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EXISTENCE OF MINIMIZERS FOR SOME
NON CONVEX ONE-DIMENSIONAL INTEGRALS *

N. Fusco, P. Marcellini and A. Ornelas

Abstract: We consider integrals of the type
∫ b

a
{h(u′) + g(u)} dx, where h is a non-

convex function such that h∗∗(0) = h(0). It is still not known whether this condition

alone on h is sufficient to get existence of minimizers for general g. In this paper we

prove it under very mild assumptions on g, e.g. it can be any combination of elementary

functions.

It is well-known that the integral

∫ b

a

{
(u′2 − 1)2 + u2

}
dx

has no minimum in the class of the absolutely continuous functions satisfying

u(a) = u(b) = 0. Indeed one may easily prove that, in the same class, a minimizer

of the integral ∫ b

a

{
(u′ − α)2 (u′ − β)2 + u2

}
dx (α < β)

exists if and only if 0 /∈ (α, β). In this example the condition which plays a role

in order to get existence, for any boundary data, is

(1) h∗∗(0) = h(0) ,

where h(ξ) = (ξ − α)2 (ξ − β)2 and h∗∗ : R → R is the convex envelope of h.
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More generally we prove (see Theorem 1 below) existence of minimizers for

integrals of the type

(2)

∫ b

a

{
h(u′) + g(u)

}
dx ,

where h : R → R is a coercive, not necessarily convex, function satisfying (1) and
g : R → R is for example one of the functions

(3) gθ(s) = (1 + |s|)
θ sin

1

s
for s 6= 0, gθ(0) ≤ −1, θ ∈ R .

The peculiarity of this example is that the functions in (3) have infinitely many

strict local minima on bounded intervals, a situation that seems to be not included

in the results available in the literature.

Nonconvex problems have been extensively studied in the literature, especially

in the scalar, one-dimensional case. References can be found in [M2]. More

specific to functionals of the type (2) are the results proved in [AT], [M1], [Ray],

[CC], [AC], [CM], [MO].

Examples of functions g which are critical for our first result, Theorem 1,

concerning the integral in (2) are those given by the family of functions gr : R→R,
for r ≥ 3,

gr(s) = [dist(s, Cr)]
2 ,

where Cr = ∩
∞
i=1C

i
r is a Cantor type set (it is the standard Cantor set in case

r = 3). As usual, C1
r is the set obtained by removing from [0, 1] the open interval

of length 1/r centered at s = 1
2
; C2

r is obtained from C1
r removing from each

of the remaining intervals the open interval with the same midpoint and length

1/r2; and so on. The measure of Cr is easily seen to be

meas(Cr) = 1−
∞∑

i=1

2i−1

ri
= 1−

1

r − 2
.

The set Cr is a level set of the function gr and coincides with its boundary; it is

also the set of minimum points of gr. A consequence of Theorem 1 below is that

if meas(Cr) = 0, i.e. r = 3, a minimizer exists for the integral in (2) with any

boundary data. If r > 3, namely the (boundary of the) level set Cr has positive

measure, we are able to prove existence of minimizers in some special cases, for

example

(4)

∫ b

a

{
u′2(u′ − β)2 + gr(u)

}
dx
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(see Theorem 6 below). In fact we are able to prove existence of minimizers of

(2) for any lower semicontinuous function g provided we assume, for instance,

{
ξ ∈ R : h∗∗(ξ) < h(ξ)

}
= (0, β) ,

as it happens in (4).

Theorem 1. Let h, g : R → R be lower semicontinuous functions such that:

(5) h∗∗(0) = h(0) , lim
|ξ|→∞

h(ξ)

|ξ|
= +∞ ;

g is bounded below and the boundary of each level set,

(6) ∂{s : g(s) = const.}, has zero measure .

Then for any A, B the integral

(7)

∫ b

a

{
h(u′(x)) + g(u(x))

}
dx

has a minimizer u in the class of the absolutely continuous functions satisfying

u(a) = A, u(b) = B.

Proof: Let us denote by v a minimizer of the relaxed integral

(8)

∫ b

a

{
h∗∗(v′(x)) + g(v(x))

}
dx ,

under the boundary conditions v(a) = A, v(b) = B. There exist at most count-

ably many real numbers, which we may order in a sequence ci, whose correspond-

ing level sets

Li =
{
s ∈ R : g(s) = ci

}

have positive measure. We may decompose the interior of each such Li into a

sequence of mutually disjoint open intervals Lij , j = 1, 2, ...; and by assumptions

(6) we then have

(9) Li =
(⋃

j

Lij

)
∪Ni ,

where Ni ⊂ ∂Li, so that Ni is a null set. Since v is continuous, the set v
−1(Lij)

is open and so it may be represented as the union of at most countably many

pairwise disjoint open intervals (aijk, bijk), k = 1, 2, ... .
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Fix i, j, k and consider the minimization problem

min

{∫ bijk

aijk

h∗∗(u′(x)) dx : u(aijk) = v(aijk), u(bijk) = v(bijk)

}
.

This problem has a minimizer which in general is not unique. We wish to choose

now one such minimizer uijk as follows. Define the slope

ξ =
v(bijk)− v(aijk)

bijk − aijk
.

If h∗∗(ξ) = h(ξ) we choose

uijk(x) = ξ(x− aijk) + v(aijk) .

Otherwise, by assumption (5), ξ 6= 0, say ξ > 0. Moreover there exists a unique

interval (α, β) containing ξ, with 0 ≤ α < β, such that

h∗∗ is affine and < h in (α, β) , h∗∗ = h at α, β .

In this case we take uijk(x) to be any continuous piecewise affine function with

slopes α and β which satisfies the given boundary conditions. In both cases the

chosen minimizer uijk has range contained in the interval with endpoints v(aijk),

v(bijk).

Letting now i, j, k run over all the positive integers, since uijk((aijk, bijk)) ⊂

Lij and g is constant there, by defining

u(x) =

{
uijk(x) for x ∈ (aijk, bijk),

v(x) elsewhere ,

we obtain another absolutely continuous minimizer of the relaxed functional (8),

with the property that

(10) h∗∗(u′(x)) = h(u′(x)) for a.e. x such that u(x) ∈
⋃

i

intLi .

We want to show that u is a minimizer of the integral (7). By Theorem 4.1

in [AAB], u satisfies the DuBois-Reymond differential inclusion, i.e. there exists

a constant c and a measurable function p(x) such that for a.e. x ∈ (a, b),

(11)

{
p(x) ∈ ∂h∗∗(u′(x)),

c = p(x)u′(x)− h∗∗(u′(x))− g(u(x)) .
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Let us define the open set

K =
{
ξ ∈ R : h∗∗(ξ) < h(ξ)

}
.

Then K =
⋃

r(αr, βr), where the intervals (αr, βr) are pairwise disjoint. Since

h∗∗ is affine on each interval (αr, βr), it may be represented in the form h∗∗(ξ) =

mr ξ + qr for ξ ∈ (αr, βr). If we set

(12) Er =
{
x ∈ [a, b] : u′(x) ∈ (αr, βr)

}

then from (11) we get that

(13) g(u(x)) = −c− qr for a.e. x in Er .

Consider now the level set

(14)
{
s ∈ R : g(s) = −c− qr

}
.

If this set has zero measure then, by (13), using Lemma 2 below we deduce that

u′(x) = 0 a.e. in Er; hence by the assumption h
∗∗(0) = h(0) and by the definition

of Er in (12), we have meas(Er) = 0. If the level set (14) has positive measure,

it coincides with one of the sets Li defined above. By the representation (9) and

by (10), u(Er) ⊂ Ni, and since meas(Ni) = 0 we have again u
′(x) = 0 a.e. in Er,

hence, as before, meas(Er) = 0.

In conclusion, the set

{
x ∈ [a, b] : h∗∗(u′(x)) < h(u′(x))

}

has zero measure and so u is a minimizer of the integral (7) too.

Lemma 2. Let u : [a, b] → R be an absolutely continuous function. If

E ⊂ [a, b] is a measurable set such that meas(u(E)) = 0, then u′(x) = 0 a.e. on

E.

This lemma can be easily obtained as a consequence of the general area

formula, which holds also for absolutely continuous functions (see [F, Theo-

rem 3.2.6]). Here we give a self-contained proof, specific for the one dimensional

case.



172 N. FUSCO, P. MARCELLINI and A. ORNELAS

Proof of Lemma 2

Step 1. We first assume that u∈C1([a, b]) and set A0={x∈(a, b) : u
′(x)=0},

A = (a, b)\A0. Since A is open, it can be decomposed into a sequence of mutually

disjoint open intervals (aj , bj); on each interval u
′ has constant sign, therefore u

is a diffeomorphism in (aj , bj) and so from the change of variable formula and

from the assumption we get, for any j = 1, 2, ...,
∫ bj

aj

χE(x) |u
′(x)| dx = meas

(
u(aj , bj) ∩ E

)
= 0 .

From this we obtain
∫

E
|u′| dx =

+∞∑

j=1

∫ bj

aj

χE |u
′| dx+

∫

A0∩E
|u′| dx = 0

and then the result follows.

Step 2. For any ε > 0 there exist vε ∈ C
1([a, b]) and a compact set Kε ⊂ [a, b]

such that meas([a, b]\Kε) < ε and vε(x) = u(x), v′ε(x) = u′(x) for any x ∈ Kε.

We follow [S], sect. 5.3, 5.4. Fix ε > 0. Applying Lusin’s Theorem to u′

we find a compact subset K0 of [a, b] such that u is differentiable on K0, u
′ is

continuous on K0 and meas([a, b]\K0) <
ε
2
. For any x, y ∈ K0 with x 6= y we set

R(x, y) =
u(y)− u(x)

y − x
− u′(x) .

If we define for any j = 1, 2, ... and any x ∈ K0

%j(x) = sup

{
|R(x, y)| : y ∈ K0, 0 < |x− y| <

1

j

}
,

then %j(x) → 0 as j → +∞ for any x ∈ K0. Therefore, by Egoroff’s Theorem

there exists a compact set Kε ⊂ K0, with meas(K0\Kε) <
ε
2
such that %j(x)→ 0

uniformly on Kε. Since u
′ is continuous on Kε we may conclude that there exists

an increasing function ω : (0,+∞) → (0,+∞), with limt→0+ ω(t) = 0, such that

for any x, y ∈ Kε

(15) |R(x, y)|+ |u′(y)− u′(x)| ≤ ω(|x− y|) .

To construct the function vε we notice that (a, b)\Kε can be decomposed into a

sequence of pairwise disjoint intervals (aj , bj). For any j = 1, 2, ... we define uj
as the third order polynomial such that

uj(aj) = u(aj), uj(bj) = u(bj), u′j(aj) = u′(aj), u′j(bj) = u′(bj) .
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Therefore

uj(x) = u(aj) + u
′(aj) (x− aj) +

[
3R(aj , bj) + u

′(aj)− u
′(bj)

] (x− aj)2

bj − aj

+
[
u′(bj)− u

′(aj)− 2R(aj , bj)
] (x− aj)3

(bj − aj)2
.

Using (15) we have

(16)
max

aj≤x<y≤bj

|u′j(x)− u
′
j(y)| ≤ c |R(aj , bj)|+ |u

′
j(bj)− u

′
j(aj)|

≤ c ω(|bj − aj |) .

Setting now for any x ∈ [a, b]

vε(x) =

{
u(x) if x ∈ Kε,

uj(x) if x ∈ [aj , bj ] for some j ,

and using (16) one easily proves that v′ε(x) exists for any x ∈ [a, b], v
′
ε is continuous

and v′ε(x) = u′(x) on Kε.

Step 3. From Step 2 we deduce now that for any j = 1, 2, ... there exist a

function vj ∈ C1([a, b]) and a compact set Kj ⊂ [a, b] such that vj(x) = u(x),

v′j(x) = u′(x) on Kj and meas([a, b]\Kj) <
1
j . Using Step 1 we then get:

∫

Kj∩E
|u′| dx =

∫

Kj∩E
|v′j | dx = 0 ,

since meas(vj(Kj ∩E)) = meas(u(Kj ∩E)) = 0. Therefore u
′ = 0 a.e. on Kj ∩E

for any j and the result follows.

Also for integrands of product type it is possible to exhibit examples of non-

existence, like the integral

∫ b

a

{
(1 + u2)

[
(u′2 − 1)2 + 1

]}
dx

which has no minimum under the boundary conditions u(a) = u(b) = 0. As in

the above case of the sum, also for integrands of the type g(s)h(ξ), a crucial role

is played by the assumption (1).

Theorem 3. Let h, g : R → R be lower semicontinuous functions such that:

(17) h(ξ) ≥ h(0) ≥ 0 for every ξ , g(s) ≥ 1 for every s .
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Let h, g satisfy the assumptions (5) and (6). Then for any A, B the integral

(18)

∫ b

a
g(u(x))h(u′(x)) dx

has a minimizer u in the class of the absolutely continuous functions satisfying

u(a) = A, u(b) = B.

The proof of this result follows basically the same lines of that of Theorem 1.

Obviously the DuBois–Reymond inclusion becomes, instead of (11),
{
p(x) ∈ g(u(x)) ∂h∗∗(u′(x)),

c = p(x)u′(x)− g(u(x))h∗∗(u′(x)) ,

condition (13) being thus replaced by

(19) qr g(u(x)) = −c .

However, in case some qr, say q1, is zero and the corresponding set E1, defined

as in (12), has positive measure then the constant c must be zero and the above

differential inclusion becomes

h∗∗(u′(x)) ∈ u′(x) ∂h∗∗(u′(x)) .

The existence of minimum can be proved in this case using the same method as

in the proof of Theorem 7 below.

Now we extend Theorem 1 to the case in which g is any lower semicontinuous

function, provided the function h satisfies an additional assumption.

Lemma 4. Given any continuous function ϕ : R → R, there exists a sequence
gn of C1 functions converging to ϕ uniformly on compact sets and such that for

any interval [a, b] and for any n
{
x ∈ [a, b] : g′n(x) = 0

}
is finite .

Moreover if ϕ is bounded below then also the sequence gn is equibounded

below.

Proof: For each n let us define gn in the interval [
i
n ,

i+1
n ], i any integer. In

case ϕ( in) = ϕ( i+1
n ) we take

gn(x) = ϕ

(
i

n

)
+

(
x−

i

n

)2 (
x−

i+ 1

n

)2

;
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otherwise we take

gn(x) = ϕ

(
i

n

)
+ 6n3

[
ϕ

(
i+ 1

n

)
− ϕ

(
i

n

)] ∫ x

i/n

(
τ −

i

n

)(
i+ 1

n
− τ

)
dτ .

With this choice of gn the result immediately follows.

Lemma 5. Let g : R → R be a lower semicontinuous function. Then there

exists a sequence gn of C1(R) functions such that

(i) gn(x)→ g(x) for every x in R;

(ii) For each n and each interval [a, b]

{
x ∈ [a, b] : g′n(x) = 0

}
is finite ;

(iii) For each interval [a, b] there exists n0 such that

gn(x) ≤ gn+1(x) for all x ∈ [a, b] and all n > n0 .

Moreover if g is bounded below then also the sequence gn is equibounded

below.

Proof: For each n and each integer i, set

mi,n = inf

{
g(x) :

i

n
≤ x <

i+ 1

n

}

and define

ψn(x) = mi,n for x ∈

[
i

n
+
1

3n
,
i+ 1

n
−
1

3n

]
.

On the intervals of the type [ in −
1
3n ,

i
n +

1
3n ] define

ψn(x) = mi,n

in case mi,n = mi−1,n;

ψn(x) =

{
mi−1,n for x ∈ [ in −

1
3n ,

i
n ],

3n(mi,n −mi−1,n) (x−
i
n) +mi−1,n for x ∈ [ in ,

i
n +

1
3n ] ,

in case mi−1,n < mi,n; and

ψn(x) =

{
3n(mi,n −mi−1,n) (x−

i
n) +mi,n for x ∈ [ in −

1
3n ,

i
n ],

mi,n for x ∈ [ in ,
i
n +

1
3n ] ,
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in case mi−1,n > mi,n. Then ψn(x) is continuous and

(20)

{
ψn(x) ≤ g(x) for all x ∈ R,

ψn(x) ≥ min{mi−1,n;mi,n;mi+1,n} for all x ∈ [ in ,
i+1
n [ .

We show that

ψn(x)→ g(x) for any x .

Fix x0 ∈ R and ε > 0 and let δ > 0 be such that if x ∈ (x0 − δ, x0 + δ)

then g(x) > g(x0) − ε. If n > 2
δ and x0 ∈ [

i
n ,

i+1
n [ for some integer i, then

[ i−1
n , i+2

n ] ⊂ (x0 − δ, x0 + δ) and from (20) we get

g(x0)− ε ≤ ψn(x0) ≤ g(x0) .

Let us now define for each n and each x,

ϕn(x) = max
{
ψ1(x), ..., ψn(x)

}
,

thus obtaining an increasing sequence of continuous functions converging to g(x)

for any x.

Fix n and set ϕ̃n(x) = ϕn(x)−
1
2n ; by Lemma 4 there exists a C1 function gn

satisfying (ii) and such that

|ϕ̃n(x)− gn(x)| <
1

2n+2
for all x in [−n, n] .

The sequence gn satisfies (i); moreover if x ∈ [−n0, n0] and n > n0,

gn+1(x) ≥ ϕ̃n+1(x)−
1

2n+3
≥ ϕ̃n(x) +

1

2n
−

1

2n+1
−

1

2n+3

≥ gn(x) +
1

2n
−

1

2n+1
−

1

2n+2
−

1

2n+3
> gn(x) .

Theorem 6. Let h, g : R → R be lower semicontinuous functions such that:

(21)
{
ξ ∈ R : h∗∗(ξ) < h(ξ)

}
= (0, β) , lim

|ξ|→∞

h(ξ)

|ξ|
= +∞ ,

g is bounded below.

Then for any A, B the integral (7) has a minimizer u in the class of the

absolutely continuous functions satisfying u(a) = A, u(b) = B.

Proof: By subtracting a linear function to h∗∗(ξ) we may assume that

(22) h∗∗(0) = minh∗∗(ξ) .
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Throughout the proof we shall assume A ≤ B since the case A > B can be

treated with a similar argument. Let gn be a sequence of C
1 functions satisfying

(i), (ii), (iii) of Lemma 5, and equibounded below.

Fix n. Let vn be a minimizer of the functional

F ∗∗n (v) =

∫ b

a
{h∗∗(v′) + gn(v)} dx ,

under the boundary conditions v(a) = A, v(b) = B. Define

[An, Bn] = vn([a, b]) , mn = min
{
gn(s) : s ∈ [An, Bn]

}
.

We will consider two cases.

First case: [An, Bn] = [A,B].

Step 1. We may assume that for each n there exist cn ≤ dn in [a, b] such that

vn(x) = sn if and only if x ∈ [cn, dn], where sn is the largest point of absolute

minimum of gn in [A,B]; and that if s < sn is any other point of absolute

minimum of gn in [A,B] then there exists a unique x ∈ [a, b] such that vn(x) = s.

We start by showing that if a ≤ x1 ≤ b and vn(x1) = vn(x2) = s then vn is

constant on [x1, x2]. In fact if it were not so then, setting ṽn(x) = s in [x1, x2],

ṽn(x) = vn(x) in [a, b]\[x1, x2], by (22) and the definition of s, we would get

F ∗∗n (ṽn) < F ∗∗n (vn) which is impossible.

From Lemma 4, gn has only a finite number of absolute minimizers s
n
1 <

... < snNn
in [A,B]. Hence there exist Nn disjoint intervals [a1, b1], ..., [aNn , bNn ]

(each of which may possibly reduce to a point), such that for any i = 1, ..., Nn,

vn(x) = sni if and only if x ∈ [ai, bi]. If one of them, say [a1, b1], has nonempty

interior, setting

ṽn(x) =





vn(x) if a ≤ x ≤ a1,

vn(x+ b1 − a1) if a1 ≤ x ≤ aNn − (b1 − a1),

snNn
if aNn − (b1 − a1) ≤ x ≤ aNn ,

vn(x) if aNn ≤ x ≤ b ,

we have F ∗∗n (ṽn) = F ∗∗n (vn). By repeating, if necessary, such a modification of vn
at most Nn − 1 times, Step 1 is proved.

Step 2. vn is strictly increasing in [a, cn] and in [dn, b].

In fact if a < x1 < x2 < cn and vn(x1) = vn(x2), by Step 1 this value could
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not be an absolute minimum of gn in [A,B], therefore setting

ṽn(x) =





vn(x) if a ≤ x ≤ x1,

vn(x+ x2 − x1) if x1 ≤ x ≤ cn − (x2 − x1),

sn if cn − (x2 − x1) ≤ x ≤ cn,

vn(x) if cn ≤ x ≤ b ,

we would get F ∗∗n (ṽn) < F ∗∗n (vn), absurd.

Step 3. v′n(x) ≥ β a.e. in [a, cn] ∪ [dn, b]

Let us define the set

E =
{
x ∈ [a, cn] : v

′
n(x) exists and belongs to [0, β)

}
.

Then the DuBois–Reymond differential inclusion implies that there exists a con-

stant c such that

gn(vn(x)) = c for all x ∈ E .

By the assumption (ii) on gn, the equation gn(s) = c may have only a finite

number of solutions in [A,B], therefore, by Step 2, E has finitely many points.

Second case: [An, Bn] 6= [A,B].

We suppose, in steps 4, 5, 6 below, that An < A; if we had An = A and

B < Bn the reasoning would be similar.

Step 4. An is an absolute minimizer of gn in [An, Bn].

Notice first that gn(An) < gn(s) for d ∈ ]An, A]; in fact if there existed

s0 ∈ ]An, A] with gn(s0) ≤ gn(s) for every s ∈ [An, A], setting

ṽn(x) = max{vn(x), s0} ,

from (22) and (ii) we would have F ∗∗n (ṽn) < F ∗∗n (vn).

Let us assume that An is not an absolute minimizer of gn in [An, Bn]. From

what we just noticed it is clear that if s were any point of absolute minimum

of gn in [An, Bn] then s would belong to the interval ]A,Bn]. Let (x1, x2) be

any connected component of the open set {x ∈ (a, b) : vn(x) < A} and let x3

be a point such that vn(x3) = s; clearly x3 /∈ [x1, x2] and to fix ideas suppose

x2 < x3 ≤ b. Setting

ṽn(x) =





vn(x) if a ≤ x ≤ x1,

vn(x+ x2 − x1) if x1 ≤ x ≤ x3 − (x2 − x1),

s if x3 − (x2 − x1) ≤ x ≤ x3,

vn(x) if x3 ≤ x ≤ b ,
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we would then have F ∗∗n (ṽn) < F ∗∗n (vn), which is impossible.

Similarly one may show, in case B < Bn, that Bn is an absolute minimizer of

gn in [An, Bn].

Step 5. The open set {x ∈ (a, b) : vn(x) < A} is an interval (a, xn).

Let (x1, x2) be a connected component of this set containing a point x such

that vn(x) = An; if (x3, x4) were another connected component with, say, x3 > x2,

with the function

ṽn(x) =





vn(x) if a ≤ x ≤ x,

An if x ≤ x ≤ x+ x4 − x3,

vn(x− (x4 − x3)) if x+ x4 − x3 ≤ x ≤ x4,

vn(x) if x4 ≤ x ≤ b ,

we would get F ∗∗n (ṽn) < F ∗∗n (vn), since, by Step 4, An is an absolute minimizer

of gn in [An, Bn]. Using this fact again, one can check, in the same way, that the

interval {x ∈ (a, b) : vn(x) < A} has left extremity a.

If B < Bn one can prove, using the same method, that {x ∈ (a, b) : vn(x) > B}

is an interval (yn, b).

Step 6. vn is decreasing in [a, an], an ∈ (a, xn) being the largest point where

vn attains the value An.

First notice that if x ∈ (a, an) is any point with vn(x) = An then vn ≡ An in

[x, an], as in Step 4. So denote by a
−
n the smallest point where vn attains the value

An, so that vn ≡ An in [a
−
n , an]. If there were points x1 < x2 in [a, a

−
n ] such that

vn(x1) = vn(x2), this value would be a number s ∈ (An, A] with gn(An) < gn(s),

as in Step 4; and we could construct a function ṽn such that F
∗∗
n (ṽn) < F ∗∗n (vn).

This shows that vn is strictly decreasing in [a, a
−
n ].

Similarly one can show that vn is decreasing in [bn, b], if bn is the smallest

point in (yn, b) where vn attains the value Bn > B.

We summarize now what we have shown in the two cases above considered.

Step 7. We may assume there exist points an ≤ cn ≤ dn ≤ bn in [a, b] such

that
v′n(x) ≤ 0 a.e. in [a, an] ,

v′n(x) ≥ β a.e. in [an, cn] ,

v′n(x) = 0 a.e. in [cn, dn] ,

v′n(x) ≥ β a.e. in [dn, bn] ,

v′n(x) ≤ 0 a.e. in [bn, b] .
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In fact, if vn([a, b]) = [A,B], we just take an = a, bn = b and apply Step 3.

If instead vn([a, b]) 6= [A,B], we apply Step 6 to determine an and bn; and then

notice that vn is a minimizer of
∫ bn

an

{
h∗∗(v′) + gn(v)

}
dx

under the boundary conditions vn(an) = An, vn(bn) = Bn. Since vn([an, bn]) =

[An, Bn], cn and dn are determined applying Step 3 to vn relatively to the interval

[an, bn]. Indeed one could prove even better, namely that in both cases either

an = a or bn = b or both equalities hold.

Step 8. Conclusion of the proof.

Now we use the fact that h grows at infinity more than linearly and that gn is a

sequence uniformly bounded from below. Letting n→∞ we may assume, passing

possibly to a subsequence, that there exist u(x) and points a′ ≤ c′ ≤ d′ ≤ b′ in

[a, b] such that vn ⇀ u, w −W 1,1, an → a′, bn → b′, cn → c′, dn → d′.

From Step 7 we have also that

(23)





u′(x) ≤ 0 a.e. in [a, a′] ∪ [b′, b],

u′(x) ≥ β a.e. in [a′, c′] ∪ [d′, b′],

u′(x) = 0 a.e. in [c′, d′] .

Take A0, B0 such that [A0, B0] ⊃ [An, Bn] for every n. Using (iii) we get that

there exists n0 such that

gn+1(s) ≥ gn(s) for any n ≥ n0 and s ∈ [A0, B0] .

Therefore if k ≥ n0, since h
∗∗ is convex and vn ⇀ u w −W 1,1, we have

lim inf
n

F ∗∗n (vn) ≥ lim infn

∫ b

a
h∗∗(v′n) dx+ lim infn

∫ b

a
gn(vn) dx ≥

≥

∫ b

a
h∗∗(u′) dx+ lim

n

∫ b

a
gk(vn) dx =

∫ b

a

{
h∗∗(u′) + gk(u)

}
dx ,

and so, letting k →∞,

lim inf
n

F ∗∗n (vn) ≥

∫ b

a

{
h∗∗(u′) + g(u)

}
dx .

Then if v is any absolutely continuous function satisfying the boundary conditions

we have
∫ b

a

{
h∗∗(v′) + g(v)

}
dx = lim

n
F ∗∗n (v) ≥ lim infn

F ∗∗n (vn) ≥

∫ b

a

{
h∗∗(u′) + g(u)

}
dx .
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Therefore u is a minimizer of the functional
∫ b

a

{
h∗∗(v′) + g(v)

}
dx ,

hence, by (23) and (21), also a minimizer of the functional (7).

Remark. It is clear that Theorem 6 still holds if we replace in (21) the

interval (0, β) by (α, 0). Moreover notice that in Theorems 1 and 6 the assumption

that g is bounded below can be replaced by any of the usual assumptions ensuring

the coercivity of the integral.

It is possible to obtain also a result of existence of minimizers for integrals of

“affine” type. Consider the set

(24) Tq =
{
ξ ∈ R : h∗∗(ξ) ∈ q + ξ ∂h∗∗(ξ)

}

of points over which the tangent to the graph of h∗∗ meets the vertical axis at the

point (0, q). We suppose in Theorem 7 below that there exists a unique number

q such that the set {ξ ∈ R : h∗∗(ξ) < h(ξ)} is contained in Tq.

In case q = 0 and ϕ(s) ≡ 0 one obtains the special case of integrals of product

type, considered in Theorem 3, in which there exists exactly one number qr, as

in (19), and is equal to zero.

Theorem 7. Let h, ϕ, ρ : R → R be lower semicontinuous functions satisfying

ρ(s) ≥ 1 for every s, and (5). Suppose there exists a unique number q such that
{
ξ ∈ R : h∗∗(ξ) < h(ξ)

}
⊂ Tq ,

s 7→ q ρ(s) is lower semicontinuous and (6) holds true with g(s) = ϕ(s) + q ρ(s),

and h(ξ) ≥ h(0) ∀ ξ ∈ R.
Then for any A, B the integral

(25)

∫ b

a

{
ϕ(u(x)) + ρ(u(x))h(u′(x))

}
dx

has a minimizer u in the class of the absolutely continuous functions satisfying

u(a) = A, u(b) = B.

Proof: Clearly we may write Tq = [α1, β1] ∪ [α2, β2] with α1 ≤ β1 ≤ 0 ≤

α2 ≤ β2 and
h∗∗(ξ) = q +m1 ξ for ξ in [α1, β1] ,

h∗∗(ξ) = q +m2 ξ for ξ in [α2, β2] .
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Define the function

h1(ξ) = h(ξ)− q

obtaining

h∗∗1 (ξ) = m1 ξ for ξ in [α1, β1] ,

h∗∗1 (ξ) = m2 ξ for ξ in [α2, β2] .

To find a minimizer of (25) is equivalent to obtaining a minimizer of

(26)

∫ b

a

{
g(u(x)) + ρ(u(x))h1(u

′(x))
}
dx

under the same boundary conditions u(a) = A, u(b) = B. Let us denote by v

a minimizer of the relaxed integral corresponding to (26). As in the proof of

Theorem 1 we may consider the minimization problem

(27) min

{∫ bijk

aijk

ρ(u(x))h1(u
′(x)) dx : u(aijk) = v(aijk), u(bijk) = v(bijk)

}
,

where v((aijk, bijk)) is an interval along which g is constant. Suppose that v

itself does not solve (27); then at least one of the sets E1, E2, defined as in (12)

with v in place of u, has positive measure. It follows that the DuBois–Reymond

inclusion for the relaxed integral corresponding to (27) becomes, instead of (11),

because the constant c is zero,

v′(x) ∈
{
ξ ∈ R : h∗∗1 (ξ) ∈ ξ ∂h

∗∗
1 (ξ)

}

for a.e. x in [aijk, bijk].

Let d1 be the smallest point of minimum of ρ(v(x)) in [aijk, bijk] and set

D = v(d1), e1 = max v−1(D). If, say, D ≤ min{v(aijk), v(bijk)} then, since

v′(x) ∈ [α1, β2] for a.e. x in [aijk, bijk], it is possible to find points d ≤ d1 ≤ e1 ≤ e

in [aijk, bijk] such that the function

uijk(x) =





D − α1(d− x) for x ∈ [aijk, d],

D for x ∈ [d, e],

D + β2(x− e) for x ∈ [e, bijk] ,

satisfies uijk(aijk) = v(aijk), uijk(bijk) = v(bijk) and

uijk((aijk, bijk)) ⊂ v((aijk, bijk)) .
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We show now that uijk minimizes the integral in (27):

∫ bijk

aijk

ρ(v(x))h∗∗1 (v
′(x)) dx =

∫ d1

aijk

ρ(v(x))h∗∗1 (v
′(x)) dx+

+

∫ e1

d1

ρ(v(x))h∗∗1 (v
′(x)) dx+

∫ bijk

e1
ρ(v(x))h∗∗1 (v

′(x)) dx ≥

≥

∫ d1

aijk

ρ(v(x))m1 v
′(x) dx+

∫ e1

d1

ρ(D)h∗∗1 (0) dx+

+

∫ bijk

e1
ρ(v(x))m2 v

′(x) dx =

∫ bijk

aijk

ρ(uijk(x))h1(u
′
ijk(x)) dx .

In case D ≥ max{v(aijk), v(bijk)} or v(bijk) < D < v(aijk) or v(aijk) < D <

v(bijk) one may construct similarly a minimizer.

Letting now i, j, k run over all the positive integers, since uijk((aijk, bijk)) ⊂

v((aijk, bijk)) and g is constant along this interval, by defining

u(x) =

{
uijk(x) for x ∈ (aijk, bijk),

v(x) elsewhere ,

we obtain another minimizer of the relaxed integral corresponding to (26) which

satisfies the property (10).

We wish to show that u is a minimizer of the integral (26). If this were not

true then one of the sets E1, E2, defined as in (12), would have positive measure

and the DuBois–Reymond inclusion would assert the existence of a constant c

such that, instead of (11),

g(u(x)) = −c for a.e. x in E1 ∪ E2 .

It is enough to follow now the arguments of the final part of the proof of

Theorem 1 to reach a contradiction.

Remark. We may say that the condition, imposed in Theorem 7, that the

level sets of ϕ(s) + q ρ(s) have boundary with zero measure, is satisfied quite

generally; in fact, its denial means there exists some vertical translate of the

graph of ϕ(s) whose points of intersection with the graph of −q ρ(s) have vertical

projection with boundary of positive measure. It surely takes some effort to

exhibit explicit examples of functions ϕ, ρ which do not satisfy (6): obviously

one may have to search them among special Cantor type functions like the ones

considered in (4), with r > 3.
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