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ON THE MAIN INVARIANT OF AN ELEMENT
OVER A LOCAL FIELD

N. Popescu and A. Zaharescu

Let K be a local field and let K̄ be a fixed algebraic closure of it. In our

previous work [6] is proved that to each element a ∈ K̄ one can associate some

numerical invariants relative to K. In the present paper we consider so called

“main invariant” of a, defined in (1). In first section we get some remarks about

this invariant. This invariant is related to so called “fundamental principle” of

[6] and this principie is somewhat analogous to so called Krasner’s lemma. This

lemma is related to another numerical invariant, namely ω(a) defined in (2).

Furthermore to the main invariant δ(a) it is assigned the subfield K(a, δ(a)) of

K(a) (see Proposition 1.4). We observe that to ω(a) is “assigned” the subfield

K(a), and K(a) = K(a, δ(a)) if and only if δ(a) = ω(a). Moreover, Theorem 2.9

assert that always the extension K(a)/K(a, δ(a)) is widly ramified! Finally, in

Theorem 2.10 are related some invariants of a and b where (a, b) is a distinguished

pair.

The results of this paper, will be utilised further to the study of extensions of

a local field and specially to the study of closed subfields of Cp (the completion

of the algebraic closure of p-adic numbers).

1 – Notations, definitions and general results

1. In this work by local field we shall mean a field K complete relative to a

rank one and discrete valuation v (see [3], [4], [8], [9]). Let K̄ be a fixed algebraic

closure of K and denote also v the unique extension of v to K̄. If K ⊆ L ⊆ K̄

is an intermediate field, denote by: G(L) = {v(x); x ∈ L}. As usually G(K)

will be identified to the ordered group Z of rational integers and for any L, G(L)

will be viewed as a subgroup of the additive group Q of rational numbers. One

has canonically: G(K) = Z ⊆ G(L) ⊆ G(K̄) = Q. If L is an intermediate field,
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denote A(L) = {x ∈ L, v(x) ≥ 0}, the ring of integers of L, and M(L) = {x ∈ L,
v(x) > 0} the maximal ideal of A(L). Let R(L) = A(L)/M(L) the residue field

of L. If x ∈ A(L) denote x∗ the image of x in R(L).

Let L/K be a finite extension. Denote e(L/K) the ramification index and by

f(L/K) the inertial degree of L. One has: [L : K] = e(L/K) · f(L/K).

2. If a ∈ K̄, denote deg a = [K(a) : K] the degree of a. If a ∈ K̄\K let us

denote:

(1) δ(a) = sup
{

v(a− c), c ∈ K̄, deg c < deg a
}

.

According to Krasner’s principle ([3], pag. 66) it follows that δ(a) is finite whereas

a is separable over K. Moreover according to ([2], Prop. 3.7 and Theorem 3.9)

it follows that δ(a) is also finite even when a is not separable over K. It is easy

to see that δ(a) is a rational number, and we call it the main invariant of a

(with respect to K). According to ([6], Remark 3.3) relative to δ(a) it is true the

following “fundamental principle”: If b ∈ K̄ is such that v(b − a) > δ(a), then

R(K(a)) ⊆ R(K(b)) and G(K(a)) ⊆ G(K(b)). This principle is in consense with

Krasner’s principle ([3], pag. 66); it has weaker hypothesis and conclusions.

Remark 1.1. For any a ∈ K̄\K one has:

1) If x ∈ K then δ(a+ x) = δ(a).

2) δ(a−1) = δ(a)− 2v(a).

3) If δ ∈ Q then (a, δ) is a minimal pair (see [2]) if and only if δ > δ(a).

4) A pair (a, b) of elements of K̄ will be called distinguished (see [6]) if:

1) deg a < deg b;

2) v(b− a) = δ(b);

3) If deg c < deg a then v(a− c) < δ(b).

Remark 1.2. Let (a, b) be a distinguished pair. Then one has

1) (a, δ(b)) is a minimal pair.

2) R(K(a)) ⊆ R(K(b)) and G(K(a)) ⊆ G(K(b)).

This Remark follows by ([6], Theorems 3.1 and 3.2).

Let γ ∈ Q. Denote by e(γ/K) the smallest non-zero positive rational integer

such that eγ ∈ G(K).
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If a ∈ K̄\K, then generally one has

(2) v(a) ≤ δ(a) ≤ ω(a)

(where ω(a) = sup{v(a− a′), a′ runs over all conjugates of a over K and a′ 6= a,

if a is separable}, and ω(a) =∞ if a is not separable).

Remark 1.3. If K(a)/K is totally ramified and a is an uniformising element

of K(a) then δ(a) = v(a). The next result tries to generalize this remark.

Proposition 1.4. Let a ∈ K̄\K. The following assertions are equivalent:

1) v(a) = δ(a).

2) e(K(a)/K) = e(v(a)/K) and for a suitable h ∈ K such that v(h) = ev(a),

(e = e(v(a)/K)), the element (ae/h)∗ generates R(K(a)) over R(K).

Proof: 1)⇒2) One has: v(a − 0) = v(a) = δ(a). Hence, (0, a) is a distin-

guished pair and so (0, v(a)) is a minimal pair (Remark 1.2). Let w be the residual

transcendental extension of v to K(x) defined by the minimal pair (0, v(a)) (see

[1]).

Then according to ([6], Theorem 3.2) it follows that f(X), the minimal and

monic polynomial of a over K, is the lifting in K[X] of a suitable polynomial of

R(K)[Y ]. Namely, since the minimal polynomial of 0 is X, there results v(a) =

w(X). Let e = e(v(a)/K) and h ∈ K be such that v(h) = e v(a). One has w(f) =

n v(a), where n = deg a. Also one has n = em, and (f/hm)∗ = G is an irreducible

polynomial of R(K)[Y ] of degree m (there Y = (Xe/h)∗). Then f is the lifting of

G relative to w. Hence one has: f = Xme+A1X
(m−1)e + ...+Am+H = f1 +H,

where H ∈ K[X], degH < me = n, w(H) > mev(a) and (f1/h
m)∗ = G. Now,

since f(a) = 0 it follows G((ae/h)∗) = 0 and so [R(K(a)) : R(K)] ≥ m. But

n = em and so R(K)((ae/h)∗) = R(K(a)), as claimed.

2)⇒1) Let us assume v(a) < δ(a). Let b ∈ K̄ be such that (b, a) is a

distinguished pair. One has: v(b) = v(a) and so e(K(b)/K) ≥ e(v(b)/K) =

e(v(a)/K) = e(K(a)/K). Now since v(a/b−1) > 0, it follows that for any h ∈ K
such that v(h) = e v(a), one has: (ae/h)∗ = (be/h)∗. Thus, by hypothesis it

follows: f(K(b)/K) ≥ f(K(a)/K), and so: deg b = e(K(b)/K) f(K(b)/K) ≥
e(K(a)/K) · f(K(a)/K) = deg a, a contradiction. Hence the inequality v(a) <

δ(a) is impossible and so by (2) v(a) = δ(a), as claimed.

One can show that for any wildly ramified extension L of the Qp, the field of

p-adic numbers, there exists an element a ∈ L such that L = Qp(a) and that a is

as in Proposition 1.4. This remark will be developed in a forthcoming paper.
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4. Let a ∈ K̄ be separable over K. If δ is a real number, let us denote

H(a, δ) the subgroup of Gal(K̄/K) = G consisting by all elements σ such that

v(a − σ(a)) > δ. Denote K(a, δ) = Fix(H(a, δ)). Since for any σ ∈ G such that

σ(a) = a one has σ ∈ H(a, δ), then K(a, δ) ⊆ K(a). K(a, δ) will be called the

subfield of K(a) associated to δ. Particularly K(a) is associated to∞. If δ1 < δ2,

then K(a, δ1) ⊆ K(a, δ2).

Proposition 1.5. Let a, b be separable overK. Assume that v(a−b) > δ(a).

Then K(a, δ(a)) ⊆ K(b, δ(b)).

Proof: To prove that inclusion, will be enough to show that H(a, δ(a)) ⊇
H(b, δ(b)). Indeed the relation v(a − b) > δ(a), show that deg a ≤ deg b. Then

δ(a) ≤ δ(b), since if c is such that deg c < deg a and v(a − c) = δ(a), then

necessarily v(b − c) = δ(a). But then if σ ∈ H(b, δ(b)), then v(b − σ(b)) > δ(b)

and so v(a−σ(a)) = v(a−b+b−σ(b)+σ(b)−σ(a)) > δ(a). Hence σ ∈ H(a, δ(a)),

as claimed.

Remark 1.6. Let a be separable over K and δ a real number. Denote

M(a, δ) = {σ(a), σ ∈ H(a, δ)} and let m(a, δ) be the cardinality of M(a, δ).

Then one has: m(a, δ) = [K(a) : K(a, δ)] and elements of M(a, δ) are exactly

the conjugates of a over K(a, δ).

5. Proposition 1.7. Let a, b ∈ K̄ be both separable over K. Assume that

(a, b) is a distinguished pair. Let f be the monic minimal polynomial of a over

K and let γ = v(f(b)). Then γ ∈ G(K(a)) + Z δ(b).

Proof: Let M = M(a, δ(b)). One has: γ = v(f(b)) =
∑

a′∈M v(b − a′) +
∑

a′′ /∈M v(b − a′′) =mδ(b) + e, where m=m(a, δ(b)) and e=
∑

a′′ /∈M v(b − a′′).

The proof will be finished if we show e ∈ G(K(a)). For that let f ′ be the

derivative of f and let w be the r.t. extension of v to K(X) defined by the

minimal pair (a, δ(b)) (see Remark 1.2). According to ([1], Theorem 2.1)

one has: w(f ′(X)) = v(f ′(a)) ∈ G(K(a)). On the other hand we can write:

f ′(a) =
∏

a′∈M\{a}(a− a′) ·
∏

a′′ /∈M (a− a′′). Now we remark that if a′′ /∈M , then

v(b− a′′) ≤ δ(b) and so v(a− a′′) = v(a− b+ b− a′′) = v(b− a′′). Therefore we

can write: v(f ′(a)) =
∑

a′∈M\{a} v(a − a′) + e. The proof will be finished if we

show that
∑

a′∈M\{a} v(a − a′) ∈ G(K(a)). For that let g be the monic minimal

polynomial of a over K(a, δ(b)). Over K̄ we can write: g(X) =
∏

a′∈M (X − a′),

and g′(a) =
∏

a′∈M\{a}(a− a′′). Now since g has the coefficients in K(a), we see

that v(g′(a)) =
∑

a′∈M\{a} v(a− a′) ∈ G(K(a)), as claimed.
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By the last result one obtains:

Remark 1.8. The hypothesis and notations are as in Proposition 1.7. If

δ = δ(b) ∈ G(K(b)) then m is relatively prime to q, the order of the factor group:

G(K(b))/G(K(a)).

Proof: Let us assume δ ∈ G(K(b)). According to ([1], Theorem 2.1) and

([6], Theorem 3.2) one has: G(K(b)) = G(K(a)) + Z γ. Hence δ = µ + c γ,

µ ∈ G(K(a)), c ∈ Z. But according to the proof of Proposition 1.5, one has:

γ = mδ+e, e ∈ G(K(a)). Hence δ = cm δ+µ′, µ′ ∈ G(K(a)), and so (1−cm) δ ∈
G(K(a)). Then 1− cm = d q, d ∈ Z, i.e. m is relatively prime to q, as claimed.

By this remark there results that if m is not relatively prime to q, then we

can not find a ∈ K(b) such that (a, b) is a distinguished pair. However this is

always possible if the residue field of K has zero characteristic since in this case

the extension K̄/K is separable.

2 – Ramification conjugates of an element

1. In this section L/K will be a finite separable extension such that the

residue extension R(L)/R(K) is also separable. According to the classical theory

of local fields (see [9], Theorems 3.2.10 and 3.4.7) the extension L/K will be

refined as:

K ⊆ T (L) ⊆ V (L) ⊆ L

where T (L)/K and V (L)/K are respectively the maximal unramified extension

and the maximal tamely ramified extension of L/K.

Let G = Gal(K̄/K). Denote

T (L) =
{

σ ∈ G/ v(σ(x)− x) > 0, ∀x ∈ A(L)
}

.

Remark 2.1. T (L) = {σ ∈ G/ σ(x) = x, ∀x ∈ T (L)}.

Proof: Let x ∈ T (L) be such thatA(T (L)) = A(K)[x], andR(L) = R(K)[x∗]

([9], Theorem 3.2.6). Let σ ∈ T (L). Since v(σ(x) − x) > 0 then σ̄(x∗) = x∗,

where σ̄ is the canonical image of σ in Gal(R(K̄)/R(K)). Hence σ(x) = x.

Conversely, let σ ∈ G be trivial on T (L). Let y ∈ A(L). If v(y) > 0, then

v(σ(y) − y) ≥ v(y) > 0. If v(y) = 0, let x ∈ T (L) be such that v(y − x) > 0.

Then v(σ(y)− y) = v(σ(y)− x+ x− y) > 0. Hence σ ∈ T (L), as claimed.
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Corollary 2.2. The quotient set G/T (L) has exactly [T (L) : K] elements.

The proof follows by Remark 2.1 and ([9], Proposition 3.5.1). The Corol-

lary 2.2 is not true if R(L) is not separable over R(K):

Example 2.3: Let p a prime number, Fp the field with p elements, k = Fp(X)

and K = k((t)). Consider the polynomial f(Y ) = Y p + t Y +X ∈ K[Y ]. Since

f̄(Y ) = Y p + X is an Eisenstein polynomial, then f(Y ) is also irreducible. Let

a ∈ K̄ be such that f(a) = 0. K(a)/K is a separable extension and it is easy to

see that T (K(a)) = G.

2. Let us denote:

V(L) =
{

σ ∈ G/ v(σ(x)− x) > v(x), ∀x ∈ A(L)
}

.

Obviously one has V(L) ⊆ I(L).

Remark 2.4. V(L) = {σ ∈ G/ v(σ(x)− x) > v(x) for all x ∈ L∗}.

Proof: If x ∈ A(L) and σ ∈ V(L) then v(σ(x) − x) > v(x) ≥ 0 and so

v(σ(x)
x − 1) > 0 or equivalently (σ(x)

x )∗ = 1. Let σ ∈ V(L) and x ∈ L∗. Then

x = x1/x2, x1, x2 ∈ A(L), and (σ(x1)
x1

)∗ = (σ(x2)
x2

)∗ = 1. Hence v(σ(x1)x2

x1 σ(x2)
− 1) > 0

or equivalently v(σ(x)− x) > v(x), as claimed.

Let π be an uniformising element of L/K. For any σ ∈ T (L), let us denote

uσ = σ(π)
π . The element u∗σ is independent of π. Denote:

ψ : T (L)→ R(K̄) , ψ(σ) = u∗σ .

Remark 2.5.

a) ψ(σ) = 1 if and only if σ ∈ V(L).
b) If τ ∈ V(L) and σ ∈ T (L), then ψ(σ τ) = ψ(τ).

Proof: a) According to the proof of the Remark 2.4 one has ψ(σ) = 1

whereas σ ∈ V(L).
Conversely, let σ ∈ T (L) be such that ψ(σ) = 1. Then σ ∈ V(L). Indeed,

one has u∗σ = (σ(π)
π )∗ = 1 or equivalently v(σ(π) − π) > v(π). Since π is an

uniformising element of L one has L = T (L)(π). Let x ∈ L. One has: x = f(π),

where f ∈ T (L)[X], and q = deg f < [L : T (L)] = degT (L) π. Let c1, ..., cq be all

the roots of f in K̄. We can write:

σ(x)

x
=
f(σ(π))

f(π)
=

y
∏

i=1

(

1 +
σ(π)− π
π − ci

)

.
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Since (0, π) is a distinguished pair (with respect to the field T (K)) (see Re-

mark 1.3), then v(π− ci) ≤ v(π) for all 1 ≤ i ≤ q. Therefore one has (σ(x)
x )∗ = 1,

and so v(σ(x)− x) > v(x). Thus σ ∈ V(L) (see Remark 2.4), as claimed.

b) One has: uστ = σ τ(π)
π . Since τ ∈ V(L) one has v(τ(π) − π) > v(π), and

so v(σ τ(π) − σ(π)) > v(π), or equivalently u∗στ = u∗σ. Hence ψ(σ τ) = ψ(σ) as

claimed.

For a subgroup H of G denote Fix(H) = {x ∈ K̄/σ(x) = x, ∀σ ⊂ H}.

Proposition 2.6. One has Fix(V(L)) = V (L) and the factor set T (L)/V(L)
has exactly d = [V (L) : T (L)] elements.

Proof: First we notice that V (L) ⊆ Fix(V(L)). Indeed, since V (L)/T (L) is

both totally and tamely ramified extension, according to ([9], Proposition 3.4.3)

one has: V (L) = T (L)(b) where b = d
√
x, and x is a suitable uniformising element

of T (L). Moreover for any σ ∈ G one has: v(σ(b) − b) = v(b). If σ ∈ V(L)
then v(σ(b) − b) > v(b) and so necessary σ(b) = b. Since V(L) ⊆ T (L), then
V (L) ⊆ Fix(V(L)), as claimed.

Now we shall prove that the quotient set T (L)/V(L) has exactly d elements.

Let π be an uniformising element of L/K and let e = e(L/K). Let x, y ∈ T (L)
be such that v(π)e = v(x) and v(π

e

x − y) > 0. For any σ ∈ T (L) one has:

v(σ(π)e

x − πe

x ) > 0. Hence one has v(ueσ − 1) > 0 and so (ueσ)
∗ = ψ(σ)e = 1. Since

e = dps, and (d, p) = 1, then by ψ(σ)e = 1 it follows ψ(σ)d = 1. Thus according to

Remark 2.5 it follows that the set T (L)/V(L) has at most d elements. Now since

V (L)/T (L) is a separable extension, T (L)/V(L) has at least d elements. Finally,

this set has exactly d elements, and the equality Fix(V(L)) = V (L) follows since

L/K is a separable extension.

Corollary 2.7. Let π be an uniformising element of L/K and let e = e(L/K).

Then V(L) = H(π, 1/e).

Proof: According to Remark 2.4 one has: V(L) ⊆ H(π, 1/e), since v(π) =

1/e. The converse inclusion follows by the proof of Remark 2.5.

Remark 2.8. The Corollary 2.7 give us the possibility to define the sub-

fields of ramification of L/K. Indeed, for any δ ≥ 1/e let us define Vδ(L) =

Fix(M(π, δ)). One has V1/e(L) = V (L). The subfields Vδ(L) are independent of

the uniformising element π.
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3. Let a ∈ K̄ be separable over K and let M = {a = a1, ..., an}, n = deg a,

be the set of all conjugates of a over K. For any real number δ, let us denote by

M(a, δ) = {a′ | a′ ∈ M(a) such that v(a − a′) > δ}. Let us denote m(a, δ) the

cardinality of M(a, δ). One has the following result:

Theorem 2.9. Let a ∈ K̄ be separable over K. Assume that R(K(a)) is

also separable over R(K). Denote by p the characteristic of R(K). Then for any

δ > δ(a) one has:

m(a, δ) =

{

ps, s ≥ 0 if p > 0,

1 if p = 0 .

Proof: According to Proposition 2.6 it will be enough to show that H(a, δ) ⊆
V(K(a)), or equivalently (see Remark 2.4), that for any σ ∈ H(a, δ) one has:

v(σ(x) − x) > v(x) for any x ∈ L∗. This is done as in the proof of Remark 2.5

where instead of π one put a.

4. For any c ∈ K̄\K, separable over K, let us denote:

∆(c) = inf(v(c− c′)) , c′ ∈M(c) .

Let (a, b) a distinguished pair such that a and b are separable over K. At this

point we try to relate ∆(a), ∆(b), δ(b) and ω(b). Precisely one has the following

result.

In what follows K is a local field of characteristic zero.

Theorem 2.10. Let (a, b) be a distinguished pair. Assume that a, b are

separable over K and that R(K(b))/R(K) is a separable extension.

Denote by p the characteristic of R(K). Then:

1) ∆(b) ≤ δ(b) + v(n)
n−1 , where n = degK b.

2) ∆(b) ≥ inf(∆(a), δ(b)). If ∆(a) < δ(b) then ∆(b) = ∆(a).

3) ω(b) ≤ δ(b) + v(e(K(b)/K))
p−1 if p 6= 0.

ω(b) = δ(b) if p = 0 .

Proof: 1) Let f be the monic minimal polynomial of b over K. One has:

(n − 1)∆(b) ≤ v(f ′(b)). Now since deg f ′ < n, then for any root c of f ′ one

has: v(b − c) ≤ v(b − a) = δ(b). Hence v(f ′(b)) ≤ (n − 1) δ(b) + v(n), and so

∆(b) ≤ δ(b) + v(n)
n−1 , as claimed.
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2) Let b′ ∈ M(b), b′ 6= b and let a′ ∈ M(a) be such that v(b′ − a′) = δ(b).

Then:

v(b− b′) = v
(

b− a+ a− a′ + a′ − b′
)

≥ inf
(

δ(b), v(a− a′)
)

≥ inf
(

δ(b),∆(a)
)

.

Now let us assume ∆(a) = v(a − a′) < δ(b). Let b′ ∈ M(b) be such that

v(b′ − a′) = δ(b). Then v(b − b′) = v(b − a + a − a′ + a′ − b′) = ∆(a). Hence

∆(b) = ∆(a), as claimed.

3) If ω(b) = δ(b) the proof is over. Let us assume ω(b) > δ(b) (that is happen

only if p 6= 0). Let b = b1, ..., bq be all elements b′ of M(b) such that v(b − b′) ≥
ω(b). It is clear that q ≥ 2. Let us denote: G(b, ω(b)) = {σ ∈ Gal(K̄/K),

v(b − σ(b)) ≥ ω(b)}. Then, G(b, ω(b)) is a subgroup of Gal(K̄/K), and let

L = Fix(G(b, ω(b))). One has L ⊂ K(b) and b1, ..., bq are all the conjugates

of b over L. Let h(x) ∈ L(x) be the monic minimal polynomial of b over L. Let

c1, ..., cq−1 be all the roots of h′(x). Since deg ci < deg b, 1 ≤ i ≤ q − 1, then,

v(b− ci) ≤ δ(b). Hence one has:

v(h′(b)) = (q − 1)ω(b) = v
(

q
q−1
∏

i=1

(b− ci)
)

≤ v(q) + (q − 1) δ(b) ,

i.e.

(3) ω(b) ≤ δ(b) +
v(q)

q − 1
.

Now, according to Theorem 2.9, the extension K(b)/L is totally ramified, and q

is of the form pt for a suitable t ≥ 1. Thus the above inequality implies:

ω(b) ≤ δ(b) +
v
(

e(K(b))/K
)

p− 1

as claimed.

Corollary 2.11. Let b ∈ K̄ be separable over K and such that the extension

K(b)/K is totally ramified and that b is an uniformising element of K(b). Assume

p = char(R(K)) > 0. Then one has:

∆(b) ≥ v(b) ,

ω(b) ≤ v(b) +
v
(

e(K(b)/K)
)

p− 1
.
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The proof follows since according to Proposition 1.4 (0, b) is a distinguished

pair and so δ(b) = v(b).

Corollary 2.12. Denote p the characteristic of residue field of K. For any

element b ∈ K̄, there exists an element c ∈ K such that:

∆(b) ≤ v(b− c) + p v(p)

(p− 1)3
if p 6= 0 ,

∆(b) = v(b− c) if p = 0 .

Proof: Let us assume p 6= 0. According to [6], there exists elements b0 =

b, b1, ..., bs such that for all i, 1 ≤ i < s, the pair (bi−1, bi) is distinguished, and

bs ∈ K. Let us denote ni = deg bi, and let phi be the greatest power of p which

appear in the decomposition of ni, 0 ≤ i < s.

According to 1) in Theorem 2.10 one has

∆(b) ≤ δ(b) +
v(n0)

n0 − 1
≤ δ(b) +

h0 v(p)

ph0 − 1
.

Furthermore according to 2) in Theorem 2.10 one has: ∆(b) = ∆(b1), or ∆(b1) ≥
δ(b), and so:

∆(b) ≤ ∆(b1) +
h0 v(p)

ph0 − 1
.

By repeating these considerations for b1, b2, ..., bs−1, one obtains finally:

∆(b) ≥
∑ hi v(p)

phi − 1
+ δ(bs−1) .

Now since one has
∑

t≥1

t

pt − 1
<

p

(p− 1)3

then 1) follows with c = bs, since v(bs−1 − bs) = v(b− bs).
Now let p = 0. Let b1 = b, ..., bn be all conjugates of b. Then c = b1+...+bn

n ∈ K,

and v(b− c) ≥ ∆(b). The equality follows since ω(b) = ∆(b).

The Corollary 2.12 may be utilised to develop so-called Continuous Galois

Theory over the local field K.

Remark 2.13. According to (J ·Ax, [Proposition 1, Corollary 2 to Lemma 6]

published in Journal of Algebra, 15 (1970), 417–428) there are stronger result:

for any b ∈ K̄, there exists c ∈ K such that:
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i) v(b− c) ≥ ∆(b)− p v(p)
(p−1)2

, if charK = 0 and charR(K) 6= 0;

ii) v(b− c) = ∆(b) if charK = charR(K) and K is perfect.
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