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WEAKLY CONNECTED MATERIALS
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Introduction

In this paper, we are interested in an homogenization problem of two disjoint

ε-periodic materials O1ε and O2ε connected in each cell of size ε by a small

bridge the size of which is random. We therefore extend the kind of deterministic

problems first studied by Khruslov [8] and then in [3].

Fig. 1 – Period cell Yk(ε).
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Fig. 2 – Section of the random set Oε.

In [3], the first author studies the homogenization of the Neumann problem





−∆uε + uε = f in Oε,
∂uε

∂n
= 0 on ∂Oε ,

where Oε = O1ε ∪O2ε ∪ Oε where as above, in each cell of size ε, Oε is a (deter-

ministic) bridge of small size. He proves that the asymptotic behaviour depends

on the size of the bridge. More precisely, it depends on whether the order εα

of this size is such that α < 2 (supercritical case), α = 2 (critical case), α > 2

(subcritical case). The proof is based on Tartar’s energy method by finding good

test functions in order to identify the limit problem.

Homogenization problems in a random setting have been already widely stud-

ied by: Kozlov [9], Varadhan and Papanicolaou [11], Bensoussan [2], Dal Maso

and Modica [6] e.g. for general random coefficients, then by Zhikov [14] and [15]

e.g. for randomly perforated domains. A survey of homogenization results in a

random context can be found in the book of Jikov, Kozlov and Oleinik [7]. How-

ever, in these texts, the geometry of the system is always random and therefore

cannot be specificied. The only central tool used consists in ergodic hypotheses

on the coefficients in order to pass to the limit.

On the contrary, we are interested in keeping the geometrical setting (essential

to solve the problem in the deterministic case), letting just the bridge size be

random. The major difference with the deterministic case comes from the absence

of strong convergences due to the randomness of the solutions. In particular, the

imbedding of L2(Ω;H1(O)) in L2(Ω × O) is not compact if Ω is not countable.
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This makes it difficult for passing to the limit in the equation. This problem

can be dealt with by averaging on the space variable and using the law of large

numbers (see Lemma 3.4 and its proof below).

As in the deterministic case, we obtain three distinct cases following the mean

size of the bridge. In particular, we prove that the system is not coupled when

there are sufficiently large bridge with positive probability.

Notations

(Ω,F , P ) is a probability space such that the σ-algebra is countably generated.

In particular, Lp(Ω), 1 ≤ p <∞ is a separable Banach space.

We denote by E(ψ) =

∫

Ω
ψ dP , ψ ∈ L1(Ω) the expectation of the random

variable ψ.

O is a bounded open set in RN , N ≥ 3, with a Lipschitz boundary.

V = L2(Ω;H1(O)) is the space of random variables with values in H1(O).

Taking an orthonormal basis (en(x))n∈N of H1(O), V is the space of functions u

that can be written as follows

u(ω, x) =
∑

n≥0

ûn(ω) en(x)

where ûn ∈ L2(Ω) and
∑

n≥0 ‖ûn‖2L2(Ω) < ∞. It is an Hilbert space, provided

with the norm

‖u‖2V =
∑

n≥0

‖ûn‖2L2(Ω) = E
(
‖u(ω, ·)‖2H1(O)

)
.

We denote also Vloc = L2(Ω;H1
loc(O)).

DΩ(O) is the space of smooth random functions i.e. functions ϕ(ω, ·) ∈ D(O)

such that ‖∇j
xϕ‖L∞(Ω×O) <∞, ∀ j ∈ N.

L∞(Ω;C1(O)) is the space of smooth random functions i.e. functions ϕ(ω, ·) ∈
C1(O) such that ‖ϕ‖+ ‖∇ϕ‖L∞(Ω×O) <∞.

ForX a given open subset of RN , H1
#(X) is the space of ZN -periodic functions

which belong to H1
loc(X).

Moreover, we denote by

∫

Y
f the normalized integral

1

|Y |

∫

Y
f .



190 M. BRIANE and L. MAZLIAK

1 – The homogenization problem

1.1. Geometry of the problem

Let Y = [0, 1[N be the unit cube of RN , N ≥ 3. E1 and E2 are two

Y -periodic open subsets of RN with Lipschitz boundary, which are connected.

It is also assumed that E1 ∩ E2 = ∅. Observe that such sets exist since we

assumed that N ≥ 3.

We denote for ε > 0, Oiε = εEi ∩O, i = 1, 2 and Yi = Ei ∩ Y , i = 1, 2.

On the probability space (Ω,F , P ), we consider an indexed by k ∈ ZN family

of independent and identically distributed random processes (αk(ε))ε>0 such that

∀ ε > 0, 0 < αk(ε) < a a.s. where a is a positive constant. In the sequel, the

index k is omitted when only the distribution of αk is used. Therefore, we shall

write expressions such as E(α(ε)).

For each k ∈ ZN , we define a cylindrical “bridge” Qk(ε) joining Y1 and Y2
such that Yk(ε) = Y1 ∪ Y2 ∪Qk(ε) is connected; the length of Qk(ε) is a positive

constant ` > 0 and its section area is equal to αk(ε).

We set

Oε =
⋃

k∈ZN
(ε k + εQk(ε)) ∩O

which is the union of the random bridges and

Oε = O1ε ∪O2ε ∪ Oε

is the (random) domain connected by bridges of random size.

1.2. Position of the problem

Our aim is to study the homogenization of the model, i.e. the asymptotic

behaviour of the following Neumann problem in the random domain Oε

(1)





−∆xuε + uε = f in Oε,

∂uε

∂n
= 0 on ∂Oε ,

where f is a given (deterministic) function of L2(O).

We need to formulate the problem in a Hilbert setting in order to get a varia-

tional formulation. Since Oε is a random set, we have to take care of measurability

for solutions of (1). Instead of the “natural” space L2(Ω;H1(Oε)) (which is not
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well defined since Oε is random), we consider a larger space. More precisely,

consider Õε, the deterministic open set obtained by replacing in Oε each cylinder

Qk(ε) by a similar one Q̃k but with a (deterministic) section equal to a. The

Hilbert space Ṽε = L2(Ω;H1(Õε)) is provided with the norm

‖u‖2
Ṽε

= E
(
‖u(ω, ·)‖2

H1(Õε)

)
=

∫

Ω×O
1
Õε

(u2 + |∇xu|2) .

Let us consider the space Vε of the restrictions u|Oε of functions u ∈ Ṽε,

provided with the norm

‖u‖2Vε =
∫

Ω×O
1Oε(u

2 + |∇xu|2) .

We may then obtain the following result.

Lemma 1.1. Assume that there exists a deterministic function g(ε) > 0

such that

(2) αk(ε) > g(ε) , ∀ ε > 0, ∀ k ∈ ZN .

Assume moreover that O is only composed of entire cells.

Then, (Vε, ‖ · ‖Vε) is an Hilbert space.

The proof is given in Appendix.

We can now give a variational formulation of problem (1). From Lax–Milgram’s

theorem, there exists a unique uε ∈ Vε such that

(3)

∫

Ω×O
1Oε ∇xuε · ∇xϕ+

∫

Ω×O
1Oε uε ϕ =

∫

Ω×O
1Oε f ϕ , ∀ϕ ∈ Vε .

2 – The results

2.1. The limiting behaviour

Our first result describes the limiting behaviour of problem (3). Of course, it

is still a very imprecise result. We however emphasize that it requires very little

on the random processes αk.

Proposition 2.1. Let χλi ∈ H1
#(Ei), λ ∈ RN and i = 1, 2, be the unique (up

to an additive constant) solution of

(4)

∫

Yi

∇χλi · ∇ϕ =

∫

Yi

λ · ∇ϕ , ∀ϕ ∈ H1
#(Ei) ,
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and Ai be the positive definite matrix

(5) Ai λ =
1

|Y |

∫

Yi

(λ−∇χλi ) , λ ∈ RN .

Assume that

(6) lim
ε→0

E(α(ε)) = 0 .

Then, there exist two functions uiε ∈ Vloc = L2(Ω;H1
loc(O)), i = 1, 2 such that

1Oiεuiε = 1Oεuε and a subsequence ε
′ such that uiε′ ⇀ ui in Vloc where ui are

solutions of the equation

(7)

∫

Ω×O
(A1∇xu1 +A2∇xu2) · ∇xϕ+

∫

Ω×O
(θ1 u1 + θ2 u2)ϕ =

=

∫

Ω×O
θ f ϕ , ∀ϕ ∈ Vloc ,

where θi =
|Yi|
|Y | and θ = θ1 + θ2.

2.2. Identification of limiting behaviour parameters

To determine the homogenization of problem (3) completely, we have to find

an additional equation to (7) in order to caracterize the functions ui, i = 1, 2.

Of course, we have to require more restrictive assumptions on the random pro-

cesses α(ε).

Similarly to the deterministic case, we will distinguish three cases:

– the supercritical case where α(ε) is much larger than ε2 with positive prob-

ability,

– the subcritical case where α(ε) is much smaller than ε2,

– the critical case where α(ε) is of order ε2.

The following results give a precise mathematical sense to these notions, and

precise the homogenization equation (7).

Theorem 2.2. Assume that the process (α(ε))ε>0 is such that there exists

a random variable γ such that

(8)
α(ε)

ε2
→ γ strongly in L1(Ω) .
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Then, the sequence of functions (1Oεuε) weakly converges in L
2(Ω×O) to the

function θ1u1 + θ2u2 where u1 and u2 are the (deterministic) solutions in H
1(O)

of the coupled system

(9)





−divx(A1∇xu1) + θ1 u1 +
1

`
E(γ) (u1 − u2) = θ1 f in O,

−divx(A2∇xu2) + θ2 u2 +
1

`
E(γ) (u2 − u1) = θ2 f in O,

Ai∇xui · n = 0 in ∂Ω .

Remark 2.1.

1) Observe that hypothesis (8) implies (6).

2) The previous theorem deals with the critical case (E(γ) > 0) and the

subcritical case (E(γ) = 0).

3) Of course, (8) implies that for every k ∈ ZN , there exists an independent

sequence of random variables (γk)k∈ZN such that

(10)
αk(ε)

ε2
→ γk strongly in L1(Ω) .

Theorem 2.3. Assume that

(11) P

({
α(ε)

ε2
→ +∞

})
> 0

and that there exists γ0 ∈ L1(Ω) such that

(12)
ε2

α(ε)
1
{
α(ε)

ε2
→∞}

≤ γ0 a.s. .

Then, u = u1 = u2 is the deterministic solution in H
1(O) of the Neumann

problem

(13)

{−divx(A1 +A2)∇xu+ θ u = θ f in O,

(A1 +A2)∇xu · n = 0 on ∂O .

Let us give two examples to illustrate these theorems.

Example 2.2: Suppose that α(ε) = a εβ where β is an i.i.d. (independent and

identically distributed) bounded and positive random variable. One can easily
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check that the subcritical case corresponds to P (β > 2) = 1, the supercritical

case to P (β < 2) > 0 and the critical case to P (β ≥ 2) = 1, P (β = 2) > 0.

Example 2.3: Suppose that α(ε) = ν εδ1 +(1− ν) εδ2 where ν is a Bernoulli

random variable (p = P (ν = 1) = 1− P (ν = 0)) and δ1, δ2 are two fixed positive

numbers. Assume for example that δ1 < 2, δ2 ≥ 2 and p > 0. Then (11)

is satisfied and condition (12) is satisfied with γ = ν. This kind of situation

corresponds to a random mixing of two sizes of bridges εδ1 and εδ2 .

3 – Proofs of the results

3.1. Weak convergence and Extension property

We begin by stating two technical lemmas. The first one is just an observation

about weak convergence.

Lemma 3.1. Let uε(ω, x)⇀ u(ω, x) weakly in L2(Ω;H1(O))w and vε(x)⇀

v(x) weakly in L2(O)w. Then

lim
ε→0

∫

Ω×O
uε vε =

∫

Ω×O
u v .

Proof: Consider ψ ∈ L2(Ω). Observe that E(ψuiε) is a bounded sequence in

H1(O), which strongly converges in L2(O) up to a subsequence. Since 1Oiε ⇀ θi
weakly in L∞(O) and E(ψuiε)→ E(ψui) weakly in H1(O), we obtain thanks to

Rellich’s Theorem and up to a subsequence, E(ψuiε)→ E(ψui) strongly in L2(O)

and thus for the whole sequence 1OiεE(ψuiε)⇀ θiE(ψui) weakly in L2(O). Since

the tensor products ϕ(x)ψ(ω), ϕ ∈ L2(O) and ψ ∈ L2(Ω), generate L2(Ω × O),

we deduce from the latter that 1Oiεuiε ⇀ θi ui weakly in L2(Ω×O).

We now state an extension result which will be useful in the proof of Propo-

sition 2.1.

Lemma 3.2. There exist extension operators Pi,ε, i = 1, 2, from Viε =

L2(Ω;H1(Oiε)) into Vloc = L2(Ω;H1
loc(O)) and constants ci > 0 such that for any

u ∈ Viε, 1OiεPiεu = 1Oiεu and

(14) ‖Piεu‖Vloc ≤ ci ‖u‖Viε , i = 1, 2 ,
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and for any u ∈ Viε ∩ L∞(Ω×Oiε)

(15) ‖Piεu‖L∞
loc

(Ω×O) ≤ ci ‖u‖L∞(Ω×Oiε) , i = 1, 2 ,

where the constants ci only depend on the open set O.

Proof: Ei, i = 1, 2, are connected open sets with Lipschitz boundary, we can

then use an extension result due to Acerbi, Chiado–Piat, Dal Maso, Percivale [1]:

there exist extension operators, piε, i = 1, 2, from H1(Oiε) into H1
loc(O) and

constants ci > 0 such that for any u ∈ H1(Oiε), 1Oiεpiεu = 1Oiεu and

(16) ‖piεu‖H1
loc

(O) ≤ ci ‖u‖H1(Oiε) , i = 1, 2 ,

and for any u ∈ H1(Oiε) ∩ L∞(Oiε),

(17) ‖u‖L∞
loc

(O) ≤ ci ‖u‖L∞(Oiε) , i = 1, 2 ,

where the constants ci only depend on the set O.

Now, let u ∈ Viε, since piε is a continuous operator between the Banach spaces

H1(Oiε) and H
1
loc(O), one has that ω 7→ piεu(ω, ·) is measurable and belongs to

L1(Ω;H1
loc(O)), from Bochner’s integral theory, (see e.g. Yosida [13]) and also to

V by (16).

We then define extension operators denoted by Piε by Piεu : ω 7→ piεu(ω, ·)
which satisfy 1OiεPiεu = 1Oiεu, i = 1, 2.

Moreover, estimates (14) and (15) are direct consequences of estimates (16)

and (17) respectively.

3.2. Proof of Proposition 2.1

Taking function uε as test function in equation (3), one obtains using the

boundedness of (‖uε‖L2) the following estimates ‖1Oεuε‖L2(Ω×O) ≤ c and

‖1Oε∇xuε‖L2(Ω×O)N ≤ c where c is a deterministic constant.

Then, there exist a subsequence, denoted ε for simplicity, u ∈ L2(Ω × O)

and ξ ∈ L2(Ω × O)N such that 1Oεuε ⇀ θu (recall that θ is the constant equal

to the limit volume fraction of material) and ξε = 1Oε∇xuε ⇀ ξ weakly in

L2(Ω × O)N . Then, using the extension operator Piε, there exist ui ∈ V such

that uiε = Piε(uε|Oiε )⇀ ui weakly in V , i = 1, 2.
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3.2.1. First step: θ u = θ1 u1 + θ2 u2

One has 1Oεuε = 1Oεu1ε + 1O2εu2ε + 1Oε
uε and by the Cauchy–Schwarz

inequality

‖1Oε
uε‖2L1(Ω×O) ≤ c ‖1Oε

‖2L2(Ω×O) = c

∫

Ω×O

∑

εk∈O

1εk+εQk(ε) =

= cE
( ∑

εk∈O

|εQk(ε)|
)
= cE

( ∑

εk∈O

` εNαk(ε)
)
≤ c′E(α(ε))

which implies that 1Oε
uε → 0 strongly in L1(Ω×O) by (6).

Since (1Oε
uε) is bounded in the Hilbert space L2(Ω × O), we obtain that

1Oε
uε ⇀ 0 weakly in L2(Ω×O).

It remains to prove that 1Oiεuiε ⇀ θi ui, i = 1, 2 weakly in L2(Ω×O).

This convergence is clear in the deterministic case due to the compact imbed-

ding of H1(O) in L2(O) (Rellich’s theorem). Here, it is a direct consequence of

Lemma 3.1 with uε = ϕuiε and vε = 1Oiε , where ϕ ∈ DΩ(O) which is dense in

L2(Ω×O).

3.2.2. Second step: ξ = A1∇xu1 +A2∇xu2

We have ξ2 = ξ1ε + ξ2ε + ξ3ε where ξiε = 1Oiε∇xuiε, i = 1, 2.

Proceeding as in first step, we have ξ3ε = 1Oε
ξε ⇀ 0 weakly in L2(Ω × O)N .

Let us prove that ξiε ⇀ ξi weakly in L2(Ω × O)N where ξi = Ai∇xui, i = 1, 2.

For that, as in the deterministic case of [3], using the fact that E1 ∩ E2 = ∅, we
consider the (deterministic) test function wλ

iε of W
1,p(O) for some p > 2, defined

by

(18)





wλ
iε(x)⇀ λ · x weakly in W 1,p(O),

wλ
iε(x) = λ · x− ε χλi

(
x

ε

)
in Oiε,

wλ
iε(x) = λ · x in Oεj , j 6= i ,

where χλi are solutions of (4).

Now, we apply Tartar’s energy method [12] by plugging function ϕwλ
iε for

ϕ ∈ DΩ(O) in equation (3). We obtain
∫

Ω×O
ξε · ∇wλ

iε ϕ+

∫

Ω×O
ξε · ∇ϕwλ

iε +

∫

Ω×O
1Oεuε ϕw

λ
iε =

∫

Ω×O
1Oεf ϕw

λ
iε

and then, using the strong convergence wλ
iε → λ · x in L2(O),

∫

Ω×O
ξε · ∇wλ

iε ϕ −→ −
∫

Ω×O
ξ · ∇ϕλ · x−

∫

Ω×O
θ uϕλ · x+

∫

Ω×O
θ f ϕλ · x
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the latter is equal to

∫

Ω×O
ξ · λϕ by plugging ϕλ · x in (3) and then passing to

the limit.

Thus ∫

Ω×O
ξε · ∇wλ

iε ϕ −→
∫

Ω×O
ξ · λϕ .

On the other hand, using the definition (18) of wλ
iε,

∫

Ω×O
ξε · ∇wλ

iε ϕ =

∫

Ω×O
ξiε · ∇wλ

iε ϕ+

∫

Ω×O
ξεj · λϕ+

∫

Ω×O
ξ3ε · ∇wλ

iε ϕ .

Since ∇wλ
iε is bounded in Lp(O) for some p > 2, the third term on the right

hand side is bounded by cE(|Oε|
1
q ) where 1

p
+ 1

q
= 1

2 , due to Hölder’s inequality,

and thus converges to 0 by (6) since E(|Oε|
1
q ) ≤ E(|Oε|)

1
q .

We have
∫

Ω×O
ξiε · ∇wλ

iε ϕ =

∫

Ω×O
1Oiε∇wλ

iε · ∇xuiε ϕ

=

∫

Ω×O
1Oiε∇wλ

iε · ∇x(ϕuiε)−
∫

Ω×O
1Oiε∇wλ

iε · ∇xϕuiε ,

the first term on the right hand side is equal to 0 since χλi is solution of (4) and the

second term converges to

∫

Ω×O
Aiλ ·∇xϕui by Lemma 3.1 since 1Oiε∇wλ

iε ⇀ Aiλ

weakly in L2(O)N .

Finally, we obtain
∫

Ω×O
ξ · ∇ϕ = −

∫

Ω×O
Ai λ · ∇xϕui +

∫

Ω×O
ξj · λϕ

=

∫

Ω×O
Ai∇xui · λϕ+

∫

Ω×O
ξj · λϕ

since ϕ ∈ DΩ(O) and

ξ = Ai∇xui + ξj = ξ1 + ξ2 , i 6= j ∈ {1, 2} .

Hence, ξi = Ai∇xui and ξ = A1∇xu1 +A2∇xu2.

3.2.3. Conclusion of the proof

Plugging ϕ ∈ V in (3) yields after passing to the limit
∫

Ω×O
ξ · ∇xϕ+

∫

Ω×O
θ uϕ =

∫

Ω×O
θ f ϕ

which gives (7) by steps 1 and 2.
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3.3. Proofs of the Theorems

Now the problem is to obtain another equation in order to determine ui,

i = 1, 2 which are already solutions to (3) and thus to determine the weak limit

of 1Oεuε which is equal to θ1u1 + θ2u2.

3.3.1. Energy cost and compactness results

We again state two preliminary lemmas. The first one yields an estimate of

the energy cost due to each random bridge and is a simple adaptation of a result

proved in [3] for the deterministic case.

Lemma 3.3. Let Ỹ = Y1 ∪ Y2 ∪ Q̃ where Q̃ is the cylinder of length `

and of section area a (it therefore contains every bridge Qk(ε)) and let v̂ be the

deterministic function in H1
#(Ỹ ) (i.e. Y -periodic and locally in H1 on the periodic

open set obtained by Y -repetition of Ỹ ) defined by

(19)





v̂(y) = 1 in Y1,

v̂(y) = 0 in Y2,

v̂ is affine in Q̃ .

Then, for any k ∈ ZN and v ∈ L2(Yk(ε)), one has

(20)

∣∣∣∣
1

ε2

∫

Yk(ε)
∇v̂ · ∇v − δk(ε)

∫

Y1

v + δk(ε)

∫

Y2

v

∣∣∣∣ ≤ c
(αk(ε))

r

ε2
‖∇v‖L2(Yk(ε))

where δk(ε) =
1

ε2

∫

Yk(ε)
|∇v̂|2 and c > 0, r > 1

2 are two deterministic constants

independent of k and ε.

The proof of this lemma is given in [3] with αk(ε) = ε2. The second result is

a compactness result since it allows us to pass to the limit in a product of weak

convergences. It also provides the mean behaviour of the thin random bridges

using a law of large numbers.

Lemma 3.4. Let (γk)k∈ZN be a family of real random variables in L
1(Ω),

let χ ∈ L∞(RN ) which has a compact support in Y , and let vε be a sequence of

V ∩L∞(Ω×O) such that vε ⇀ v weakly in V and vε is bounded in L
∞(Ω×O).

Then, the following limit holds

(21)

∫

Ω×O

∑

εk∈O

γk(ω)χ

(
x

ε
− k

)
vε(ω, x) −→

∫

Ω×O
E(γ)χ v(ω, x) .
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The previous sum is intended to be extended over the k ∈ ZN such that

ε k + ε Yk(ε) ⊂ O .

Proof: We first replace each γk ∈ L1(Ω) by its truncature of size n ∈ N,

Tn(γk) where Tn(t) = max(−n,min(n, t)), so that (Tn(γk))k is a sequence of

bounded random variables.

Indeed, let

Iε(vε) =

∫

Ω×O

∑

εk∈O

γk(ω)χ

(
x

ε
− k

)
vε(ω, x)

and Inε (vε) similarly defined with Tn(γk). Using boundedness of vε and indepen-

dence, we obtain

|Inε (vε)− Iε(vε)| ≤ c
∫

Ω×O

∑

εk∈O

|Tn(γk)− γk|1Y
(
x

ε
− k

)

≤ c
∫

Ω

∑

εk∈O

|Tn(γk)− γk| εN

≤ cE(Tn(γ)− γ) → 0

uniformly with respect to ε > 0.

We then may replace γk by Tn(γk).

Consider a covering (Kj)j∈ZN of RN by cubes Kj with no common interior

point and with a length h > 0 (hÀ ε).

We shall replace vε by

vε(ω, x) =

∫

Kj

1O vε(ω, y) dy if x ∈
◦
Kj , j ∈ ZN .

Using Poincaré–Wirtinger’s inequality in each homothetic 1
h
Kj and rescaling with

respect to h, we obtain the following estimate

(22) ‖vε − vε‖L2(Oh) ≤ c h ‖∇xvε‖L2(Oh) a.s. ,

where Oh =
⋃

Kj⊂O

Kj and c > 0 the deterministic constant corresponding to

Poincaré–Wirtinger’s inequality in any cube of RN of side equal to 1.

Since O has a Lipschitz boundary, |O − Oh| ≤ c h and then estimate (22)

implies that

(23) |Iε(vε)− Iε(vε)| ≤ c
∫

Ω×Oh

|vε − vε|+ c |O −Oh| ≤ c h
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since (γk), χ, (vε) are bounded in L∞(Ω×O) and (∇xvε) is bounded in L2(Ω×O).

Let us compute the limit of Iε(vε) at fixed h. We have

Iε(vε) =

∫

Ω

∑

j∈ZN
vjε

∫

Kj

∑

εk∈O

γk χ

(
x

ε
− k

)

=

∫

Ω

∑

j∈ZN
vjε

( ∑

εk∈Kj

γk χ ε
N +O(ε)

)

where vjε =

∫

Kj

1Ovε and the term O(ε) comes from the sets εk + εY that

meet the boundary of Kj . Observe that the sum over j is finite since vjε = 0 if

Kj ∩O = ∅. The law of large numbers gives

∑

εk∈Kj

γk ε
N → |Kj |E(γ) in L2(Ω) and for each j ∈ ZN .

One has also vjε ⇀ vj =

∫

Kj

1O v in L2(Ω). Then, passing to the limit in the

definition of Iε(vε), gives

(24) Iε(vε) →
∫

Ω

∑

j∈ZN
vj |Kj |E(γ)χY =

∫

Ω×O
E(γ)χY v

where v(ω, x) = vj(ω) for x ∈
◦
Kj and where χY denotes the mean of χ over Y .

Now, the lower semi-continuity of the L2(Ω×O) norm combined with estimate

(22) yields

‖v − v‖L2(Ω×Oh) ≤ lim ‖vε − vε‖L2(Ω×Oh) ≤ c h

and thus, since v is bounded in L∞(Ω) independently of h,

∣∣∣
∫

Ω×O
(v − v)

∣∣∣ ≤ c h+ |O −Oh|
1
2 ‖v − v‖L2(Ω×O) ≤ c

√
h .

Then denoting I0(v) =

∫

Ω×O
E(γ)χY v, we obtain, due to estimate (23)

|Iε(vε)− I0(v)| ≤ |Iε(vε)− Iε(vε)|+ |Iε(vε)− I0(v)|+ |I0(v)− I0(v)|
≤ |Iε(vε)− I0(v)|+ c

√
h .

Recall that by (24) Iε(vε) → I0(v) for any h ≤ 1. Then, the latter estimate

proves that Iε(vε)→ I0(v) and concludes the proof of Lemma 3.4.
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3.3.2. Proof of Theorem 2.2

We first proceed as in the deterministic case by plugging in equation (3)

satisfied by uε, the function v̂ε(x) = v̂(x
ε
) where v̂ is defined by (19). The function

v̂ε separates materials 1 and 2.

Let ϕ ∈ L∞(Ω;C1(O)), we have
∫

Ω×O
1Oε∇xuε · ∇x(ϕ v̂ε) +

∫

Ω×O
uε ϕ v̂ε =

∫

Ω×O
f ϕ v̂ε .

Since v̂ε = 1 in O1ε and v̂ε = 0 in O2ε, we obtain with the notations of the

proof of Proposition 2.1, i.e. ξiε = 1Oiε∇xuε, i = 1, 2,
∫

Ω×O
1Oε∇xuε · ∇xϕ v̂ε =

∫

Ω×O
ξ1ε · ∇xϕ+

∫

Ω×O
1Oε
∇xuε · ∇xϕ v̂ε ,

the last term on the right hand side being bounded by c ‖1Oε
‖L2(Ω×O) ≤

cE(α(ε))
1
2 → 0 by condition (6).

We have ξ1ε = 1O1ε∇uε ⇀ A1∇xu1 in L2(Ω× O) from Proposition 2.1, then

the definition (19) of v̂ gives

lim

∫

Ω×O
1Oε∇xuε · ∇xϕ v̂ε =

∫

Ω×O
A1∇xu1 · ∇xϕ .

Moreover, since u1ε = P1εuε ⇀ u1 weakly in Vloc and 1O1ε is deterministic

and weakly converges to θ1 in L2(O), we have by (6) and by Lemma 3.1
∫

Ω×O
1Oεϕ v̂ε uε =

∫

Ω×O
1O1εϕu1ε +

∫

Ω×O
1Oε

ϕ v̂ε uε →
∫

Ω×O
ϕθ1 u1

and similarly ∫

Ω×O
f ϕ v̂ε →

∫

Ω×O
θ1 f ϕ .

Finally, we obtain

(25) lim

∫

Ω×O
1Oεϕ∇xuε · ∇xv̂ε =

=

∫

Ω×O
ϕθ1 f −

∫

Ω×O
ϕθ1 u1 −

∫

Ω×O
A1∇xu1 · ∇xϕ .

It remains to find the limit of the left hand side of (25) in another way.

Similarly to the deterministic case, we are led to the case f ∈ L∞(O), using a

density argument. Now, let us observe that (3) can be written for any ϕ ∈ H1(O)

and ψ ∈ L2(Ω)
∫

Ω
ψ(ω)

(∫

O
1Oε∇xuε · ∇xϕ+

∫

O
1Oεuε ϕ−

∫

O
1Oεf ϕ

)
dP (ω) = 0
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which implies that a.s.
∫

Oε

∇xuε · ∇xϕ+

∫

Oε

uε ϕ =

∫

Oε

f ϕ

i.e. uε(ω, ·) is solution of the Neumann problem (1). Then, the maximum principle

implies that ‖uε(ω, ·)‖L∞(Oε) ≤ ‖f‖L∞(O) a.s.. Considering a subsequence ε, we

obtain that 1Oεuε ∈ L∞(Ω × O) and ‖1Oεuε‖L∞(Ω×O) ≤ ‖f‖L∞(O) for any ε.

Using an integration by parts,
∫

Ω×O
1Oεϕ∇xuε · ∇xv̂ε =

∫

Ω×O
1Oε
∇xv̂ε · ∇x(ϕuε)−

∫

Ω×O
1Oε
∇xϕ · ∇xv̂ε uε .

The last term on the right hand side is bounded by
c

ε
‖1Oε

‖L1(Ω×O) ≤

c′E
(α(ε)

ε

)
→ 0 since by (8)

α(ε)

ε2
→ γ strongly in L1(Ω).

We will now compute the limit of

∫

Ω×O
1Oε
∇xv̂ε · ∇x(ϕuε).

We proceed as in the deterministic case using estimate (20). However, we

have to use it cell by cell since the bridge is different in each cell. Denote Yεk =

εk + εYk(ε), Y
i
εk = εk + εYi, i = 1, 2 and Ǒε, resp. Ǒiε, the set obtained as the

union of the Yεk ⊂ Oε, resp. Y
i
εk ⊂ Oiε, i = 1, 2 and denote vε = ϕuε. Then, by

rescaling (8) with respect to ε and summing over k such that Yεk ⊂ Ǒε, namely

εk ∈ O, we obtain the estimate
∣∣∣∣
∫

Ω×O
1Ǒε∇xv̂ε · ∇vε −

∫

Ω×O

∑

εk∈O

δk(ε) (θ
−1
1 1Y 1

εk
− θ−12 1Y 2

εk
) vε

∣∣∣∣ ≤

≤ c
∫

Ω

∑

εk∈O

αk(ε)
r

ε
ε
N
2 ‖∇xvε‖L2(Yεk) .

By the Cauchy–Schwarz inequality applied in O, the right-hand side is bounded

by

c

∫

Ω

(∑

εk∈O

αk(ε)
2r

ε2
εN
)1

2 ‖∇xvε‖L2(Oε)

and still by Cauchy–Schwarz applied in Ω, it is bounded by

c

[
E

( ∑

εk∈Oε

αk(ε)
2r

ε2
εN
)] 1

2 ‖1Oε∇xvε‖L2(Ω×O) ≤ cE
(
α(ε)2r

ε2

) 1
2

=

= cE

[
γ α(ε)2r−1 +

(
α(ε)

ε2
− γ

)
α(ε)2r−1

] 1
2

which tends to 0 by (6) and (8).
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Therefore, we have

(26)

∫

Ω×O
ϕ1Ǒε∇xuε · ∇xv̂ε −

∫

Ω×O

∑

εk∈O

δk(ε) (θ
−1
1 1Y 1

εk
− θ−12 1Y 2

εk
) vε −→ 0 .

Now, observe that

δk(ε) =
1

`

αk(ε)

ε2

which implies, because of the boundedness of 1Oεvε,

∣∣∣∣
∫

Ω×O

∑

εk∈O

δk(ε) (θ
−1
1 1Y 1

εk
− θ−12 1Y 2

εk
) vε −

−
∫

Ω×O

∑

εk∈O

γk (`
−1 θ−11 1Y 1

εk
− `−1 θ−12 1Y 2

εk
) vε

∣∣∣∣ ≤

≤ E
( ∣∣∣∣
α(ε)

ε2
− γ

∣∣∣∣
)
→ 0 by (8) .

Using Lemma 3.4 with χ = 1Yi and vε = ϕuiε, (26) implies that

∫

Ω×O
ϕ1Ǒε∇xuε · ∇xv̂ε −→

∫

Ω×O

1

`
E(γ) (u1 − u2)ϕ .

Finally, by definition of Ǒε and by Cauchy–Schwarz inequality, we have

∣∣∣∣
∫

Ω×O
ϕ (1Oε − 1Ǒε)∇xuε · ∇xv̂ε

∣∣∣∣
2

≤ c
∫

Ω

∑

Yεk∩∂O 6=∅

∫

Yεk

|∇v̂ε|2

≤ c εN E
(
αk(ε)

ε2

)
#
{
k, Yεk ∩ ∂O 6= ∅

}

≤ c εE
(
αk(ε)

ε2

)
→ 0 ,

since the regularity of O implies that the number of Yεk ∩ ∂O 6= ∅ is of order of
ε1−N , and thus

(27)

∫

Ω×O
1Oε∇xuε · ∇xv̂ε −→

∫

Ω×O

1

`
E(γ) (u1 − u2)ϕ .

Combining (25) and (27) yields

(28)

∫

Ω×O
A1∇xu1 · ∇xϕ+

∫

Ω×O

[
θ1 u1 +

1

`
E(γ) (u1 − u2)

]
ϕ =

∫

Ω×O
θ1 f ϕ
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for any ϕ ∈ L∞(Ω;C1(O)) and by density for any ϕ ∈ V . The coupled system

composed by (7) and (28) has a unique solution in V by the Lax–Milgram the-

orem and it is clear that E(ui), i = 1, 2 are solutions of this system since all

the coefficients are deterministic. This gives (9) and concludes the proof of the

theorem.

3.3.3. Proof of Theorem 2.3

The key of the proof in the deterministic case for the supercritical case is the

Poincaré–Wirtinger inequality applied to the basic cell of the material (see [4] for

the general framework). Here, we cannot apply this method since the cells are

all different. However, the key-ingredient is still estimate (20).

We have by the Cauchy–Schwarz inequality and for any v ∈ H1(Yk(ε))

∣∣∣∣
1

ε2

∫

Yk(ε)
∇v̂ · ∇v

∣∣∣∣ ≤ c
αk(ε)

1
2

ε2
‖∇v‖L2(Yk(ε)) and δk(ε) ≥ c

αk(ε)

ε2
,

which, combined with estimate (20), yields

∣∣∣
∫

Y1

v −
∫

Y2

v
∣∣∣ ≤ c

[
1

αk(ε)
1
2

+ αk(ε)
r−1

]
‖∇v‖L2(Yk(ε)) .

We thus obtain, since r > 1
2 and αk(ε) ≤ a, the new estimate

(29)
∣∣∣
∫

Y1

v −
∫

Y2

v
∣∣∣ ≤ c

αk(ε)
1
2

‖∇v‖L2(Yk(ε)) , ∀ v ∈ H1(Yk(ε)) .

Let Ek =
{
αk(ε)
ε2
→∞

}
and let ϕ ∈ DΩ(O). We proceed similarly to the proof of

Theorem 2.2 with estimate (20), i.e. we plug the function 1Ekvε, where vε = ϕuε,

in the estimate obtained from (29) by rescaling with respect to ε, and we sum

over each cell Ykε such that εk ∈ O, which yields
∣∣∣∣
∫

Ω×O

∑

εk∈O

1Ek (θ
−1
1 1Y 1

εk
− θ−12 1Y 2

εk
) vε

∣∣∣∣ ≤ c
∫

Ω

∑

εk∈O

ε1Ek

αk(ε)
1
2

ε
N
2 ‖∇vε‖L2(Yεk) .

By the Cauchy–Schwarz inequality applied to the sum over k and later on to

the integral on Ω, the right hand side of the inequality is bounded by

c

[
E

(∑

εk∈O

εn
ε2

αk(ε)
1Ek

)] 1
2 ‖∇vε‖L2(Ω×O) ≤ c

[
E

(
ε2

αk(ε)
1Ek

)] 1
2

which converges to 0 by (12) combined with Lebesgue dominated convergence

Theorem.
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On the other hand, from Lemma 3.4 applied with χ = 1Yi , i = 1, 2 and

vε = ϕuε, we have
∫

Ω×O

∑

εk∈O

1Ek (θ
−1
1 1Y 1

εk
− θ−12 1Y 2

εk
) vε −→

∫

Ω×0
P (Ek) (u1 − u2)ϕ .

Finally, we obtain
∫

Ω×O
P (Ek) (u1 − u2)ϕ = 0 , ∀ϕ ∈ DΩ(O) ,

which implies u1 = u2 since P (Ek) > 0 by (11). The latter, combined with

equation (7) yields (13) since the function E(u1) = E(u2) is also solution of (11),

the matrices Ai, i = 1, 2, being deterministic. This concludes the proof.

4 – Appendix: proof of Lemma 1.1

Let u ∈ Vε. We will a.s. extend u(ω, ·) ∈ H1(Oε) to a function ũ(ω, ·) ∈
H1(Õε), such that 1Oε ũ = 1Oεu and ‖ũ(ω, ·)‖

H1(Õε)
≤ c(ε) ‖u(ω, ·)‖H1(Oε) where

c(ε) is a deterministic constant.

For that purpose, let us first construct such an extension for each U ∈
H1(Yk(ε)). Let Ỹk(ε) be an open subset of Y obtained by replacing Yk(ε) by

a cylinder of same length ` the area section of which is equal to a > αk(ε).

Then, by using the usual technics of extension by reflection, we can get a func-

tion Ũ ∈ H1(Ỹk(ε)) such that Ũ|Yk(ε) = U and ‖Ũ‖
H1(Ỹk(ε))

≤ c(ε) ‖U‖H1(Yk(ε))

where c(ε) is a deterministic constant which depends on g(ε) defined in (2). By

repeating the same procedure in each cell εk + εYk(ε) with u(ω, x) = U(x
ε
− k)

we obtain ũ since Ω is only composed of entire cells.

By construction, ũ ∈ H1(Õε), ω 7→ ũ(ω, ·) is measurable and the following

estimate holds a.s.

‖ũ(ω, ·)‖
H1(Õε)

≤ c(ε) ‖u(ω, ·)‖H1(Oε) .

Then, we can define an extension operator P from Vε into Ṽε such that Pu = ũ

which satisfies ‖Pu‖
Ṽε
≤ c(ε) ‖u‖Vε and 1OεPu = 1Oεu.

From the estimates

1

c(ε)
‖Pu‖

Ṽε
≤ ‖u‖Vε ≤ ‖Pu‖Ṽε ,

we deduce that (Vε, ‖ · ‖Vε) is an Hilbert space since (Ṽε, ‖ · ‖Ṽε) is an Hilbert

space.
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Amsterdam, pp. 835–873, 1979.
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