0
n /∈ Bi. It is clear that

we can suppose z /∈ Bi, m /∈ Bi, and b /∈ Bi, by choosing ni large enough. We can

also suppose that ah /∈ Bi (otherwise we replace n by n− 1, h by h+ 1, and use
Lemma 2). For this choice of n and h condition (11) is fulfilled by (22).

Let us verify condition (10). We have

Pn,h(Uh) =
1

m(n−1)h

n
∑

k=0

Γk
n z

n−k Un+k−1
h .

But uh,n is always divisible by m
h, whence Pn,h(Uh) ∈ A. Moreover, the term

corresponding to k = 0 does not lie in Bi (hypothesis b)), while the other terms

lie in Bi (they contain vn+h = vni
). Therefore Pn,h(Uh) /∈ Bi.

Denote by (X ⊕ Y )n the Uh-Newton’s binomial, and use Corollary 1. We get

Pn,h(Uh ⊕ z) =
1

mh(n−1)

2n−1
∑

k=n

∂k
Uh
Qn,h(z) ,

where Qn,h(X) = Xn−1 ∑n
j=0 Γ

j
n z

n−j Xj ∈ A[X].

But each ∂k
Uh
Qn,h(z) contains the product of at least n consecutive terms of

the sequence Uh, including un+h. Hence Pn,h(Uh ⊕ z) ∈ Bi.

As ah /∈ Bi, Pn,h(Uh) /∈ Bi and Pn,h(Uh ⊕ z) ∈ Bi, we have

ahPn,h(Uh) + bhPn,h(Uh ⊕ z) /∈ Bi .

Therefore condition (10) is fulfilled, and the proof of Theorem 2 is complete.
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