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VARIETIES OF DISTRIBUTIVE LATTICES
WITH UNARY OPERATIONS II

H.A. Priestley and R. Santos *

Abstract: This paper extends to the general setting of [11], [25] procedures presented

earlier for varieties of Ockham algebras. Given a suitable finitely generated variety A

of distributive-lattice-ordered algebras with unary operations, in which the subdirectly

irreducible algebras are assumed to have been pre-determined, a natural duality, free

algebras and coproducts can be obtained algorithmically for any prescribed subvariety

of A. Further, the meet-irreducible members of the lattice of equational theories of A

can be written down. The theory is illustrated by carrying this programme through for

varieties of double MS-algebras.

1 – Introduction

Our purpose, in this paper and its predecessor [25], is to unify a corpus of

existing literature, to strip away the particular features to reveal the underlying

structure, and to provide a uniform and algorithmic method for solving algebraic

problems relating to a wide class of equational theories arising in non-classical

propositional logic. We have chosen to illustrate the theory by considering the

variety of double MS-algebras. This variety DMS includes among its 21 join-

irreducible subvarieties de Morgan algebras, Kleene algebras, double Stone alge-

bras and a variety whose members are the 3-valued ÃLukasiewicz algebras (see [8],

Theorem 2.9, or [3], Theorem 5.1). It is therefore of intrinsic algebraic interest,

and is an excellent target for our methods.
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Given a finitely generated variety A of distributive-lattice-ordered algebras

we may seek to construct:

(1) a natural duality for each subvariety B of A;

(2) the (Priestley duals of) the free algebras FB(s) (s > 1) for each subvariety

B of A;

(3) identities defining the meet-irreducible elements of the lattice of subvari-

eties of A.

In [25] we presented a framework into which it is possible to fit a large class of

varieties A for which the operations are unary. This earlier paper set up the basic

machinery, and developed the theory far enough to present a duality for any qua-

sivariety generated by a subdirectly irreducible algebra. Here we address (1)–(3)

above. The first, fragmentary, contributions in this area dealt with individual va-

rieties having small subvariety lattices: de Morgan algebras, Kleene algebras and

other small varieties of Ockham algebras, double Stone algebras, ... . A significant

proportion of the examples investigated had a common feature: the algebraic op-

erations, besides the lattice operations ∧ and ∨ and nullary operations 0 and

1, were unary and satisfied de Morgan’s laws. This reflected the fact that the

varieties studied arose from algebraic logic, where a unary operation ¬ modelled

a negation. Also, if ¬ interchanges ∧ and ∨, then ¬¬ preserves them. Therefore

we embrace a spectrum of important examples by taking A to be generated by

a finite algebra (A;∧,∨, 0, 1, {fµ}µ∈N ), where each operation fµ is unary, and

either an endomorphism or a dual endomorphism of the reduct (A;∧,∨, 0, 1). A

detailed study of such varieties was begun by W.H. Cornish in [10], [11], with the

assumption that the operations defined a monoid action on A. This investigation

was pursued in [25]. There Cornish’s framework was extended, and natural du-

alities derived in a uniform manner for many familiar varieties, including DMS

— a simple but instructive example involving a 2-generated monoid.

This paper is a sequel to [25] and draws upon it. The material is divided

between the two papers so as to make this one as self-contained as possible, while

at the same time sparing the reader of [25] natural duality theory applied in its

most general form. The next section presents a minimal summary of what we

need from [25]. Section 3 sets up the natural dualities we require. The underlying

theory here is taken from [15]. It has been outlined in several subsequent applica-

tions [23] and [1], and we assume familiarity with it, but advise that this section

should be read in parallel with the highly pictorial DMS examples in Section 4.

Our general theory makes much detailed work unnecessary. It supplies the du-

alities for join-irreducible (or indeed arbitrary) subvarieties with a minimum of
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calculation, obviating the need to derive ab initio in any particular case the en-

domorphism monoid of the generating algebra and, by hand or by computer, the

subalgebras demanded by the Piggyback Duality Theorem (Theorem 3.2). Such

calculations were carried out in [28] for the DMS case. Another advantage of

working at the level of generality of [25] is that it can reveal what is really going

on. To take an example, consider the natural duality for the Ockham varieties

Pm,n, where m− n is odd, which was first presented in [19]. This duality has as

one of its relations a partial order which, in isolation, looks very curious. Once

the duality is cast as one of our monoidal dualities, this ‘oddity’ ceases to look

at all odd; see [25].

Finally, in Section 5, we discuss equational bases, extending techniques origi-

nally devised for Ockham varieties (see [22], [1], [24]). As an application, we give

a list of 21 identities sufficient to define all subvarieties of DMS. Previously only

selected order-ideals in the subvariety lattice had been analysed (see [3] and [6]).

A more detailed analysis of identities appears in [27].

2 – Preliminaries

In this section we summarise the definitions and results from [25] that we shall

need.

We denote by H and K the hom-functors setting up Priestley duality between

the categories D (bounded distributive lattices) and P (Priestley spaces), as

surveyed, for example, in [23]. We may identify a lattice L ∈ D with its second

dual KH(L) = kL(L), where kL : a 7→ ea, ea(x) :=x(a), for a∈L, x∈H(L). The

restrictions of H and K to non-full subcategories are also denoted by H and K.

An ordered ±-semigroup is a structure N = (N ; · , e ,N+, N−,6) such that

(M1) (N ; ·) is a finite semigroup, in which e is a right identity;

(M2) N = N+ ∪N−;

(M3) for σ, τ ∈ {±}, Nσ ·N τ ⊆ Nστ ;

(M4) N+ ∩N− = ∅;

(M5) 6 is a partial order on N such that, for all λ, µ, ν ∈ N ,

λ 6 µ =⇒

{

νλ 6 νµ if ν ∈ N+,

νλ > νµ if ν ∈ N− .

If (M4) is omitted, then N is said to be a weak ordered ±-semigroup. If further

e is a 2-sided identity and the order is discrete (and hence can be suppressed)
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then N is a finite ±-monoid as defined by Cornish in [11], Chapter 5. We let N=

be the structure obtained from N by replacing the given order by the discrete

order. We denote the class of finite ordered ±-monoids by M and the class of

finite weak ordered ±-semigroups by N . We let N ∗ denote the subclass of N

consisting of those monoids N ∈ N which satisfy

(M6) for all µ, ν1, ν2 ∈ N , ν1 6 ν2 =⇒ ν1µ 6 ν2µ.

Of course, (M6) is satisfied automatically if 6 is the discrete order. The reason for

introducing this supplementary condition emerges below. Such stringent restric-

tions are not needed for every result (for example sometimes a semigroup suffices,

instead of a monoid). Working with the full set of assumptions ensures that the

entire theory goes through smoothly without the distraction of a proliferation of

subclasses of N and without sacrificing any important examples.

Given any N ∈ N we may associate a distributive-lattice-ordered algebra P

(or where we wish to make N explicit, PN) in the following way.

(a) P has a bounded distributive lattice reduct whose Priestley dual H(P ) is

the ordered set (N ; 6), with the discrete topology, τ .

(b) P has operations f(µ,ε) indexed by the disjoint union (N+ × {1}) ∪

(N− × {−1}) of N+ and N−; we write f+µ for f(µ,+1) and f−µ for f(µ,−1).

These operations are defined by
{

f+µ (a)(ν) = a(νµ) if µ ∈ N+,

f−µ (a)(ν) = 1− a(νµ) if µ ∈ N− ,

for a ∈ P and ν ∈ N , and are required to satisfy the identities

f+µ (a) ∨ f−µ (a) = 1 and f+µ (a) ∧ f−µ (a) = 0 ,

whenever µ ∈ N+ ∩N−.

If N ∈M, we drop the superscripts from f+µ , f−µ . We let AN := HSP(PN).

Given N ∈ N , we may use the functors H and K to set up a Priestley-

type duality between AN, which we also denote by D-N, and a category N-P

of structures (Y ; T ,6, {gµ}µ∈N ), where (Y ; T ,6) ∈ P and the maps gµ define

a continuous semigroup action on Y , with gµ order-preserving for µ ∈ N+ and

order-reversing for µ ∈ N−. Then N, viewed as a structured Priestley space,

itself belongs to N-P, with the operation gµ given by left multiplication by µ.

For further comments on left and right actions, and the reconciliation of our

notation with Cornish’s, see Section 2 of [25], where motivation for the above

definitions is also given.
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It is shown in [25] that every monoid N in N is the image of some M ∈ M,

under a map which is both a monoid homomorphism and an N-P-morphism.

This means that AN is a subvariety of AM. We may also assume without loss of

generality that M satisfies (M6), since this can always be arranged by giving M

the discrete order. We shall take as the varieties A whose subvariety lattices we

analyse to be those of the form AM, where M ∈ N ∗ ∩M.

If a given variety V is expressed in the form HSP(PN), we write NV for

N. The weak ordered ±-monoid associated with the variety DMS is shown in

Figure 1; see [25]. Note that this monoid satisfies (M6).

Fig. 1: NDMS.

In Section 3 of [25] a discussion is given of subdirectly irreducible algebras,

extending results of Cornish for the unordered case. The following lemmas give

the properties we need here. These variously rely on, or are used in conjunction

with, two basic algebraic facts, applicable to any variety AN, for N ∈ N :

(a) the Congruence Extension Property (CEP) holds;

(b) Jónsson’s Lemma is applicable.

Lemma 2.1 ([25], Lemma 3.1). Assume N ∈ N satisfies (M6). Then

EndPN =
{

uµ := K(ηµ) | µ ∈ N
}

,

where ηµ : ν 7→ νµ (ν ∈ N ).

Lemma 2.2 (from [25], Proposition 3.4). Let N ∈ N . Then a finite algebra

A ∈ D-N is subdirectly irreducible if and only if there exists z ∈ H(A) such that

H(A) =
{

µz | µ ∈ N
}

.

In particular, the algebra PN is subdirectly irreducible.

Assume that N ∈ N ∗. Then the subdirectly irreducible algebras in AN are

precisely (the isomorphic copies of) the subalgebras of PN.
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Finally in this section we recall the structures used to build the duality for

AN. The underlying set of this schizophrenic object is a subset of 2N . We write a

typical element a ∈ 2N as 〈aν〉, where aν = a(ν) (ν ∈ N). We have two structures

with underlying set 2N :

2N := (2N ;∧,∨, 0, 1, {ϕ+µ }µ∈N+ , {ϕ−
µ }µ∈N−) ∈ D-N ,

2∼
N := (2N ; τ,4, {γµ}µ∈N ) ∈ N-P .

We use distinctive symbols ϕ±
µ , γµ in preference to the generic symbols f±µ , gµ

to stress the special role played by 2N and 2∼
N . These structures are defined in

the following way. The D-reduct of 2N is the Boolean lattice obtained as the

pointwise product of copies of the 2-element chain 2 ∈ D. We define operations

ϕ±
µ by the formulae:

ϕ+µ (〈aν〉) = 〈aµν〉 (µ ∈ N+) ,

ϕ−
µ (〈aν〉) = 〈aµν〉 (µ ∈ N−) ,

where δ=1−δ for δ=0, 1. Then (see [25]) (2N ;∧,∨, 0, 1, {ϕ+µ }µ∈N+ , {ϕ−
µ }µ∈N−)∈

D-N=; indeed its dual is just N=.

We now define the alternative structure 2∼
N . The ±-order, 4, is given by

a 4 b⇐⇒

{

aν = 1 =⇒ bν = 1 if ν ∈ N+,

bν = 1 =⇒ aν = 1 if ν ∈ N− ,

and operations γµ (µ ∈ N) are defined by

γµ(〈aν〉) := 〈aνµ〉 (ν ∈ N) .

The topology τ is the discrete topology.

When the order on N is not discrete the algebra P := PN properly sits inside

2N . Then (see [25], Lemma 4.7) the underlying set, P , is characterised as

P =
{

a : N → 2 | 2∼
N |= σe(a)

}

,

where

σe(a) :=
∧

{

ν1 6 ν2 ⇒ γν1(a) 4 γν2(a) | ν1, ν2 ∈ N
}

.

Further, γµ maps P into P , for each µ ∈ N . This final statement requires that

N is a monoid rather than a semigroup; see Lemma 4.7 of [25].

Write A := AN, to simplify notation. In practice we may be given a subdi-

rectly irreducible algebra Q in A by being given its dual S := H(Q) — indeed,
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Si(A) is often most easily determined by duality methods. It is therefore conve-

nient to know how to re-interpret Q, qua subset of 2S , explicitly in terms of 2N .

Let Q be a subdirectly irreducible algebra in A, given as a homomorphic image of

a subalgebra R of P under a homomorphism u : R→ Q. Dualising, there is a Y-

morphism ψ := H(u) providing an order-embedding of S onto an N -closed subset

of H(R). Also, H(R) = ϕ(N), where ϕ is a Y-morphism with domain N . Since

Q is subdirectly irreducible, there exists λ ∈ S such that S = {gν(λ) | ν ∈ N}.

Since ψ(S) ⊆ ϕ(N), there exists ρ ∈ N such that ψ(λ) = ϕ(ρ). Then

ψ(S) =
{

gν(ϕ(ρ)) | ν ∈ N
}

=
{

ϕ(νρ) | ν ∈ N
}

.

The required bijection from Q ⊆ 2S to ρR := γρ(R) ⊆ 2N is set up by

Z : u(a) 7→ γρ ◦K(ϕ) ◦ a ,

where K(ϕ) : R→ P is the natural embedding. To check that Z is a well-defined

bijection, note that, for ν ∈ N and b ∈ Q, with b = u(a) (a ∈ R),

b(gν(λ)) = u(a)(gν(λ)) = a(ψ(gν(λ))) = a(gν(ψ(λ))) =

= a(ϕ(νρ)) = K(ϕ)(a)(νρ) = (γρ(K(ϕ)(a)))(ν) .

3 – Natural dualities for subvarieties of a variety AN for N ∈ N ∗

Let N ∈ N ∗. It follows from the results of the preceding section that we have

HSP(PN) = ISP(PN). Better still, it is possible to set up a natural duality for

HSP(PN) based on the simple piggyback method developed in [18], [19], rather

than on the generalised theory in [15]; see Proposition 4.6 and Theorem 4.8 of

[25]. We shall combine the techniques of [15] with the duality theory obtained

in [25] for AN, to derive dualities for all subvarieties of AN. All the varieties we

wish to consider are thereby encompassed.

Theorem 3.1 ([25], Theorem 4.8). Assume N ∈ N ∗. Let P := PN ≤ 2N

and let P
∼

be the substructure of 2∼
N whose underlying set is P . Then the hom-

functors

D : A 7→ A(A,PN) ≤ P
∼

N ∈ X ,

E : X 7→ X (X,P
∼

N) ≤ PN ∈ A ,

set up a natural duality between A := HSP(P ) and X := IScP(P
∼

).
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For an example see the beginning of Section 4, where the structures P and P
∼

are shown for N = NDMS.

We shall now apply the Generalised Piggyback Duality Theorem, in the form

given below. We summarise the basic definitions first, referring the reader to

[15] for further information. Take A := ISP(Π), where Π is a finite set of finite

algebras all of the same type. Let

R ⊆
⋃

{

S(P ×Q) | P ,Q ∈ Π
}

,

let τ be the discrete topology and let Π∼ = (Π; τ,R). The power Π∼
S is formed as

follows: its underlying set is
·
⋃

{PS | P ∈ Π }, the topology is the union topology,

where each component P S has the product topology derived from the discrete

topology on P , and the relations in R are lifted pointwise. More generally we

consider structures X = (X; T , R), such that

X :=
.
⋃

{

XP | P ∈ Π
}

,

where each XP carries a compact topology and X carries the sum topology, and

where, for each relation r ∈ R, r ∈ S(P ×Q), there is an associated relation

r ⊆ XP ×XQ .

Given two such Π-indexed structures, X and Y, a morphism from X to Y is a

map which takes XP into YP for each P ∈ Π and which is structure-preserving

in the obvious sense. Then X is defined to be the category of all Π-indexed

structures which take the form of an isomorphic copy of a substructure of some

power Π∼
S of Π∼ (in symbols, X := IScP(Π∼)).

For each A ∈ A, the dual of A is defined to be

D(A) :=
.
⋃

{

A(A,P ) | P ∈ Π
}

,

viewed as an X -substructure of Π∼
A. For each X ∈ X ,

E(X) := X (X,Π∼)

is an A-subalgebra of
∏

{Q
P
| P ∈ Π } where Q

P
is P raised to the power XP .

Just as in the case |Π| = 1 we have well-defined contravariant functors

D : A → X and E : X → A .
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Theorem 3.2 (The Generalised Piggyback Duality Theorem, for distribu-

tive-lattice-ordered algebras). Suppose that A = ISP(Π), where Π is a finite set

of finite algebras of a given fixed type each having a D-reduct. For each Q in Π

let ΩQ be a (possibly empty) subset of D(Q,2).

Let Π∼ = (Π; τ,R) be the topological relational structure on
·
⋃

{P | P ∈ Π }

in which

(i) τ is the discrete topology,

(ii) R = S ∪ E, where

(a) S is the collection of maximal B-subalgebras of sublattices of the form

(α, β)−1(6) :=
{

(a, b) ∈ B × C | α(a) 6 β(b)
}

,

where α ∈ ΩP , β ∈ ΩQ (P ,Q ∈ Π), and

(b) E is the set of (graphs of) a set E ⊆
⋃

{A(P ,Q) | P ,Q ∈ Π } of

endomorphisms satisfying the following separation condition (S):

for all P ∈ Π, given a, b ∈ P with a 6= b, there exist Q ∈ Π,

u ∈ A(P ,Q) ∩ E and α ∈ ΩQ such that α(u(a)) 6= α(u(b)).

Then R yields a duality on A, that is, the functors D and E set up a dual

equivalence between A and a full subcategory of X := IScP(Π∼).

When using the Generalised Piggyback Duality Theorem we shall, for nota-

tional convenience, identify an endomorphism with its graph. This sloppiness

over types causes no problems in the context in which we are working (but see

[14], Section 3). For any algebra A having a D-reduct and whose additional oper-

ations are endomorphisms or dual endomorphisms of the reduct, any sublattice L

of A is contained in a unique maximal subalgebra of A (Lemma 3.5 of [15]). Thus

in our applications of Theorem 3.2 to a subvariety C of some variety of the form

AN, any lattice (α, β)−1(6) as above will have a unique maximal C-subalgebra,

which we denote by (α, β)−1(6)o.

For a given variety or quasivariety there may be several different ways in which

the theorem above can be applied. The family Π is not uniquely prescribed. To

illustrate, suppose we have some B ∈ Π such that ΩB contains precisely two

elements α, β. Then we may replace B by a pair of copies Bα, Bβ of B, and take

ΩBα
= {α}, ΩBβ

= {β}. The satisfaction of (S) is not altered by this manoeuvre.

Thus there may be a trade-off of the size of Π against the size of
⋃

Q∈ΠΩQ (the

set of carriers, in the terminology of [15]). For a class ISP(Q) we can present a

duality with Π = {Q}, taking sufficient carriers to ensure the separation condition
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is satisfied (note that ΩQ = H(Q) will certainly suffice). Alternatively, as in [25],

we can go to the opposite extreme and take copies Q
α

of Q indexed by the

points α of H(Q), letting ΩQ
α

= {α}. The relative merits of the options ‘single

algebra, multiple carriers’ and ‘multiple algebras, single carrier’ depend on what

the objectives are. A duality based on a single algebra is ostensibly simpler than

one based on multiple algebras. However the multiple algebra approach often

gives a more direct translation to a Priestley-type duality. In the case of the

variety generated by an algebra which is not subdirectly irreducible we may need

both multiple algebras and multiple carriers; see Theorem 3.6. In any case, the

more endomorphisms are available the fewer algebras and/or carriers are forced

upon us.

From here on we take N to be a fixed monoid in N ∗. To simplify notation,

we let P := PN and A := AN (= D-N). Recall (2.2) that up to isomorphism

the subdirectly irreducible subalgebras are exactly the subalgebras of P . To

apply the Generalised Piggyback Duality Theorem to obtain a natural duality

for HSP(Q), for Q ∈ S(P ), we first need to investigate the separation condition

(S), by analysing the partial endomorphisms of P .

Lemma 3.3. Let Q be a subalgebra of P . Then

EndQ =
{

uκ¹Q | uκ(Q) ⊆ Q (κ ∈ N)
}

.

Proof: Assume that v : Q → Q is an endomorphism, with dual ψ := H(v).

Denote the dual of the natural embedding q : Q → P by ϕ, so ϕ : N → H(Q) is

surjective. Let ψ(ϕ(e)) = ϕ(κ). Then, for all ν ∈ N and b ∈ Q,

ν(q(v(b))) = ϕ(ν)(v(b)) = (ψ(ϕ(ν)))(b) = (ψ(gν(ϕ(e))))(b) =

= gν(ψ(ϕ(e)))(b) = gν(ϕ(κ))(b) = ϕ(νκ)(b) = ϕ(ηκ(ν))(b)

= ηκ(ν)(q(b)) = ν(uκ(q(b))) = ν(uκ¹Q(b)) .

We conclude that v = uκ¹Q, and the image of this map must necessarily lie in Q.

Conversely, uκ¹Q ∈ EndQ only if uκ(Q) ⊆ Q.

We are now ready to apply the Generalised Piggyback Duality Theorem to

obtain an economical ‘single algebra, multiple carrier’ duality for subvarieties of

AN of the form ISP(Q), where Q is subdirectly irreducible. Lemma 3.3 guides us

in choosing our carriers. The result below may be compared with Proposition 4.6

of [25]. As already noted we may have to compensate for a paucity of endomor-

phisms by taking multiple carriers. In [25] we were concerned with a generating
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algebra PN, and might lack the putative endomorphism uκ because ηκ is not

order-preserving. Here we have imposed conditions on N sufficient to guarantee

this does not occur. However when we consider a subalgebra Q of PN, we may

have a reduced set of endomorphisms because the restriction to Q of the map

uκ may not have image lying in Q. The following theorem gives a simple way to

find a duality which will generally be more economical than one built using every

element of H(Q) as a carrier.

Theorem 3.4. Let N ∈ N ∗ and let P := PN. Assume that Q is a subdirectly

irreducible subalgebra of P , and that H(Q) ⊆ IS(Q). Let ϕ := H(q), where

q : Q→ P is the natural embedding. Let

N0 :=
{

κ ∈ N | uκ(Q) ⊆ Q
}

.

Define ΩQ to be a subset C of ϕ(N) such that every element of ϕ(N) is expressible

in the form ϕ(µκ), where κ ∈ N0 and ϕ(µ) ∈ C. Let

E :=
{

uκ¹Q | κ ∈ N0
}

and

S :=
{

(α, β)−1(6)o | α, β ∈ C
}

.

Then E ∪ S yields a duality on HSP(Q).

The set C may be taken to be {α} ∪ (ϕ(N) \ ϕ(N0)), where α := ϕ(e).

Proof: Given a 6= b in Q, we can find ϕ(β) ∈ H(Q) such that ϕ(β)(a) 6=

ϕ(β)(b). Take κ ∈ N0 and β = ϕ(µ) ∈ C such that ϕ(µκ)(a) 6= ϕ(µκ)(b). Then

ϕ(µ)(uκ(a)) = µ(q(uκ(a))) = µ(uκ(q(a))) =

= (ηκ(µ))(q(a)) = (µκ)(q(a)) = (ϕ(µκ))(a)

and likewise with b in place of a. Hence we have guaranteed that (S) holds by

our choice of C.

We now turn to the general case, first seeking information about the endo-

morphisms we shall want to use.

Suppose Q is a subalgebra of P . For each κ ∈ N , let vκ be the restriction of

uκ := K(ηκ) to Q. Then Q
κ

:= vκ(Q) is a subalgebra of P , and Q
e

= Q.

Lemma 3.5. Let Q be a subalgebra of P . Then, for κ ∈ N and for a 6= b

in Q
κ
, there exists λ ∈ N such that vλ,κ(a) 6= vλ,κ(b), where vλ,κ := uλ¹Q

κ
:

Q
κ
→ Q

λκ
.
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Proof: For λ, κ, ν ∈ N , and a ∈ P ,

(uλ(uκ(a))(ν) = (uκ(a))(ηλ(ν)) = (uκ(a))(νλ) =

= a(ηκ(νλ)) = a(νλκ) = (uλκ(a))(ν) .

Hence uλ ◦ uκ = uλκ, so that vλ,κ maps Q
κ

into Q
λκ

.

Now let qκ be the natural embedding of Q
κ

into P and ϕκ : N → Sκ := ϕκ(N)

be its dual. Then the following diagrams commute.

Since a 6= b, we have qκ(a) 6= qκ(b), and there exists λ ∈ N such that

λ(qκ(a)) 6= λ(qκ(b)). For c ∈ Q
λ
,

(ϕλκ(e))(vλ,κ(c)) = ((H(vλ,κ)(ϕλκ)(e))(c)

= ((ϕκ ◦ ηλ)(e))(c)

= (ϕκ(λ))(c)

= λ(qκ(c)) .

We deduce that (ϕ(κλ)(e))(vλ,κ(a)) 6= (ϕ(κλ)(e))(vλ,κ(b)), whence we conclude

that vλ,κ(a) 6= vλ,κ(b).

We could now state a brute force duality theorem for HSP(Q), based on the

full set of algebras H(Q) and suitable carrier sets. This follows very directly from

Theorem 3.6 below, using the maps vκ,λ as the endomorphisms to be included in

our relational structure. The retention of all homomorphic images of Q ensures

that we can satisfy the separation condition (S). In practice we usually simplify

our dualities by omitting those algebrasQ
κ

which serve no necessary function. We

therefore explore whether the separation condition can be met using a reduced

set of algebras. Order the subalgebras in H(Q) by Q
κ
¿ Q

λ
if and only if

Q
κ
∈ S(Q

λ
). Define

N [Q] :=
{

κ ∈ N | Q
κ

is ¿-maximal
}

.
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Given that Q is subdirectly irreducible,

HSP(Q) = ISP
({

Q
κ
| κ ∈ N [Q]

})

.

Let a 6= b in Q
κ
, where κ ∈ N [Q]. Since N ∈ N ∗, Q

κ
is itself subdirectly

irreducible, and, applying Lemma 3.5 to it, we can find an endomorphism f :=

vκ,λ : Q
κ
→ Q

λκ
such that f(a) 6= f(b). We may not have λκ ∈ N [Q]. However

by composing f with an embedding of Q
λκ

into Q
µ
, where µ does belong to

N [Q], we see that a and b can be separated by an endomorphism, of the same

type, into Q
µ
. We therefore have, for each pair κ, µ ∈ N [Q], an endomorphism

wκ,µ : Q
κ
→ Q

µ
such that a 6= b in Q

κ
implies wκ,µ(a) 6= wκ,µ(b). Here each wκ,µ

is a map of the form vκ,λ, with (possibly) the codomain re-defined.

The following theorem is now a corollary of the Generalised Piggyback Duality

Theorem and the proof of Lemma 3.5.

Theorem 3.6. Let N ∈ N ∗ and A := AN. Let Q be a subdirectly irreducible

subalgebra of P := PN and let

B = HSP(Q) = ISP(ΠB) where ΠB :=
{

Q
κ
| κ ∈ N [Q]

}

.

For each κ ∈ N [Q], let ΩQ
κ

:= {ακ} where ακ := ϕκ(e). Take

E [Q] :=
{

wκ,µ : Q
κ
→ Q

µ
| κ, µ ∈ N [Q]

}

and

S[Q] :=
{

(ακ, αµ)−1(6)o ≤ Q
κ
×Q

µ
| κ, µ ∈ N [Q]

}

.

Then E [Q] ∪ S[Q] yields a duality on HSP(Q).

More generally, let C := HSP(Q1, . . . , Qk) (where Qi ∈ Si(A) for i = 1, . . . , k)

be an arbitrary subvariety of A. Then

RC :=
⋃

{

E [Qi] ∪ S[Qi] | i = 1, . . . , k
}

yields a duality on C.

Note that in Theorem 3.6 the given set of relations RC is the union of the sets

of relations for dualities for the individual subvarieties HSP(Qi). This convenient

localisation, observed previously for Ockham varieties, comes from the fact that

the separation condition can be satisfied locally, as for the individual subvarieties

HSP(Qi).
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In order to appreciate how the duality in Theorem 3.6 works for an arbitrary

subvariety C, and to see its relation to the restricted Priestley duality, we need

to describe the relational structure in terms of that of 2∼
N . Since the dualities

for all subvarieties C of A work in exactly the same way, differing only in the

subalgebras and carriers selected, we shall work below with the complete set

Π :=
{

Q
κ
| Q ∈ S(P ), κ ∈ N

}

of subalgebras (possibly with repetitions). Let Π∼ be the disjoint union of all the

sets Qκ equipped with all the relations E [Qκ], S[Qκ] (Q ∈ S(P ), κ ∈ N). The

object Π∼ gives an excessively complicated piggyback duality for A itself — the

antithesis of that in Theorem 3.1. Within this monster structure Π∼ sit all the

objects Π∼C , and a uniform translation from natural duality to Priestley duality

exists for them all.

The set P is a subset of 2N , and every member of each Q
κ

is a function from

N to {0, 1}. Then

Qκ :=
{

uκ(a) | a = 〈aν〉 ∈ Q
}

=
{

〈aνκ〉 | 〈aν〉 ∈ Q
}

= γκ(Q) .

Here the schizophrenic personality of Qκ is clearly exposed. The set Qκ wearing

its algebraic hat is the image of Q under the endomorphism uκ. The same set

Qκ, in terms of the dual structure, is characterised as the image of Q under the

map γκ. The maps uκ and γκ on 2N are the same map.

We superscript elements of 2N to denote elements of Qκ regarded as belonging

to Π∼. Since our piggybacking relations are subalgebras of Q
κ
×Q

µ
, with the same

Q for each factor, we shall regard Q as fixed, and suppress it in our labelling.

A typical element of Qκ is therefore written 〈aκνκ〉. We define qκ : Qκ → 2N by

qκ(〈aκνκ〉) := 〈aνκ〉. Thus qκ is just the natural embedding of the free-standing

set Qκ into P .

The following lemma looks more ferocious than it is. It simply says that,

when we regard the sets Qκ as subsets in 2N via the maps qκ, the piggybacking

maximal subalgebras are obtained simply by restricting the ±-order, and that

the piggybacking endomorphisms are given by the γµ-maps.

Lemma 3.7. Under the assumptions of Theorem 3.6,

(〈aκνκ〉, 〈b
λ
νλ〉) ∈ (ακ, αλ)−1(6)o ⇐⇒ qκ(〈aκνκ〉) 4 qλ(〈bλνλ〉)

and qκ ◦ vκ,λ ◦ gκ = γκλ ◦ qκ.
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Proof: Similar proofs appear in [15], Lemma 3.6, and [25], Lemma 4.11.

We therefore give here only an outline of the argument. Let a = 〈aκν〉 ∈ Q
κ
,

b = 〈bλν 〉 ∈ Qλ
. Then

(a, b) ∈ (ακ, αλ)−1(6)o ⇐⇒ ακ(f(a)) 6 αλ(f(b)) for all unary operations f

⇐⇒ (∀ν∈N)

{

(gν(ακ))(a) 6 (gν(αλ))(b) if ν∈N+,

(gν(ακ))(a) > (gν(αλ))(b) if ν∈N−

⇐⇒ (∀ν∈N)

{

(νακ)(a) 6 (ναλ)(b) if ν∈N+,

(νακ)(a) > (ναλ)(b) if ν∈N− .

Also

qκλ(vκ,λ(〈aκνκ〉)) = qκλ(〈aκλνκλ〉) = 〈aνκλ〉 = γλ(〈aνκ〉) = γλ(qκ(〈aκνκ〉)).

We conclude that qκλ ◦ vκ,λ ◦ gκ = γλ ◦ qκ.

The natural dual of an algebra A ∈ C, for C a subvariety of A := AN is defined

to be the disjoint union of hom-sets A(A,Q
κ
) (Q

κ
∈ ΠC), structured pointwise

by the relations described in Theorem 3.6. When A is FC(1), the free algebra

on 1 generator, there is a bijective correspondence between Qκ and A(A,Q
κ
).

Thus Π∼C belongs to the category Z := IScP(Π∼C) dual to C, and serves as the

dual D(FC(1)) of FC(1) (see [15], Lemma 1.2). We shall show that a natural

simultaneous embedding of the sets in ΠC into 2N gives H(FC(1)), and that this

embedding lifts pointwise to give the Priestley duals of arbitrary algebras in C.

We shall state without proof this translation between the natural dual and the

Priestley dual of an algebra A ∈ C. We denote the dual category N-P by Y. To

avoid complicated notation we present it just for the case of a variety generated

by a single subdirectly irreducible algebra. The general case works in the same

manner. The specialisation to the Ockham case appears as Theorem 3.8 of [15].

Theorem 3.8. Let B := HSP(Q) (Q a subdirectly irreducible subalgebra

of P ), let ΠB := {Q
κ
| κ ∈ N [Q]} and let Π∼B := (ΠB; τ, E [Q] ∪ S[Q]), where

E [Q] and S[Q] are as in Theorem 3.6 and τ is the discrete topology. Fix A ∈ B

and let Xκ := A(A,Q
κ
), for κ ∈ N [Q], so that D(A) =

·
⋃

{Xκ | κ ∈ N [Q] }.

Let Y = H(A) and and let

Y κ :=
{

y ∈ H(A) | y = ακ ◦ ϕ for some ϕ ∈ D(A)
}

.
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From D(A) ∈ X := IScP(Π∼B), construct (Z; T ,6, {gµ}µ∈N ) ∈ Y as follows.

Define an equivalence relation ρ on X by

ρ :=
⋃

{

s ∩ s̆ | s ∈ S[Q]
}

(where (x, y) ∈ s̆ if and only if (y, x) ∈ s). More explicitly,

for x ∈ Xκ, y ∈ Xλ, x ρ y ⇐⇒ (x, y) ∈ ker(ακ, αλ)o

(:= (ακ, αλ)−1(6)o ∩ (αλ, ακ)−1(6)o) .

Let π : X → X/ρ be the canonical projection. Then define

(i) Z := X/ρ, with the quotient topology;

(ii) π(x) 6 π(y) in Z if and only if (x, y) ∈ s for some s ∈ S[Q];

(iii) for µ ∈ N , and x ∈ Xκ, gµ(π(x)) = π(wκ,λ(x)), where λ ∈ N [Q] is such

that Q
µ
⊆ Q

λ
.

Then the order and operations on Y are well defined, and Y is isomorphic in Y

to H(A).

From Y ∈ Y construct a space X = (X; T , S ∪ E) ∈ X as follows.

(i)′ X =
·
⋃

{Y κ | κ ∈ N [Q] };

(ii)′ X carries the sum topology induced by subspace topologies on the com-

ponents Y κ;

(iii)′ S := {6 ∩ (Y κ × Y λ) | κ, λ ∈ N [Q] };

(iv)′ E = { gλ¹Y
κ | κ, λ ∈ N [Q] }.

Then D(A) is isomorphic to X.

The fact that the quotient map π maps D(A) onto H(A) relies on the fact

that the maps Φακ := ακ ◦ − associated with our chosen carrier maps ακ are

jointly onto (so that Y =
⋃

{Y κ | κ ∈ N [Q]}, for Y = H(A)). This does not

need direct proof: it is forced by the separation condition (S); see Section 2 of

[15]. Nevertheless, it is worth recording the version of the Joint-ontoness Lemma

which applies to dualities as formulated here. We do not give the proof, since this

follows very closely that of Lemma 3.3 of [15]. To minimise double subscripting

we have changed the notation a little.
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Lemma 3.9. Assume the same definitions and the same conditions as in

Theorem 3.6. For each κ, define maps

Ψκ (= Φz) := ακ ◦ − : A(A,Q
κ
)→ im Φz ,

Θκ := kA(−) ◦ hκ : im Φz → A(A,Q
κ
) ,

where hκ(y)(gν(z)) := gν(y). Then Ψκ and Θκ are mutually inverse bijections.

Free algebras are now extremely easy to describe. Since we wish to use our

descriptions in Section 5 to obtain equational bases, we need to consider general

subvarieties of ISP(P ). Let Q1, . . . , Qk belong to S(P ). We adapt the notation

employed earlier for a single subalgebra Q to the present setting by appending

superscript is to indicate the subalgebra under consideration. Thus, for example,

we denote the ¿-maximal homomorphic images of Qi by Qi
κ

(κ ∈ N [Qi]). Once

again we are extending results from [15] (Theorem 3.15) and [25] (Theorem 4.12),

and the proof strategy is the same. We therefore omit the proof, noting merely

that we must carry out the translation process on Π∼C = D(FC(1)).

Theorem 3.10. Let N ∈ N ∗ and let C be the variety generated by the

subalgebras Q1, . . . , Qk of PN. Then

H(FC(1)) =
{

gµ(y) | y ∈ Qi
κ, κ, µ ∈ N [Qi], i = 1, . . . , k

}

(as a subspace of 2∼
N )

=
{

gµ(y) (µ ∈ N) | 2∼
N |= σe(y)

}

.

More generally, the Priestley dual of FB(s) is obtained by

(a) taking the s-fold power of Π∼B in X , that is,

Π∼
s
B :=

⋃

{

(Qi
κ)s | κ ∈ N [Qi], i = 1, . . . , k

}

,

with relational structure lifted pointwise from Π∼B,

(b) applying the translation process described in Theorem 3.8.
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4 – Double MS-algebras

Here we have P as the set of quintuples 〈ah2 , ah, a1, ag, ag2〉 in which ah2 6

a1 6 ag2 and ah 6 ag. We shall represent these 12 elements as binary strings of

length 5. The algebra P is as shown in Figure 2. The same set under its ±-order

is shown as P
∼

in Figure 2. The operations are given by

ϕg(〈ah2 , ah, a1, ag, ag2〉) = 〈ag, ag2 , ag, ag2 , ag〉,

ϕh(〈ah2 , ah, a1, ag, ag2〉) = 〈ah, ah2 , ah, ah2 , ah〉,

ϕg2(〈ah2 , ah, a1, ag, ag2〉) = 〈ag2 , ag, ag2 , ag, ag2〉,

ϕh2(〈ah2 , ah, a1, ag, ag2〉) = 〈ah2 , ah, ah2 , ah, ah2〉 .

Likewise,

γg(〈ah2 , ah, a1, ag, ag2〉) = 〈ah, ah2 , ag, ag2 , ag〉,

γh(〈ah2 , ah, a1, ag, ag2〉) = 〈ah, ah2 , ah, ag2 , ag〉,

γg2(〈ah2 , ah, a1, ag, ag2〉) = 〈ah2 , ah, ag2 , ag, ag2〉,

γh2(〈ah2 , ah, a1, ag, ag2〉) = 〈ah2 , ah, ah2 , ag, ag2〉 .

Also ϕ1 = id and γ1 = id.

Fig. 2
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Observe that the transformation from 6 on P to 4 on P
∼

is effected simply

by reflecting in the central NW–SE diagonal. The maps g and h have geometric

interpretations too, though these are less transparent. For g, consider P
∼

with

the points 4, 5, 6 removed, and re-drawn as 3 × 3 with horizontal and vertical

symmetry. The map g on this subset is just reflection in the horizontal axis

joining 1 and 12. Finally, g(4 + i) = g(7 + i) for i = 0, 1, 2. The map h arises in

the dual manner.

The methods for treating the subvariety lattice of a finitely generated con-

gruence-distributive variety stem from Jónsson’s Lemma, and have been applied

many times to varieties of distributive-lattice-ordered algebras; see for example

[13], [2] and [22]. The lattice Λ(DMS) of subvarieties of DMS has been partially

analysed by T.S. Blyth, A.S.A. Noor and J.C. Varlet in [5], [3], and a summary of

these results appears in [6]. The general theory tells us that the lattice Λ(DMS)

is isomorphic to the lattice of order ideals of the poset of join-irreducible members

of Λ(DMS). This poset, V , may be identified with Si(DMS), the (isomorphism

classes of) non-trivial subdirectly irreducible algebras in DMS, ordered by Q ≤ R

if and only if Q ∈ HS(R). In fact Si(DMS) can be identified with the isomor-

phism classes of subalgebras of P (see [5] and [25], Theorem 3.5). There are 21

elements in V , ordered as shown in Figure 3. The numbering follows that used

in [6], p. 198; our k is denoted SIDk in [6], the trivial algebra being omitted from

the listing there.

Our representation of the order of V looks different from that given in [5] and

[6], p. 198. We have taken advantage of knowledge of Λ(DMS) gained through

work on identities in [27] to give a picture which better reflects the equational

relationships involved. In V we have a central ‘spine’, consisting of

5,6, 8,10, 11,12, 15,16, 17,18, 1, 3, 9, 13, 20,

of which the first 10 elements occur in mutually dual pairs k, kd (that is, the

lattices are order duals and + and o are interchanged) and the remainder are

self-dual. Added to this spine are two ‘flaps’: 2, 4 and 7, 14, 19, all of which

are self dual. The former flap supplies the ‘Stone-like’ subvarieties: double Stone

algebras (HSP(4)) and doubled Stone algebras (HSP(2)).

Let Q be a subdirectly irreducible algebra in DMS. Since every homomorphic

image of Q is isomorphic to a subalgebra of Q, we have HSP(Q) = ISP(Q) and

can base a natural duality for this variety on Theorem 3.4. Proceeding this way

we can obtain natural dualities for each of the join-irreducible subvarieties in

Λ(DMS). These dualities were first derived in [28], by direct application of the

Generalised Piggyback Duality Theorem to each variety individually. Whether
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the determination of the endomorphisms and the selection of carriers is treated

algebraically as in [28] or is based on Lemma 3.3 a substantial amount of work is

involved in describing each duality completely.

Fig. 3: V = Si(DMS).

We contend here that, rather than invoking Theorem 3.4, it is preferable to

appeal to Theorem 3.6 and the interpretation of its results in terms of 2∼
N . The

advantages of this approach is that a minimum of calculation is required. For

a given variety B := ISP(Q) (Q subdirectly irreducible, Q regarded as a subset

of the 12 quintuples in P ) we proceed as indicated below. We shall henceforth

write γµ simply as µ for µ ∈ {g, g2, h, g2} and suppress parentheses to make our

notation more compact in the table which follows. Remember that γµ is the same

map as uµ.
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Table 1
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Table 1 (cont.)
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Table 1 (cont.)
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(1) Compute the images gQ, hQ, g2Q, h2Q; these are the homomorphic im-

ages of Q, regarded as subsets of P .

(2) Select the elements of {Q, gQ, hQ, g2Q, h2Q } which are maximal with re-

spect to inclusion; these elements, regarded as subalgebras of P , comprise

the set ΠB on which the duality is based.

(3) Regard the sets R (R ∈ ΠB) as subsets of P
∼

; the disjoint union of the sets

R acquire a relational structure by restricting the ±-order and the maps

g, h, g2, h2.

The resulting structure serves as the alter ego Π∼B of ΠB we require for our duality

for HSP(Q). Since the relational structure is determined by that of P
∼

we can

record the duality simply by specifying the subsets of P obtained in (3).

Table 1 gives natural dualities for the join-irreducible subvarieties of DMS, in

a diagrammatic form. For each listed subvariety, HSP(Q), we give the following

information.

(a) The code number of the subalgebra generating the variety.

(b) The set S := Q\{00000, 11111}, labelled as in Table 1. The omitted points

occur in every subset µQ and so do not need to be recorded explicitly.

(c) Those sets µS for which the corresponding subalgebras γµ(Q) are

¿-maximal. The sets µQ give the components of Π∼B.

(d) The algebra Q as a subalgebra of P , the points being indicated by ¥.

(e) The sets µQ, for µ as in (c), as subsets of P
∼

. To save space, we have

marked all these sets on a single copy of P
∼

. The symbols have the following

meanings.

Q ¥, gQ N, hQ H, g2Q J, h2Q I

We have included in the table the diagram for only one of each pair of mutually

dual subdirectly irreducible algebras. Consider the map on the Boolean algebra

25 sending 〈ah2 , ah, a1, ag, ag2〉 to 〈ag2 , ag, a1, ah, ah2〉. Restricted to P , this map

is simply the rotation of P in its own plane through the angle π, and converts any

subalgebra of P to a dually isomorphic subalgebra. Given the object Π∼ giving

a duality for HSP(Q) we obtain an object Π∼
d giving a duality for HSP(Qd) just

by turning the picture upside down. More precisely, consider P with its ±-order

as a fixed template, and consider the labelling obtained for HSP(Q) written on a

transparent sheet as an overlay. Then we rotate the transparent sheet through π,

keeping the template fixed. Our notation ensures that the resulting configuration
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gives a correct labelling (N and H swop over, as do J and I). In certain cases

our inversion process converts the algebra Q not into Qd as defined in our list

of subalgebras but into an isomorphic copy of it. Thus inversion applied to the

duality for HSP(Q) will not always give the same duality as we get if we work

with HSP(Qd) directly. This minor awkwardness could be avoided by suitably

picking the generating algebras for the join-irreducible subvarieties. However, for

maximum compatibility with the existing literature we have elected to work with

Blyth and Varlet’s original choice. For an example, consider 5 and 6: inversion

of 5 gives the subalgebra with elements 1, 7, 10, 12, and this is isomorphic as a

DMS-algebra to the subalgebra with elements 1, 2, 3, 12, that is, 6.

The image under the natural embedding map into 25 of the structure P
∼

is a

DMS-space, dual to FDMS(1). The set of all tagged points, as a subspace of

P
∼

, gives H(FB(1)). For the free algebras on s generators, s > 1, we proceed by

the following steps.

(1) Separate the components, labelling the points to retain the knowledge of

which point of P each point corresponds to.

(2) Take the s-fold power, component by component, to obtain D(FB(s)).

(3) Go from D(FB(s)) to H(FB(s)) by identifying points which carry the

same label. The order and the maps g, h, g2 and h2 are inherited from

P
∼

s.

From Table 1 we may immediately read off descriptions of FB(s) for every join-

irreducible subvariety B=HSP(Q). For DMS itself we have H(FDMS(s))=P
∼

s.

Its underlying lattice is the s-fold D-copower of the D-coproduct 4
∐

5.

For B = HSP(Q), for Q in the following sets, FB(1) is the same for all, and

has the indicated distributive lattice reduct, M being the lattice whose dual is as

shown in Figure 4:

Q D-reduct of FB(1)

13, 15, 16, 17, 18, 20, 21 4
∐

5
9, 11, 12, 14, 19 1⊕M⊕ 1
5, 6, 8, 10 1⊕ (2× 5)⊕ 1
3, 7 1⊕ 22 ⊕ 1
2, 4 22 × 3
1 22

Table 2
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Fig. 4

Note that it is immediate from Table 1 that the indicated free algebras are

the same as algebras, rather than merely as lattices — no calculation of the

operations is needed.

5 – Equational bases

We now fix a monoid N ∈ N ∗ such that N+∩N− = ∅. That is, we require N

to be an ordered ±-monoid in the sense of [25]. Given a natural duality for AN

we can write down in an algorithmic way identities of a canonical type defining

each meet-irreducible subvariety in the lattice of subvarieties Λ(AN), and thence

identities for all subvarieties. This programme was carried through for finitely

generated Ockham varieties, with examples, in [22], [1] and [24]. The general case

introduces no essentially new ideas, and we shall simply state the results without

proof and record the identities thereby produced for the variety DMS.

As usual we let P :=PN and A :=AN, and denote the identity of N by e.

Fix C ∈ Λ(A). We first need to identify free generators in FC(s), which we

represent concretely as KH(FC(s)). The following lemma generalises the second

part of Theorem 4.6 of [1]. It relies on the fact that, under the identification of

D(FC(s)) with X (Π∼
s
C ,Π∼C), the free generators in FC(s), regarded as ED(FC(s)),

are the co-ordinate projections. The lemma is then just the interpretation, via

the translation process, of this statement in terms of the Priestley duality. We

shall henceforth denote a typical element of (2N )s in the form c = 〈ct〉, where

ct = 〈ctν〉, and let πt be the natural projection of (2∼
N )s onto the tth component

of (2∼
N )s, so that πt(c) = 〈ctν〉 (t = 1, . . . , s).

Lemma 5.1. Let 1 6 s < ω. Identify H(FC(s)) with a subset of (2∼
N )s, as

in 3.10. Then the algebra FC(s) is freely generated by {a1, . . . , as}, where

(∀ y ∈ H(FC(s))) at(y) = yte .
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We now introduce our canonical identities, in the form of inequalities. Let

L1, . . . , Ls be subsets of N and let Rt = N \ Lt (t = 1, . . . , s). For any subset J

of N let J+ := J ∩N+ and J− := J ∩N−. Associate with L := (L1, . . . , Ls) the

inequality
s
∧

r=1

(

∧

λ∈L+
r ∪R

−
r

ϕλ(xr)
)

6

s
∨

t=1

(

∨

µ∈L−t ∪R
+
t

ϕµ(xt)
)

,

with the usual convention that an empty meet is 1 and an empty join is 0. Such

an identity is taken relative to D-N=, rather than with respect to A (= D-N). It

can often be simplified by taking into account identities or inequalities defining A

within D-N=. To illustrate, we give in Table 3 the 1-variable identities associated

with those quintuples we shall require when considering DMS, the monoid here

being NDMS
= (that is, we work in the variety known as DK1,1, in which a◦ = a◦◦

and a+ = a++ but the other DMS identities do not hold). Within DMS, the

identity derived from quintuple 2 reduces to a+ 6 a◦ ∨ a◦◦, that derived from 6

to a◦◦ 6 a+ ∨ a++, and so on. Note that the quintuples occur in mutually dual

pairs, giving mutually dual identities: the pairs are

2, 11, 3, 10, 4, 9, 5, 8, 6, 7 .

c IL(c) DMS identity

2 00010 a+ 6 a ∨ a◦ ∨ a◦◦ ∨ a++ a+ 6 a◦ ∨ a◦◦

3 01010 1 = a ∨ a◦ ∨ a◦◦ ∨ a+ ∨ a++ 1 = a◦◦ ∨ a+

4 00001 a◦ ∧ a◦◦ ∧ a+ 6 a ∨ a++ a◦ ∧ a◦◦ 6 a
5 00011 a◦◦ ∧ a+ 6 a ∨ a◦ ∨ a++ a◦◦ ∧ a+ 6 a ∨ a◦

6 01011 a◦◦ 6 a ∨ a◦ ∨ a+ ∨ a++ a◦◦ 6 a ∨ a+

7 00101 a ∧ a◦ ∧ a+ ∧ a◦◦ 6 a++ a ∧ a◦ 6 a++

8 00111 a ∧ a◦◦ ∧ a+ 6 a◦ ∨ a++ a ∧ a+ 6 a◦ ∨ a++

9 01111 a ∧ a◦◦ 6 a◦ ∨ a+ ∨ a++ a 6 a+ ∨ a++

10 10101 a ∧ a◦ ∧ a◦◦ ∧ a+ ∧ a++ = 0 a◦ ∧ a++ = 0
11 10111 a ∧ a◦◦ ∧ a+ ∧ a++ 6 a◦ a+ ∧ a++ 6 a◦

Table 3: Identities associated with DMS quintuples.

The next lemma follows from Lemma 5.1. For a subvariety C of A we shall

write F s
C for H(FC(s)) regarded as a subset of (2∼

N )s.
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Lemma 5.2. Let B and C be subvarieties of A with B $ C. Suppose that

F i
B = F i

C for i < s and that 〈ctν〉 ∈ F
s
C \ F

s
B. Let

Lt :=
{

ν ∈ N+ | ctν = 1
}

∪
{

ν ∈ N− | ctν = 0
}

(t = 1, . . . , s)

and let L(c) := (L1, . . . , Ls). Then IL(c) holds in B and fails in C, and no identity

in fewer than s variables distinguishes B and C.

The final step in determining defining identities for the subvarieties of A is to

give identities for the meet-irreducible subvarieties. For this we appeal to [24],

where some elementary theory of varieties (Lemma 5.3) is combined with some

well-known duality theory (Lemma 5.4).

Lemma 5.3. Let K be any finitely generated congruence-distributive variety.

Then any meet-irreducible subvariety B is determined within Λ(K) by an identity

holding in B and failing in its upper cover.

Lemma 5.4. Let V be a finite poset and O(V ) its lattice of order-ideals.

Then

(i) there is a bijection between the join-irreducible elements, J (O(V )), and

the meet-irreducible elements,M(O(V )), given by

ζ : ↓p 7→
∨

{

y | y is maximal in (V \ ↑p)
}

,

ζ−1 : V \ ↑p 7→
∧

{

y | y is minimal in (V \ ↓p)
}

;

(ii) for each meet-irreducible element V \ ↑p the unique upper cover is

(V \ ↑p) ∪ ↓p.

Putting together the preceding results we have the following algorithmic pro-

cedure. We take V := Si(A) ordered as usual by Q 6 R if and only if Q ∈ HS(R).

The join-irreducible elements of Λ(A) are then labelled by the elements of V . Let

Q
0
∈ V .

(1) Express via the map ζ defined in Lemma 5.4 the meet-irreducible element

associated with Q
0

as the join of join-irreducible elements Q
1
, . . . , Q

k
. Let

B := HSP(Q
1
, . . . , Q

k
) and let C := HSP(Q

0
, Q

1
, . . . , Q

k
) be its unique

upper cover.

(2) Identify Q0, Q1, . . . , Qk with (suitably tagged) subsets of 2N , as in Sec-

tion 4.
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(3) Form the sets

F s
B :=

·
⋃

{

(γν(Qi))
s | ν ∈ N, i = 1, . . . , k

}

,

F s
C :=

·
⋃

{

(γν(Qi))
s | ν ∈ N, i = 0, . . . , k

}

,

where s is chosen as the smallest value > 1 for which these sets differ.

(4) Pick c ∈ F s
C \ F

s
B and define a corresponding identity IL(c) in the manner

described in Lemma 5.2.

Then B is determined within Λ(A) by IL(c), and by no identity in fewer variables.

We now present the results of applying this algorithm to the DMS sub-

varieties. Table 4 gives the correspondences between join-irreducible elements

and meet-irreducible elements in Λ(DMS), identified with O(V ), where V is as

shown in Figure 3. The first column gives the code numbers of the elements

of V , the join-irreducibles of O(V ). The second column indicates the asso-

ciated meet-irreducible elements: for example, the meet-irreducible associated

with 5 is 4 ∨ 7 ∨ 10. For each meet-irreducible we give a point c as in Step 4

of our algorithm, by listing the code numbers of its components ct (t = 1, . . . , s)

(column 3). The final column gives IL(c). This list of identities, together with

the identity a = b for the trivial variety, is sufficient to define via conjuncts every

DMS subvariety. In certain cases the identities can be simplified somewhat;

see the comments below.

As noted in [24] we can say more. Since M(O(V )) ∼= J (O(V )) ∼= V , these

identities are ordered by implication according to the ordering of V (so that, for

example, the identity a+ ∧ b◦ ∧ b++ 6 a◦ ∨ a◦◦ implies the identity a◦ ∧ a◦◦ ∧ b 6

a ∨ b+ ∨ b++ because 14 < 19 in V ). In other words, we are asserting that the

lattice of equational theories of DMS is given by O(V )), where the points of V

are labelled with corresponding identities as given in Table 4.

The number of subvarieties of DMS, or equivalently the number of equational

theories, was first found to be 381 by Blyth, Noor and Varlet ([4], p. 53). It is

possible to write down equations for any given subvariety expressed as a join of

join-irreducible subvarieties simply by re-expressing this join as a meet of meet-

irreducible subvarieties; see [22]. We do not pursue this since in [27] we are able

to present a much more direct approach based just on Priestley duality. In [27]

we undertake a systematic study of re-write rules for DMS identities, or more

generally for identities in any variety AN. However a few brief remarks should

be made about variants on our listed identities.
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ji mi c DMS identity

1 a=b
2 11 12 19 5 a◦◦ ∧ a+ 6 a ∨ a◦

3 4 3 1 = a◦◦ ∨ a+

4 15 16 19 20 5 8 a◦◦ ∧ a+ ∧ b ∧ b+ 6 a ∨ a◦ ∨ b◦ ∨ b++

5 4 7 10 11 a+ ∧ a++ 6 a◦

6 4 7 8 2 a+ 6 a◦ ∨ a◦◦

7 17 18 3 10 b◦ ∧ b++ 6 a◦◦ ∨ a+

8 18 20 6 9 a◦◦ ∧ b 6 a ∨ a+ ∨ b+ ∨ b++

9 4 19 2 9 a+ ∧ b 6 a◦ ∨ a◦◦ ∨ b+ ∨ b++

10 17 20 7 4 a ∧ a◦ ∧ b◦ ∧ b◦◦ 6 a++ ∨ b
11 18 19 20 2 6 9 a+ ∧ b◦◦ ∧ c 6 a◦ ∨ a◦◦ ∨ b ∨ b+ ∨ c+ ∨ c++

12 17 19 20 11 7 4 a+ ∧ a++ ∧ b ∧ b◦ ∧ c◦ ∧ c◦◦ 6 a◦ ∨ b++ ∨ c
13 4 11 12 19 2 5 a+ ∧ b◦◦ ∧ b+ 6 a◦ ∨ a◦◦ ∨ b ∨ b◦

14 7 17 18 2 10 a+ ∧ b◦ ∧ b++ 6 a◦ ∨ a◦◦

15 11 18 19 20 9 5 a ∧ b◦◦ ∧ b+ 6 a+ ∨ a++ ∨ b ∨ b◦

16 12 17 19 20 4 8 a◦ ∧ a◦◦ ∧ b ∧ b+ 6 a ∨ b◦ ∨ b++

17 15 18 19 20 6 8 a◦◦ ∧ b ∧ b+ 6 a ∨ a+ ∨ b◦ ∨ b++

18 16 17 19 20 7 5 a ∧ a◦ ∧ b◦◦ ∧ b+ 6 a++ ∨ b ∨ b◦

19 17 18 20 4 9 a◦ ∧ a◦◦ ∧ b 6 a ∨ b+ ∨ b++

20 17 18 19 2 4 a+ ∧ b◦ ∧ b◦◦ 6 a◦ ∨ a◦◦ ∨ b
21 17 18 19 20 2 4 8 a+ ∧ b◦ ∧ b◦◦ ∧ c ∧ c+ 6 a◦ ∨ a◦◦ ∨ b ∨ c◦ ∨ c++

Table 4: DMS identities.

First of all, certain of the given identities can easily be seen to equivalent

to simpler ones. For example, in line 8 of Table 4, b+ can be removed from

the right-hand side by replacing b by a ∨ b. Since such manipulations involve

human input, and our aim in this paper is to show that identities can be gen-

erated automatically, we have not presented substitute identities derived in this

manner. Further, every allowable choice of c in Step 4 of our algorithm gives an

equivalent identity, always in a minimum number of variables. For the following

cases, there is only one way to choose c: 4, 7, and 8, 11, 16, 17 and their duals.

Where we had a choice we picked a point c so that IL(c) contained a minimum

number of total occurrences of the variables, and thereafter preferred identities

in which the number of iterations of the operations + and ◦ was minimal. Thus

we only used either of the 5-tuples 5 and 8 as a component of c when we had no

alternative, and used 3 or 10 whenever this was possible. Each of 5 and 8 leads

to 4 occurrences of a variable, 2 on each side of the inequality, whereas 3 and 10

lead to 2 occurrences only, both on the same side. The remaining 5-tuples each

lead to a variable appearing 3 times. Assuming this has been done, we select

the component quintuples of c as far as possible so that, in IL(c), a will over-
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ride a◦◦ or a++ rather than the other way round when the DMS inequalities

a++ 6 a 6 a◦◦ are invoked. So 6 would be preferred to 2, for example. While it

is possible in a specific variety such as DMS to give empirical rules for selecting

‘optimal’ identities generated by the algorithm above, it does not seem profitable

to try to write down rules for doing this in an arbitrary variety AN. In general

the relative merits of equivalent canonical inequalities depend on the interaction

between the ±-order of N, which dictates the way variables are distributed to

left and right, and the order of N, which determines which points in 2N are in

play and the 2N -ordering between these points.
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