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ON DETERMINANT PRESERVERS OVER SKEW FIELDS

C.M. da Fonseca

Abstract: We characterize all the semilinear transformations on matrices over skew

fields that preserve the Dieudonné determinant.

1 – Introduction

Throughout this work, D is a skew field (division ring) which is considered

as finite-dimensional vector space over a field K, which may be identified with a

subfield of the center of D.

In [3], Draxl gave some equivalent conditions to the invertibility of a matrix.

Theorem 1.1. Let A ∈ Mn(D). Then the following conditions are equiva-

lent:

i) A ∈ GLn(D), i.e., A is invertible;

ii) AB = I, for some B ∈Mn(D), i.e., A has a right inverse;

iii) BA = I, for some B ∈Mn(D), i.e., A has a left inverse;

iv) the rows of A are left linearly independent over D;

v) the columns of A are right linearly independent over D.

The theorem below says that we can decompose any invertible matrix in the

Bruhat normal form ([3]).

Theorem 1.2. Let A ∈ Mn(D) be an invertible matrix. There exists a

decomposition of A such that A = T UP (π)V , where T is a lower triangular

matrix, V is an upper triangular matrix, both with 1’s on the main diagonal, and
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uij = ui δij with ui 6= 0, for each i, with π and U uniquely determined by A, i.e.,

(1.1) A =







1 0
. . .

∗ 1













u1 0
. . .

0 un






P (π)







1 ∗
. . .

0 1






.

Of course we can extend the concept of the Bruhat normal form of a matrix to

singular matrices in analogous way of the one done by Draxl to prove Theorem 1.2,

i.e., any matrix can be expressed in the form (1.1), where some of the ui’s may

be zeroes.

Definition 1.3. Let A ∈Mn(D) be a matrix which admits a decomposition

of the type (1.1), such that only m (≤ n) of the ui’s are nonzero. Then we say

that A has rank m.

Therefore, one can say that A has rank 1 if and only if it has the form xy

where x is a n × 1 matrix and y is a 1 × n matrix, both non zero. Notice, also,

that if X is invertible and Y is a matrix with rank m, then XY has rank m.

We will need the next lemma in a very important proof in the last section.

Lemma 1.4. Let A ∈ Mn(D) a matrix with rank r. Then there exists a

matrix B ∈Mn(D) with rank n− r such that A+B is nonsingular.

Proof: Let A = T UP (π)V and, without loss of generality, one supposes

that in (1.1), the u1, ..., ur are nonzero and the ur+1 = ... = un = 0. Thus, let

U ′ ∈ Mn(D) be a diagonal matrix such that u′1 = ... = u′r = 0 and u′r+1 = ... =

u′n = 1. Now, one only has to consider the matrix B = T U ′P (π)V .

2 – The Dieudonné determinant

LetD∗ be the non abelian multiplicative groupD−{0}. We denote by [D∗, D∗]

the normal subgroup of the commutators of D∗. The Dieudonné determinant is

the application

det : Mn (D) −→ D∗/[D∗, D∗] ∪ {0} ,

such that, in the conditions of Theorem 1.2,

detA =











0 if A 6∈ GLn(D),
[

sgn(π)
n
∏

t=1

ut
]

if A ∈ GLn(D) ,
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where [x] represents the class of x. This determinant has the important property

detAB = detA detB .

Note that D∗/[D∗, D∗] ∪ {0} is a multiplicative semigroup with a zero, such

that all nonzero elements are invertible.

3 – Nonsingular rank 1 preservers

Let {t1, ..., tm} be a basis of D over K. We define ei,l as the n×1 matrix with

tl in position i and 0 elsewhere, and ej,l as the 1 × n matrix with tl in position

j and 0 elsewhere defined. We suppose that t1 = 1 and define ei = ei,1 and

ej = ej,1.

Let us consider C, the right vector space over D generated by ei’s, and R, the

left vector space over D generated by ej ’s.

The set {ei,l | i = 1, ..., n and l = 1, ...,m} is a basis of C considered as vector

space over K and {ej,l | j = 1, ..., n and l = 1, ...,m} is a basis of R consider as

vector space over K.

The dimension of C over D, dimD C, is n, and over K is [D : K] dimD C.

Similarly, dimDR = n and dimK R = [D : K] dimDR.

Throughout this work n > 1. The case n = 1 is trivial.

Definition 3.1. Let f be a transformation of Mn(D) which is additive

and f(αX) = α f(X), for all α ∈ K and X ∈ Mn(D). Then we say that f is

semilinear.

The next theorem is a generalization of results by Mink in [7], Wong in [8] and

Marcus and Moyls in [6]. Though the first part of the proof is similar to the one

done by Mink in [7], we use different arguments and for a sake of completeness we

present the entire proof. Also, Jacob in [5], proved in a very intricated way some

results similars to ours. He used some results of affine geometry and a concept

of coherence invariant mapping . Our proofs only appeal to matrix concepts.

Theorem 3.2. Let f be a nonsingular semilinear transformation on Mn(D).

If the set of rank 1 matrices is invariant under f , then there exist nonsingular

matrices A, B and a bijective map σ of D, with σ|K = IdK , such that either σ is

a homorphism and

f(X) = AX B ,



212 C.M. DA FONSECA

for all X ∈Mn(D), or σ is an anti-homorphism and

f(X) = AX ′B ,

for all X ∈Mn(D), where X = (xij) = (σ(xij)).

Proof: Let u and v be any vectors of C and R, respectively. Then uv is a

matrix of Mn(D) which rank is 1. Therefore the rank of f(uv) is also 1, i.e.,

(3.1) f(u v) = xuv yuv ,

where xuv ∈ C and yuv ∈ R, not equal to zero.

First, let us prove that, for any v and v′, at least one of the conditions

1) xuv ||xuv
′
(i.e., xuv and xuv

′
are linearly dependent);

2) yuv ||yuv′ ,

holds. The matrix u v + u v′ has rank 1, and so f(u v + u v′) = xuv yuv + xuv
′

yuv′

also has rank 1. But

f(u v + u v′) = xuv yuv + xuv
′

yuv′

=
[

xuv xuv
′
]

[

yuv
yuv′

]

.

If xuv 6 || xuv
′

, then there exists an invertible matrix P ∈ Mn(D) such that

P [ xuv xuv
′
] = [e1 e2]. Hence

f(u v + u v′) =
[

xuv xuv
′
]

[

yuv
yuv′

]

= P−1
[

e1 e2
]

[

yuv
yuv′

]

= P−1

















yuv
yuv′

0
...
0

















,

and thus yuv ||yuv′ .

Similarly, it can be proved that, for any u and u′, xuv ||xu
′v or yuv ||yu′v.

Let us show now that, for all v′, xuv ||xuv
′
or, for all v′, yuv ||yuv′ , for a given u.

For, if xuv 6 ||xuw, for some w ∈ R, then yuv ||yuw. In this case yuv ||yuv′ , for all v
′,
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since, given xuw
′
, xuw

′
6 ||xuv or xuw

′
6 ||xuw, i.e., yuw′ ||yuv or yuw′ ||yuw. Similarly,

we can prove that, for any v, xuv ||xu
′v, for all u′, or yuv ||yu′v, for all u

′.

Each non zero vector xuv, or each yuv, of (3.1), is determined only to within

a scalar. For, supposing that xuv ||xuv
′

, for all v′, i.e., xuv
′

= xuvαv′ , for all v
′, it

follows that f(uv′) = xuv
′
α−1
v′ αv′ yuv′ ; thus, without loss of generality, for each u,

(3.2) xuv = xuv
′

,

for all v′, or

(3.3) yuv = yuv′ ,

for all v′, and, for each v,

(3.4) xuv ||xu
′v

for all u′, or

(3.5) yuv ||yu′v ,

for all u′.

It is clear that, for each u, either equation (3.2) holds or (3.3) does. Otherwise,

it would follow that f(u v−u v′) = 0, for v 6= v′, which is impossible, since u(v−v′)

is of rank 1.

On other hand, if xuv = xuv
′

, for all v′, then there exists w ∈ R such that

yuv 6 ||yuw. For, if yuw = αw yuv, for all w, then the map defined by w → xuvαw yuv,

is injective. But dimK R = [D : K] dimDR and the dimension of the image over

K is less or equal than [D : K], a contradiction. (Note we have assumed that

dimDR > 1.)

Either the equation (3.2) holds, for all u, or (3.3) does, for all u. In fact,

suppose that xuv = xuv
′
and yu′v = yu′v′ , for some u different from u′ and for all

v′. As we have seen in the last paragraph, there exists w such that yuv 6 ||yuw. Then

yuv 6 ||yu′v or yuw 6 ||yu′v, and, therefore, x
u′v = xuvβ, for some β, or xu

′v = xuwβ,

for some β. Suppose that the first case happens. Choose v′ 6= v such that

xu
′v 6 ||xu

′v′ . Then

f
(

(u+ u′) (c v + v′)
)

= c xuvyuv + xuv
′

yuv′ + c xu
′vyu′v + xu

′v′yu′v′

= xuv (c yuv + yuv′ + c β yu′v) + xu
′v′yu′v ,

for an arbitrary scalar c ∈ K. Since xuv || xu
′v 6 || xu

′v′ , as we have proven in the

beginning of this proof, (c yuv + yuv′ + c β yu′v) ||yu′v. But c β yu′v ||yu′v and thus
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(c yuv + yuv′) || yu′v, for all scalar c ∈ K, which is impossible, since yuv 6 || yu′v.

Similarly, we can also prove that the second case can not happen.

Either the equation (3.4) holds, for all v, or (3.5) does, for all v. Suppose for

some v1 and v2, we have xu1v1 ||xuv1 , for all u, and yu1v2 || yuv2 , for all u. Let us

make

xR =
{

x y | y ∈ R
}

and

C y =
{

x y | x ∈ C
}

.

We have

f(u v1) = xuv1 yuv1 = xu1v1 αuyuv1 ∈ xu1v1 R

and

f(u v2) = xuv2 yuv2 = xuv2 βu yu1v2 ∈ C yu1v2 .

But f(u(v1 + v2)) = xu1v1αu yuv1 + xuv2βu yu1v2 has rank 1. Therefore either

xu1v1 ||xuv2 or yuv1 ||yu1v2 , i.e., either f(u v1) or f(u v2) is in Cyu1v2 ∩ x
u1v1R. Let

us consider the semilinear applications ϕ1 of C into xu1v1R defined by ϕ1(u) =

f(u v1) and ϕ2 of C into Cyu1v2 defined by ϕ2(u) = f(u v2). Then C is the union

of the proper subspaces ϕ−1
1 (Cyu1v2 ∩ x

u1v1R) with ϕ−1
2 (Cyu1v2 ∩ x

u1v1R), which

is impossible.

Suppose now the equations (3.2) and (3.4) both hold. Then xu = xuv, for all

u and v, and xu = xu
′
αu for all u. It is easy to see in these conditions, that, for

example, all the mn vectors αe1 ye1ej,l
are linearly independent. Then we may

write αe2 ye2e1 as a linear combination of these vectors, for instance,

αe2 ye2e1 =
∑

j,l

cj,l αe1 ye1ej,l
.

But then

f

(

e1
(

∑

j,l

cj,l ej,l
)

− e2 e1

)

= 0 ,

which is absurd, since f is nonsingular.

Similarly we can prove that (3.3) and (3.5) could not both hold.

We are able to say now that either

xuv = xu ,

for all u and v, and

yuv ||yv ,
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for all u and v, or

yuv = yu ,

for all u and v, and

xuv ||xv

for all u and v.

Suppose the first case happens. Let u′ ∈ C and v′ ∈ R be vectors such that

xu 6 ||xu
′
and yv 6 ||yv′ . Since f(u v) = xu α(u, v) yv we have

f
[

(u+u′) (v+v′)
]

= xu α(u, v) yv + xu α(u, v′) yv′ + xu
′

α(u′, v) yv + xu
′

α(u′, v′) yv′

= xu
(

α(u, v) yv + α(u, v′) yv′
)

+ xu
′
(

α(u′, v) yv + α(u′, v′) yv′
)

,

which implies that

(

α(u, v) yv + α(u, v′) yv′
)

||
(

α(u′, v) yv + α(u′, v′) yv′
)

and therefore α(u, v) = α(u, v′)α(u′, v′)−1 α(u′, v). If we redefine xu as xu α(u, v′)

when u 6= 0, and x0 = 0, and yv as α(u′, v′)−1 α(u′, v) yv when v 6= 0, and y0 = 0,

then

f(u v) = xu yv .

From the fact

xuα yv = f
(

(uα) v
)

= f
(

u(α v)
)

= xu yαv ,

since xuα ||xu, we deduce

xuα = xu α ,

and

yαv = α yv

where α ∈ D. These two equations allow us to conclude that α depends neither

on v nor on u, respectively.

The application σ which maps each α to α is an automorphism of D. First,

we have, for any α, β ∈ D,

xu αβ = xuαβ = xuα β = xu αβ ,

which means σ(αβ) = σ(α)σ(β). It is easy to see σ(α + β) = σ(α) + σ(β).

The endomorphism σ is also injective, since it extends the IdK , hence it is an

automorphism of D, since D is finite-dimensional over K.
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For each α ∈ D, we have f(ei α ej) = xe
i
σ(α) yej

, and therefore f(X) =

AXB, for all X ∈Mn(D), where A is the matrix whose columns are xe
1

, ..., xe
n

and B is the matrix whose rows are ye1 , ..., yen , and

X = (xij) =
(

σ(xij)
)

.

Let us note that xe
1

, ..., xe
n
and ye1 , ..., yen are linearly independent. For, if

∑

i x
ei
αi = 0, then

0 =
∑

i

xe
i

αi yv = f
(

∑

i
ei σ−1(αi) v

)

which implies
∑

i e
i σ−1(αi) = 0, i.e., α1 = ... = αn = 0. Similarly we prove

ye1 , ..., yen are left linearly independent. This fact leads us to the conclusion that

A and B are invertible ([3]).

Using similar arguments, we conclude for the other case that f(X) = AX ′B,

for allX ∈Mn(D), where A is the invertible matrix whose columns are xe1 , ..., xen

and B is the invertible matrix whose rows are ye1 , ..., yen .

4 – Dieudonné determinant preservers

Next, we still work on generalizations for skew fields of results obtained before

([7]). The last theorem will have a crucial role and the concept of Dieudonné

determinant will be needed.

Lemma 4.1. Let f be a semilinear map onMn(D). If f preserves Dieudonné

determinant, then f is nonsingular.

Proof: Suppose that f(X) = 0. Let Y be a matrix of rank n− rankX such

that X + Y is nonsingular (Lemma 1.4). Then

det
(

f(Y )
)

= det
(

f(X) + f(Y )
)

= det
(

f(X + Y )
)

= det(X + Y )

6= 0 .

Hence det(Y ) 6= 0, i.e., Y is nonsingular and therefore X = 0. We conclude that

f is nonsingular.
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We only have to prove now that if f preserves Dieudonné determinant, then

f preserves rank 1.

Theorem 4.2. A semilinear map f on Mn(D) preserves the Dieudonné

determinant if and only if there exist nonsingular matrices A,B and a bijective

map σ of D, with σ|K = IdK , such that either σ is a homorphism and

f(X) = AXB ,

for all X ∈Mn(D), or σ is an anti-homorphism and

f(X) = AX ′B ,

for all X ∈Mn(D), with X = (xij) = (σ(xij)).

Proof: Let X be a matrix of rank 1 and suppose that f(X) has rank k. One

assumes that X = T1 U1 P (π1)V1 and f(X) = T2 U2 P (π2)V2 with Ti, Vi, πi as

in Theorem 1.2, and, without loss of generality, U1 = αE11 and U2 = α1 E11 +

· · · + αk Ekk. Let ξ be an indeterminate over K and make Y = T2 UY P (π2)V2,

with UY = Ek+1k+1 + · · ·+ Enn. Then

det
(

ξ f(X) + Y
)

= det
(

ξ T2(U2 + UY )P (π2)V2

)

= ξk α1 · · ·αk .

On the other hand,

det
(

ξ f(X) + Y
)

= det
(

f(ξ X + f−1(Y )
)

= det
(

ξ X + f−1(Y )
)

.

Since det(f−1(Y )) = det(Y ) = 0, the rank of f−1(Y ) is less than n. In other

hand, it can’t be less than n − 2. This would imply that det(ξ f(X) + Y ) = 0.

Then the rank of f−1(Y ) is n − 1 and determinant (4.1) is a polynomial in ξ.

Thus k = 1, and T preserves rank 1 matrices.

We note now that if X = T UP (π)V ,

X =







1 0
. . .

∗ 1













u1 0
. . .

0 un






P (π)







1 ∗
. . .

0 1







then X = T U P (π)V ,

X =







1 0
. . .

∗ 1













σ(u1) 0
. . .

0 σ(un)






P (π)







1 ∗
. . .

0 1






.
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Therefore det(X) = σ(det(X)). Since either f(X) = AXB, for all X, or f(X) =

AX ′B, for all X, and det(f(X)) = det(X), the result follows. Note that σ(x y) =

σ(x)σ(y), implies that det(AB) = 1.

The converse is obvious.

Notice that if D is a (commutative) field, then the last theorem reduces to

the one obtained by Frobenius and by Mink.
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