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QUASILINEAR ELLIPTIC PROBLEMS WITH
NONMONOTONE DISCONTINUITIES AND MEASURE DATA

Jin Liang and José Francisco Rodrigues

Abstract: We prove the existence of weak solutions to the mixed boundary value

problem for a quasilinear elliptic second order equation involving nonmonotone discon-

tinuous terms and with measure data in the equation and in the Neumann boundary

condition.

1 – Introduction

In this paper, we prove the existence of at least one solution to the following

quasilinear elliptic mixed boundary value problem

(1.1)





− div a(x, u,Du) + β(x, u) 3 µ, in Ω,

a(x, u,Du) · n+ γ(x, u) 3 ν, on Γ,

u = 0, on Γ0 ,

where Ω ∈ IRN is a bounded domain with Lipschitz boundary ∂Ω, with the

relatively open components Γ0 and Γ, such that Γ ∪ Γ0 = ∂Ω, Γ ∩ Γ0 = ∅, and

measN−1(Γ0) > 0, and n denotes the unit vector normal to Γ.

We consider second order quasilinear operators Au = −diva(x, u,Du) of

Leray–Lions type, coercive in

(1.2) W 1,p
Γ0

(Ω) =
{
v ∈W 1,p(Ω): v|Γ0 = 0

}

for 2 − 1
N
< p ≤ N , with given bounded measures µ ∈ M(Ω) and ν ∈ M(Γ).
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The nonlinear perturbation β and γ may be nonmonotone and discontinuous in

u, but they must satisfy at infinity a sign condition as well as a suitable growth

condition. We recall that even continuous nonlinearities in equations involving

measures may have no solutions, in the sense of distributions, if a certain growth

at infinity of β is not satisfied (see [6]). We conjecture here that a similar fact

holds on the boundary nonlinearity with the growth of γ.

The solution u is found in W 1,q
Γ0

(Ω) for ∀ q < N
N−1(p − 1) as in the previous

works of Boccardo, Gallouët and Rakotoson on quasilinear elliptic Dirichlet prob-

lems with measure as data [4], [22] and [5] (i.e. in case Γ = ∅). The novelty here

is the extension to the case of nonmonotone discontinuous nonlinearities and also

the Neumann-type boundary condition on Γ, covering examples from the appli-

cations, where β and/or γ may have graphs of the following type with positive

and/or negative jumps including multiple valued nonlinearities (see [19], [20] for

instance).

For the case in which the nonlinearities β and γ are monotone nondecreasing,

previous results of existence and uniqueness of the solutions with L1 data were

obtained by Brézis and Strauss in [8] for semilinear equations in the framework of

accretive operators (see also [13], Chap. 4) and by Bénilan, Crandall and Sacks in

[3] for a semilinear Neumann problem, where the continuous dependence of the

solutions on the maximal monotone nonlinearities was also shown. Extensions

of these results have been also obtained for the Dirichlet problem of a semilinear

elliptic equation involving measures and monotone β by Attouch, Bouchitte and

Mabrouk [1].

As it is well known, nonlinear discontinuities are strongly related to some free

boundary problems arising in specific models of mathematical physics and have

been treated by several authors with different methods. We refer the method

of smoothing the “filled jumps” [24], used by Rauch, the order method of sub
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and super-solutions considered by Stuart [26] and Carl [9], the method of fixed

points of set valued mappings, developed by Chang [10] or variational methods,

also used by this author in [11], and by Ambrosetti and Turner, by means of a

dual variational principle, in [2].

In particular, Chang has given in [10] sufficient conditions in order that a

solution of inclusions in (1.1) are in fact solutions of the respective equations

almost everywhere. Since this property requires a regularity property of the type

D2u ∈ L1loc(Ω) and Du ∈ L
1(Γ), which cannot be expected in the case of measure

data, we need to consider solutions of (1.1) in the generalized sense. We observe

that, under certain regularity of the solutions, these problems may be regarded as

variational ones, like in [19], [20] or [16], but in the general situation, in particular

when measure data are considered, the weak formulation is necessary. However

they are well adapted to the numerical approximation, as indicated in [17] for a

special case.

We introduce the definition of generalized solution and we state our main

theorem in Section 2. Our method of proof is based on the regularization approach

and is explained in Section 3. It relies on an extended a priori estimate of Du

in Lq(Ω), which is obtained with the truncation technique used in [25], [4] and

[14], and also on a compactness lemma adapted from [5]. The details are given

in Section 4.

Finally, let us remark that we consider here mainly the case 2− 1
N
< p ≤ N ,

since in the easier case p > N , we have W 1,p
Γ0

(Ω) ⊂ C0(Ω) and the linear form T ,

given by

(1.3) 〈T, v〉 =
∫

Ω
v dµ+

∫

Γ
v dν

lies in the dual space of W 1,p
Γ0

(Ω); the variational theory of Leray-Lions can then

be applied more directly (see [15], [6] or [13], and Remark on p > N in the next

section). On the other hand, the more delicate case 1 < p < 2 − 1
N

requires a

new type of sets and of generalized solutions (see [23], for recent results in this

direction).

After the completion of this work the papers [12] and [21] have been brought

to our attention. However, they deal with different problems, namely in [12], the

homogeneous Dirichlet problem is treated with Carathéodory functions, and in

[21] the classical nonhomogeneous boundary value problems for A are solved only

in the cases β ≡ 0 and γ ≡ 0 or γ(u) = λu, with λ > 0 and Γ0 = ∅.
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2 – Assumptions and the existence result

We assume in the quasilinear elliptic operator A the vector valued function

a = a(x, s, ξ) : Ω× IR× IRN → IRN is a Carathéodory function (i.e. measurable

in x and continuous in (s, ξ)) and has the standard properties of coercivity, strict

monotonicity and growth:

(H1)





i) a(x, s, ξ) · ξ ≥ α |ξ|p ,

ii)
[
a(x, s, ξ)− a(x, s, η)

]
· (ξ − η) > 0 , ξ 6= η ,

iii) |a(x, s, ξ)| ≤ C
(
h(x) + |s|p−1 + |ξ|p−1

)
,

where α, C are positive constants, h ∈ Lp′(Ω), 1
p
+ 1

p′
= 1, 2− 1

N
< p ≤ N , and

(H1) holds for any s ∈ IR, ξ, η ∈ IRN and for a.e. x ∈ Ω.

We assume that β = β(x, s) : Ω× IR→ IR, and γ = γ(x, s) : Γ× IR→ IR, are

measurable functions such that, for a.e. x (a.e. in Ω means with respect to the

Lebesgue N -measure dx and a.e. in Γ means with respect to the (N − 1)-surface

measure dσ) they are locally bounded in s and therefore may have discontinuities.

For a.e. x ∈ Ω and for any δ > 0, we let

(2.1) β
δ
(x, s) = ess sup

|θ−s|≤δ

β(x, θ) and βδ(x, s) = ess inf
|θ−s|≤δ

β(x, θ) ,

and for fixed (x, s), β
δ
is a decreasing function of δ, βδ is an increasing function

of δ. We let

(2.2) β(x, s) = lim
δ→0

β
δ
(x, s) , β(x, s) = lim

δ→0
βδ(x, s) ,

and we define the multivalued map in s (for a.e. x ∈ Ω),

(2.3) (x, s) 7→ β̂(x, s) = [β(x, s), β(x, s)] .

With analogous definitions for γ, for a.e. x ∈ Γ, we set

(2.4) (x, s) 7→ γ̂(x, s) = [γ(x, s), γ(x, s)] ,

and we note that β̂ and γ̂ are the graphs of β and γ, respectively, with the “jumps

filled in” following [24].

We shall assume on β and γ the following assumptions respectively, a

N -measurability condition (according to [10], φ(x, s) : X × IR → IR is called

N -measurable if for every measurable real function u : X → IR, the function

φ(x, u(x)) is measurable on X), a growth condition and a “ultimately” increas-

ing condition as in [24]:
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(H2)





i) The functions β(x, s) and β(x, s) are N -measurable ,

ii) |β(x, s)| ≤ e1 |s|
ρ1 + c1, for 0 ≤ ρ1 <

N(p−1)
N−p

,

iii) ess sup
s≤−t∗

β(x, s) ≤ ess inf
s≥t∗

β(x, s), for a.e. x ∈ Ω ,

(H3)





i) The functions γ(x, s) and γ(x, s) are N -measurable ,

ii) |γ(x, s)| ≤ e0 |s|
ρ0 + c0, for 0 ≤ ρ0 <

(N−1) (p−1)
N−p

,

iii) ess sup
s≤−t∗

γ(x, s) ≤ ess inf
s≥t∗

γ(x, s), for a.e. x ∈ Γ ,

for a fixed t∗ > 0, where c0, e0, c1, e1 are positive constants. If p ≥ N , ρ0 and ρ1
may be any positive numbers.

We observe that if β(x, s) or γ(x, s) do not depend on x, as in [24], then

the function β(x, s) and γ(x, s) (resp. β(x, s) or γ(x, s)) are upper (resp. lower)

semicontinuous and the conditions (H2-i) or (H3-i) are automatically satisfied.

Conjecture and Remark: We observe that the growth condition (H2-ii)

should be optimal for measure data, since it is well known that even in very

special cases (for instance, if p = 2 and A = −∆, β(u) = |u|σ−1 u, σ ≥ N/(N−2),

N ≥ 3 and µ = δx0 , x0 ∈ Ω, Γ = ∅), there are no weak solutions if (H2-ii) is not

imposed (see [6]). Analogously, the growth condition at the boundary (H3-ii), by

Sobolev inequalities for traces, is also conjectured to be optimal.

Finally, we assume the nonhomogeneous terms given by

(H4) µ ∈M(Ω) and γ ∈M(Γ) ,

where M(Ω) and M(Γ) denote the space of bounded Radon measures on Ω and

Γ, respectively.

For any p, 1 ≤ p ≤ ∞, we use the Sobolev subspace W 1,p
Γ0

(Ω) given by (1.2)

in the following definition

Definition. We say that a triple (u, b, g) ∈W 1,1
Γ0

(Ω)×L1(Ω)×L1(Γ) is a weak

solution of the quasilinear mixed boundary value problem (1.1), if a(x, u,Du) ∈

[L1(Ω)]N , and

(2.5) b(x) ∈ β̂(x, u(x)), a.e. in Ω , g(x) ∈ γ̂(x, u(x)) a.e. on Γ ,

(2.6)

∫

Ω
a(x, u,Du) ·Dv dx+

∫

Ω
b v dx+

∫

Γ
g v dσ =

=

∫

Ω
v dµ+

∫

Γ
v dν, for ∀ v ∈W 1,∞

Γ0
(Ω) .
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Main Theorem. Under the preceding assumptions, namely (H1)–(H4),

there exists a weak solution u of (1.1), such that

u ∈W 1,q
Γ0

(Ω) for any q < q∗ ≡
N

N − 1
(p− 1) .

Remark on p>N. The existence result still holds and the weak solution

u ∈ W 1,p
Γ0

(Ω) ⊂ C0(Ω). In this case the growth conditions (H2-ii), (H3-ii) have

no restrictions on ρ0 and ρ1, which may be any real positive numbers.

Remark on the Neumann problem. For the case β ≡ 0, γ ≡ 0 and

Γ0 = ∅ (here Γ = ∂Ω), Prignet in [21] has shown the existence of a solution u ∈⋂
q<q∗ W

1,q(Ω),
∫
Ω u = 0, under the compatibility condition

∫
Ω dµ +

∫
∂Ω dν = 0.

However, in general if β 6= 0 or γ 6= 0, the existence of a solution seems to be an

open problem except if we assume an additional assumption of the type

β(u)u ≥ λ |u|σ (or γ(u)u ≥ λ |u|σ) with λ > 0 and σ ≥ 1 ,

which provides a kind of coerciveness (see, for instance, also [21] for the special

case γ(u) = λu, λ > 0) even in the case where Γ0 = ∅.

Remark on an additional nonlinearity in the gradient. Analogously

to [12], it is possible to extend the above existence results to the case of nonlinear

equations of the type

−diva(x, u,Du) +K(x,Du) + β(x, u) 3 µ ,

where K(x, ξ) : Ω × IRn → IR is a Carathéodory function satisfying the growth

condition K(x, ξ) ≤ k(x) |ξ|p−1, ∀ ξ ∈ IRn, a.e. x ∈ Ω, with k ∈ Lp(Ω) with

r>N ≥ p or r>p>N . Actually in [12], it is only considered the case Γ0 = ∂Ω

(hence W 1,p
Γ0

(Ω) = W 1,p
0 (Ω)) and β is continuous in u, with β(x, u)u ≥ 0 and

satisfying also the growth condition (H2-ii).

3 – Solvability by regularization

The proof of the main theorem is obtained by considering the variational

solution of the following regularized problem, for each ε > 0, uε ∈W
1,p
Γ0

(Ω):

(3.1)∫

Ω
a(x, uε, Duε)·Dv dx+

∫

Ω
βε(uε) v dx+

∫

Γ
γε(uε) v dσ = 〈Tε, v〉 , ∀ v ∈W 1,p

Γ0
(Ω) ,
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where βε(uε) = βε(x, uε(x)) and γε(uε) = γε(x, uε(x)), with βε and γε regular-

ized in the second variable by mollification (e.g., βε(x, s) = (β(x, ·) ∗ jε)(s) and

γε(x, s) = (γ(x, ·) ∗ jε)(s) with jε ∈ C
∞
0 ([−ε, ε]), jε ≥ 0,

∫+∞
−∞ jε(s) ds = 1) and

〈Tε, v〉 =
∫

Ω
µε v dx+

∫

Γ
νε v dσ −→

ε→0
〈T, v〉 , ∀ v ∈W 1,∞

Γ0
(Ω) ;

µε ∈ L
p′(Ω) , ‖µε‖L1(Ω) ≤ ‖µ‖M(Ω) ;

νε ∈ L
p′(Γ) , ‖νε‖L1(Γ) ≤ ‖ν‖M(Γ) .

Clearly, Tε ∈ [W 1,p
Γ0

(Ω)]′, and known results yield the existence of uε ∈ W 1,p
Γ0

(Ω)

(see Theorem 4.3 of page 250 of [13] and [7]).

Proposition 3.1. There exists uε ∈ W 1,p
Γ0

(Ω) solving (3.1) such that as

ε→ 0

i) {uε} is strongly precompact in W 1,q
Γ0

(Ω), ∀ q < q∗ = N
N−1 (p− 1);

ii) {βε(uε)} and {γε(uε)} are weakly precompact in L1(Ω) and L1(Γ), respec-

tively.

The proof of this Proposition will be shown in Section 4.

Proof of the Main Theorem: Now, with this Proposition, letting ε→ 0,

we have for a subsequence,

(3.2) βε(uε)→ b, in L1(Ω)-weak , γε(uε)→ g, in L1(Γ)-weak ,

and

(3.3) uε → u





in W 1,q
Γ0

(Ω) strongly , ∀ q < q∗;

in Lκ(Ω), where 1 ≤ κ < Nq
N−q

;

in Lτ (Γ), where 1 ≤ τ < (N−1)q
N−q

;

a.e. in Ω and a.e. in Γ .

The compactness result for the solutions of (3.1) yields, in particular, Duε → Du

a.e. in Ω, and consequently, also

a(x, uε, Duε)→ a(x, u,Du), in L1(Ω) .

Since, by construction, we also have Tε ⇀ T weakly, after ε→ 0, we obtain from

(3.1)
∫

Ω

(
a(x, u,Du) ·Dv + bv

)
dx+

∫

Γ
g v dσ = 〈T, v〉 , ∀ v ∈W 1,∞

Γ0
(Ω) .
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This is equivalent to (2.6) and then the problem has a weak solution if

b ∈ β̂(u), g ∈ γ̂(u) almost everywhere, i.e., we only need to show (2.5), which is

given by the following

Lemma 3.2. The limit functions in (3.2) b and g satisfy (2.5), i.e.,

β(x, u(x)) ≤ b(x) ≤ β(x, u(x)), a.e. in Ω ;

γ(x, u(x)) ≤ g(x) ≤ γ(x, u(x)), a.e. in Γ .

Proof: Since the proof for β is similar to the one for γ, we just prove one

of them, e.g. for γ. Because uε converges to u almost everywhere in Γ from

(3.3), and uε, u ∈ Lτ (Γ), for any η > 0, there exists a subset θ of Γ such that

measN−1(θ) < η and uε → u uniformly on Γ\θ. Moreover u ∈ L∞(Γ\θ). So, for

any δ > 0, let ε0 <
δ
2 , be such that for ε < ε0, |uε(x)− u(x)| ≤

δ
2 , for all x ∈ Γ\θ.

When ε < ε0, and x ∈ Γ\θ, we have

γε(x, uε(x)) =

∫ uε(x)+ε

uε(x)−ε
jε(uε(x)− t) γ(x, t) dt

≤ ess sup
s∈[uε(x)−ε, uε(x)+ε]

γ(x, s)

≤ ess sup
s∈[u(x)−δ, u(x)+δ]

γ(x, s) = γδ(x, u(x)) .

Analogously,

γε(x, uε(x)) ≥ γδ(x, u(x)) ,

where γδ(x, s) and γδ(x, s) are defined as in (2.1).

Now for any v ∈ C0Γ0
(Γ), v ≥ 0 in Ω\θ, and for all ε < ε0 we have

∫

Γ\θ
γδ(x, u(x)) v dσ ≤

∫

Γ\θ
γε(x, uε(x)) v dσ ≤

∫

Γ\θ
γδ(x, u(x)) v dσ .

Then let ε→ 0, and using the weak convergence (3.2), we have

∫

Γ\θ
γδ(x, u(x)) v dσ ≤

∫

Γ\θ
g v dσ ≤

∫

Γ\θ
γδ(x, u(x)) v dσ .

Since γδ and γδ are monotone functions with respect to δ when δ → 0, we have

∫

Γ\θ
γ(x, u(x)) v dσ ≤

∫

Γ\θ
g v dσ ≤

∫

Γ\θ
γ(x, u(x)) v dσ .
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Since v ≥ 0 is arbitrary, it follows

γ(x, u(x)) ≤ g ≤ γ(x, u(x)), a.e. x ∈ Γ\θ .

Because we can choose η as small as we like, we may conclude

γ(x, u(x)) ≤ g ≤ γ(x, u(x)), a.e. in Γ .

4 – A priori estimates

In this section, we obtain easily the Proposition 3.1 as a consequence of the

following three lemmas.

Lemma 4.1. A solution of the problem (3.1) satisfies the estimate

(4.1) ‖uε‖W 1,q(Ω) ≤ C ,

for any q > 1 satisfying the inequality q < N
N−1 (p− 1), where the constant C is

independent of ε.

Proof: Denote

(4.2) uε(m) =





−1, if uε < −m,
uε + (m− 1), if −m ≤ uε < 1−m,
0, if 1−m ≤ uε ≤ m−1,
uε − (m− 1), if m−1 ≤ uε ≤ m,
1, if uε > m ,

for natural numbers m and notice that

(4.3) uε =
∞∑

m=1

uε(m) and uε(m) ∈W
1,p
Γ0

(Ω) .

We define the subdomains Rm, Gm and Ωm as follows:

(4.4)





Ωm =
{
x ∈ Ω, m−1 ≤ |uε(x)| < m, |Duε(x)|>0

}
;

Rm =
{
x ∈ Ω, |uε(x)| > m−1

}
;

Gm =
{
x ∈ Γ, |uε(x)| > m−1

}
.
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For simplicity, and without loss of generality, we discuss the problem under

the translated hypothesis (H2-iii) and (H3-iii),

(4.5)





ess sup
s≤−t∗

β(x, s) ≤ 0 ≤ ess inf
s≥t∗

β(x, s),

ess sup
s≤−t∗

γ(x, s) ≤ 0 ≤ ess inf
s≥t∗

γ(x, s) ,

for a.e. x ∈ Ω and a.e. x ∈ Γ, respectively, and for some t∗ > 0 sufficiently large.

With (4.5) and the definitions of βε and γε, we can choose two constants ρ,M

large enough, which are independent of ε, such that when m > ρ − 1, we have

uniformly

βε(uε)uε(m) ≥ 0 , γε(uε)uε(m) ≥ 0 ;

and

(4.7)





∣∣∣βε(uε)χ({x ∈ Ω, |uε(x)| ≤ ρ})
∣∣∣ < M,

∣∣∣γε(uε)χ({x ∈ Γ, |uε(x)| ≤ ρ})
∣∣∣ < M ,

where χ(G) denotes the characteristic function of G.

Taking uε(m) as a test function in the equation of (3.1), and using (4.6) and

(4.7), we have by (H1)

α ‖Duε(m)‖
p
Lp(Ω) = α

∫

Ωm

|Duε(m)|
p dx ≤

∫

Ωm

a(x, uε, Duε) ·Duε(m) dx ≤

≤ −
∫

Rm

βε(x, uε)uε(m) dx−
∫

Gm

γε(x, uε)uε(m) dσ +

∫

Rm

µε uε(m) dx+

∫

Gm

νε uε(m) dσ

= −
∫

{|uε|>ρ}∩Rm

βε(x, uε)uε(m) dx−
∫

{|uε|≤ρ}∩Rm

βε(s, uε)uε(m) dx+

∫

Rm

µε uε(m) dx

−
∫

{|un|>ρ}∩Gm

γε(x, uε)uε(m) dσ −
∫

{|uε|≤ρ}∩Gm

γε(x, uε)uε(m) dσ +

∫

Gm

νε uε(m) dσ

≤M measN (Ω) +M measN−1(Γ) + ‖µε‖1 + ‖νε‖1 ≤ C .

Hence, by exploiting Hölder’s inequality and the Sobolev imbedding theorem,

using the same procedure as in [4] and [14], for any q such that

(4.8) 1 ∨ (p−1) ∨
Nρ1
N+ρ1

∨
Nρ0

(N−1) + ρ0
< q <

N

N−1
(p− 1) .

we can sum on m and obtain

(4.9) ‖Duε‖
q
Lq(Ω) ≤ C ,
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where C is another constant independent of ε. Since uε = 0 on Γ0, with

measN−1(Γ0) > 0, by Poincaré inequality, we have (4.1).

Lemma 4.2. The sequences {βε(uε)} and {γε(uε)} in problem (3.1) are

uniformly bounded with respect to ε in L1(Ω) and L1(Γ), respectively. Moreover

as ε→ 0 they are weakly precompact in L1(Ω) and L1(Γ), respectively.

Proof: First, since ‖µε‖1 and ‖νε‖1 are uniformly bounded with respect to

ε, taking ρ ≤ m < ρ+ 1 and using uε(m) as a test function in (3.1), we have

∫

Ω
|βε(x, uε)| dx+

∫

Γ
|γε(x, uε)| dσ =

=

∫

{|uε|≤m}∩Ω
|βε(x, uε)| dx+

∫

{|uε|>m}∩Ω
|βε(x, uε)| dx

+

∫

{|uε|≤m}∩Γ
|γε(x, uε)| dσ +

∫

{|uε|>m}∩Γ
|γε(x, uε)| dσ

≤M measN (Ω) +M measN−1(Γ) +

∫

Rm

βε(x, uε)uε(m) dx+

∫

Gm

γε(x, uε)uε(m) dσ

−
∫

{m−1<|uε|≤m}∩Ω
βε(x, uε)uε(m) dx−

∫

{m−1<|uε|≤m}∩Γ
γε(x, uε)uε(m) dσ

≤M measN (Ω) +M measN−1(Γ)− α ‖Duε(m)‖
p
Lp(Ω) +

∫

Ω
|µε| dx+

∫

Γ
|νε| dσ

≤M measN (Ω) +M measN−1(Γ) + ‖µε‖1 + ‖νε‖1 ≤ C ,

where C is independent of ε.

That is, {βε(uε)} and {γε(uε)} are uniformly bounded with respect to ε in

L1(Ω) and L1(Γ), respectively.

Secondly, since (4.1) holds uniformly with respect to ε, by using Sobolev

imbedding theorem, we have

(4.10) ‖uε‖
κ
Lκ(Ω) ≤ C0 , ‖uε|Γ‖

τ
Lτ (Γ) ≤ C0 ,

where C0 is independent of ε, and κ = Nq
N−q

and τ = (N−1)q
N−q

.

To prove the sequences are precompact in L1(Ω) and L1(Γ) respectively, it

is enough to show that for each η > 0 there exists a δ > 0 so that for any

ω ⊂ Ω and θ ⊂ Γ, if measN (ω) < δ and measN−1(θ) < δ, then
∫
ω |βε(x, uε)| dx+∫

θ |γε(x, uε)| dσ < η.

In fact, with the choice of q in (4.8), κ − ρ1 > 0, τ − ρ0 > 0. By the growth

condition in (H2-ii) and (H3-ii) of βε, γε, and (4.10), when measN (ω) < δ and
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measN−1(θ) < δ, we have, for any ε,

∫

ω
|βε(x, uε)| dx+

∫

θ
|γε(x, uε)| dσ ≤

∫

ω
|e1 u

ρ1
ε + c1| dx+

∫

θ
|e0 u

ρ0
ε + c0| dσ ≤

≤ C

(
meas

κ−ρ1
κ

N (ω)
(∫

ω
|uε|

κ dx
)ρ1

κ +measN (ω)

+ meas
τ−ρ0
τ

N−1 (θ)
(∫

θ
|uε|

τ dσ
)ρ0

τ +measN−1(θ)

)

≤ C(Cρ1

0 + Cρ0

0 + 1)

(
meas

κ−ρ1
κ

N (ω) + meas
τ−ρ0
τ

N−1 (θ) + measN (ω) + measN−1(θ)

)

< η ,

as long as δ < ( η

4C(C
ρ1
0 +C

ρ0
0 +1)

)r, where r = max{ κ
κ−ρ1

, τ
τ−ρ0

}. Consequently, the

result follows.

Lemma 4.3. Assume Tε = (µε, νε) is bounded in L1(Ω) × L1(Γ), then the

sequence {uε} of solutions of the approximation problem (3.1) is precompact in

W 1,q
Γ0

(Ω), ∀ q < q∗.

Proof: The proof of this lemma may be ommited since it is essentially the

same as the one in Lemma 1 in [5], with the similar adaptations and corrections

done in the Appendix of [12] for the Dirichlet problem, and in “Etapes 2” of

Sections 2 and 3 of [21] for Neumann type problems.

Remark 4.4. The elliptic operator may be only weakly coercive, that is,

instead of (i) in (H1), a satisfies a(x, s, ξ) · ξ ≥ α |ξ|p − g(x) |ξ|, for g ∈ Lp′(Ω)

(see [14]).
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