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A CRITERION OF IRRATIONALITY

DANIEL DUVERNEY

Abstract: We generalize P. Gordan’s proof of the transcendence of e ([3]; [5], p. 170),
and obtain a criterion of irrationality (Theorem 1 below). Using this criterion, we can
prove the irrationality of f(z) = 1+ S 2

n=1 W, when Z, q and Un Satisfy
suitable hypotheses (see Theorem 2).

Résumé: Nous généralisons la démonstration de la transcendance de e par P. Gordan

([3]; [5], p- 170), pour obtenir un critére d’irrationalité (Théoreme 1 ci-apres). Nous en
+OO n

lorsque z, g et v, vérifient des hypotheses convenables (voir le Théoreme 2).

donnons une application en prouvant l'irrationalité de f(z) =1+

1 — Notations

Let U = {uy,us,...,up, ...} be a sequence of non-zero complex numbers. We
put 4% =1 and:

VneIN—{0}:U" =uy-ug---uy

(1) U= [ n]—l

Consider the complex function f defined by

+00 N

(2) f(z) =

- 7
n=0 u

We assume this series to fulfil d’Alembert’s criterion.
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A straightforward computation shows that

+0o0 )
timsup( 37 gyl 2 F) <00

€N Y—pt1
and we put
(3) M f(z) = sup Z ’Uk;+1| ’uz_IHZ’Z_k .
kelN;_ k+1

The sequence U being given, we define the U-Newton’s binomial, for complex
variables X and Y, by

(4) (Xovy)" ZU’“X’“Y" k
k=0

where

(5) Uk =ururtuytr .

Now let P be a polynomial with complex coefficients

n
X)=> apX".
p=0

We put
@ PU) =Y au|.
p=0
(7) PX&Y) =Y axav)|,
p=0

(8) Z ap(U @ z Z ap Z UPY*=p Pk

p=0 k=0

9) |P|(X Z lap| XP| .
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One sees that, in fact, a number or a variable can be identified with a constant
sequence, and that the ordinary exponentiation is a special case of (1).

2 — Criterion of irrationality

Theorem 1. Let K = Q or Q[i/d]. Let A be the ring of the integers of
K. Let f(z) =Y} Z= and a,b € K. Assume that there exists P € K[X], such
that

(10) aPU)+bPUDz) € A—{0},
(11) o] - M f(z) - |P|(Jz]) < 1.
Then a+ b f(z) # 0.
Proof: An easy computation shows that
+oo
(12) Uf(z)=Uea2)"+ur Y UL,
i=k+1

Let P(X) =N a; X*. From (12) we get at once

N 400
PU f()=PUS2)+ > apd > U2 .
k=0 i=k+1

Suppose that a + b f(z) = 0. Then a P(U) + b P(U) f(z) = 0, whence
N +o00 o
aPU)+bPUDz)+ bZakuk Z U'z'=0.
k=0 i=k+1
Therefore
N +o00 ]
@ PQU) +bPU @ 2)| < [b] Y- laxl |2 D7 Jughy] - fug M|
k=0 i=k+1
Hence, using (3) and (11), we get
la PQU) +bPU @ 2)| < [b] - Mf(2) - [P|(|2]) < 1.

But this is impossible, because x € A and |z| <1 = x =0 ([7], Th. 2-1, p. 46).
Contradiction with (10). m
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3 — U-derivation

Definition 1. Let f(X) = >,5qa, X" be a formal series with complex
coefficients, and let U = {uy,ug, ..., upn,...} be a sequence of complex numbers.
The U-derivative of f is the formal series defined by:

owf(X)= Zanuanfl .

n>1

Proposition 1. Let P be a polynomial of degree N. Then:

5UP(Z)X+aIQJP(Z)X2+___+8t]JVP(Z)XN '

Proof: Just the same as the usual Taylor’s formula (see [2]). u

Corollary 1. Let P be a polynomial of degree N > n. Then P(X @ z) has
valuation at least n if, and only if:

P(z) =0yP(z) = =0} 'P(2) =0].

Moreover, in that case:

N
PUGz) =Y OyP(z)|.
k=n

4 — An application

Theorem 2. Let K = @ or Q[i V/d|. Let A be the ring of the integers of K.
Let m € A, |/m| > 1. Let V = {v1,v9,...,p, ...} be a sequence of elements of A,
with the following properties:

a) [un| = exp(o(n));
b) There exists an infinite subset P = {B1,Ba,...} of the set of the prime

ideals of A, and a sequence N = {ny,no, ...} of rational integers, such that
Un, € B; for each i, and v, ¢ B; if n < n,.

c) For every q € IN*, there exists infinitely many n; € N such that v, ¢ B;
forn; <n <mn;+gq.
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400 o
Let f(z) =1+ E TR
n=1V1V2: VUM 2

Then, if z € K*, f(z) ¢ K.

Remark. By elementary considerations one can prove the irrationality of
f(2) in the case where z € A — {0}, with |z| < |m| (see [8], Theorem 1).

Corollary 2. Let m € A, |m| > 1 and h € IN — {0}. Then, if z € K*,

+o0 zn
Z n(n+1) ¢ K .
n=0 (n!)hm™z

Corollary 2 is a well-known result; see [9], [1], [5]. On the other hand, the
following result seems to be new:

Corollary 3. Let m € A, |m| > 1. Let p1,p2,...,Dn, ... be the sequence of
the prime numbers in IN. Then, if z € K*,

+o00 n

3 ——e

n=1p1pP2---Pnm 2

It is likely that, if z € K*, ;’i‘(’) o ngil--pn ¢ K, but it is surely much more
difficult to prove.
The proof of Theorem 2 rests on four lemmas; the proofs of lemmas 1 and 3

are elementary, and omitted.

Lemma 1. For every h € IN*, let

+OOZn
fh(z):zm, ze A—{0},
n=0"h

where Uy, j, = Upyp and Uy = ugp - U p - U -
If there exists a € A and b € A — {0} such that a+ b f(z) = 0, then:

(13) ap+ by fn(z) =0, VheIN*,  with:
h=1 n
h
(14) ah:U (a‘f'b?lz::[)m) S A,

(15) by =bz" ¢ A—{0}.
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Lemma 2. Suppose that all the u;’s lie in A. Let B be a prime ideal of A,
such that U ¢ B, b ¢ B and z ¢ B. Then ay, ¢ B, or ap,1 ¢ B.

Proof of Lemma 2: If a5, € B and a1 € B, as upy1 ¢ B, we have:
h—1 P h o1
Llh(a+bzm> €B and Z/{h<a+bz un> €B.
n=0 n=0
Subtracting these two numbers, we get bz" € B, a contradiction. m
Lemma 3. Let P,(X) = X""137 Tk 2n=F X* Then
Po(2) = 0uPu(2) = ... = 0 1Py (2) = 0

if, and only if, the T'*’s are solution of the system:

ry + L, +---+ =0
U, 1 IO+ u, L 4+ U1 I =0

Lemma 4. Let M = (o), 1 < i <n,1<j<n+1, be a matrix with
coefficients in A. Then the system

ro 0

rk 0
(16) M-l =

e 0

admits a solution (I, T'L,....T") such that:
(17) rieA for i=0,1,..,n.
(18) 0 <max|Tl| <n?H", with H = max|aj| .

Moreover, if B is a prime ideal of A and o;; € B for every (i,j) such that
2 < j <i, while aj_1; ¢ B for every j € {2,....,n+ 1}, then T'Y ¢ B.

Proof of Lemma 4: It is a well-known result of elementary linear algebra,
that the system (16) admits for solution

h = (1A, 0<k<n,
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where A, is the determinant one obtains by canceling the (k + 1)-th column of
M. Hence (17) is trivial, and (18) is Hadamard’s upper bound for the module of
a determinant [3].

The second part of the lemma results of the fact that we have only zeroes
(modulo B) under the diagonal of A,, o, while the terms on the diagonal are non
zero (modulo B). u

Proof of Theorem 2: We can suppose that z € A, as otherwise we may
replace z by Nz € A and v, by v, N with a suitable rational integer N. Put
Up = v, m" and define Fﬁ as a solution of the system

I+ Th 4 I =0

n n

0 1 _
Un—14n Ly + UpppnmDy +- 4+ v 14am "I =0

0 —171
Upn—i4h  Vi4n L, + Upgpn--voppm™ I, +---+
++ v2n71+h”"l}n+1+hm(n_1)nrz:07

with h > n which satisfies

(19) ITE| < 0% [m[™ (Lap)"™
where
(20) L,= Jax lvi|

The existence of such solutions follows from Lemma 4.
Suppose a + b f(z) = 0 with (a,b) € A2, and put

X"V Nk ok vk
(21) Ph,n(X) = m(n—fl)h kz: Fn ZTREXE
—0

To be able to apply Theorem 1, we have to obtain an upper bound for |by,|- M (f3,)-

n(n+1)
|Prnl(|2]). It is easy to see that M(fy,) < B, where B = >.7°0 |z|™ |m|~ >

Hence, using (19), we get

|Z|2n71 2 n3 n?
bl - M(fn) - [ Prnl(l2]) < [0] IZ!hBW (n+1)n2 [m|™ (Lsp)" .

But from a) it results that Lz, = exp(he(h)), with limp_,o, e(h) = 0, and we get

h

o)

(Bl - M(fn) - [Phnl(12]) < 8] Blz" ™ (n+ 1) 0 [m|™ | — =
|m|(n=1)
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Let us choose n such that |<Z|,2) <i
m|(" 2

Such an n being fixed, there exists hg € IN such that
(22) h>=ho = |bp|- M(fn) - [Panl(lz]) <1.

We choose h such that A > n and n + h = n;, n; fulfilling the two conditions
b) and c) with ¢ = n. Therefore, using Lemma 4, we get ') ¢ B;. Tt is clear that
we can suppose z ¢ B;, m ¢ B;, and b ¢ B;, by choosing n; large enough. We can
also suppose that ap ¢ B; (otherwise we replace n by n — 1, h by h + 1, and use
Lemma 2). For this choice of n and h condition (11) is fulfilled by (22).
Let us verify condition (10). We have
1 n

Z Ffz ank u}’rll-i—k:—l )

Pon(Un) = ——7
mmn—1)h =

But up,,, is always divisible by m™, whence P, »(Uy) € A. Moreover, the term
corresponding to k = 0 does not lie in B; (hypothesis b)), while the other terms
lie in B; (they contain vy44 = vp,). Therefore P, ,(Uy) ¢ B;.

Denote by (X @ Y)™ the Up-Newton’s binomial, and use Corollary 1. We get

2n—1
Pop(Un @ z) = R Z 8(k]hQn,h(z) ;
k=n

where Q, ,(X) = X"1 > i=o IJ 2" XI € A[X].

But each a@h Qn,n(z) contains the product of at least n consecutive terms of
the sequence Uy, including u,,4p. Hence P, (U @ 2) € B;.

As ay, ¢ B;, Pn,h(uh) §é B; and th(uh S5, Z) € B;, we have

an P n(Un) + bu P p (U © 2) & B; .

Therefore condition (10) is fulfilled, and the proof of Theorem 2 is complete. m
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