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WEIL NEARNESS SPACES *

J. Picado

Abstract: In this paper the concept of nearness for spaces is introduced in terms of

Weil’s notion of entourage, motivated by the study of the corresponding frame-theoretical

objects. It is shown that these spaces, although distinct from the classical nearness spaces

of Herrlich, also form a nice topological category. Indeed, it is proved that this category

contains, as nicely embedded full subcategories, various categories of topological nature

such as, for example, the categories of symmetric topological spaces and continuous maps,

proximal spaces and proximal maps and uniform spaces and uniformly continuous maps.

Introduction

Topological spaces are the result of the axiomatization of the concept of near-

ness between a point x and a set A (expressed by the relation x ∈ cl(A)). On the

other hand, proximal spaces are obtained by an axiomatization of the concept of

nearness between two sets A and B (usually denoted by AδB, i.e., “A is near B”

[17]) and contigual spaces express the concept of nearness between the elements

of a finite family A of sets (usually denoted by σ(A) [14]).

The concept of nearness space was introduced by Herrlich [10] as an axioma-

tization of the concept of “nearness of an arbitrary collection A of sets” (usually

denoted by A ∈ ξ, i.e., “A is near” [10]), with the goal of unifying several types

of topological structures; as the author says in [11]:
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“The aim of this approach is to find a basic topological concept

— if possible intuitively accessible — by means of which any

topological concept or idea can be expressed”.

This goal was achieved by proving that the category of nearness spaces con-

tains the categories of all symmetric topological spaces [23] and continuous maps,

of all proximal spaces and proximal maps (δ-maps) [7], of all uniform spaces and

uniformly continuous maps ([24], [25]), of all contigual spaces and contigual maps

[14] as nicely embedded (either bireflective or bicoreflective) full subcategories

([10], [11]).

Nearness spaces arise by dropping the star-refinement condition on the uni-

form covers of a uniform space. As it is well-known, uniform spaces were first

axiomatized by Weil [25] using entourages instead of covers. Unfortunately, the

nice well-known bijective correspondence between entourages and uniform cov-

ers, which holds for uniform spaces, is not extendable to nearnesses (cf. [5] and

Bentley’s review to it in Mathematical Reviews [4]). In the final step of our

investigation (in [19]) of the frame-theoretic version of the correspondence

covers ←→ Weil entourages ,

we arrived to the consideration of the category of Weil nearness frames. This

category naturally asks for its spatial companion. This motivates the study of

the category of Weil nearness spaces, whose objects arise as the natural notion

of spatial nearness via entourages. Although distinct from the classical nearness

spaces of Herrlich, these spaces form a topological category (Proposition 3.1)

which also fulfils the goal sought for by Herrlich in [10]: it is a nice supercategory

of the categories of symmetric topological spaces (Propositions 3.4, 3.5, 3.6 and

3.7), proximal spaces (Propositions 3.12 and 3.13 and Corollary 3.14) and uniform

spaces (Remark 2.2 (c) and Proposition 3.8).

This way, it is shown that the notion of Weil entourage is also a basic topo-

logical concept by means of which several topological ideas can be expressed.

1 – Motivation

Our main references are: for nearness spaces — [5], [10], [11]; for frames

— [15]; for (covering) structured frames — [2], [3], [9], [12]; for (entourage)

structured frames — [18], [19], [20]; for topological categories — [1].

Pointfree topology focuses on the open sets rather than the points of a space,

regarding the latter as subsidiary to the former, and deals with abstractly defined
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“lattices of open sets” called frames (or locales, whatever terminology one may

adopt) and their homomorphisms. For the record, a frame L is a complete lattice

in which the infinite distributivity law

x ∧
∨

S =
∨

{

x ∧ y | y ∈ S
}

holds for all x ∈ L and S ⊆ L. The motivating examples of frames are topologies:

for every topological space (X, T ) the lattice (T ,⊆) of open sets is a frame. A

frame homomorphism is a map between frames which preserves finitary meets

and arbitrary joins. There is a natural contravariant functor Ω defined by

Ω(X, T ) = (T ,⊆) and Ω(f) = f−1

that assigns frames to topological spaces. This functor restricts to a full embed-

ding of the subcategory of sober spaces into the dual of the category of frames

(the category of locales); hence locales can be viewed as a generalization of sober

spaces — see Johnstone [15].

The idea of endowing a frame with a uniform-type structure first appeared in

Isbell [13]. In [9], Frith introduced the notion of quasi-uniform frame and the first

definition of nearness frame appeared in Banaschewski and Pultr [3]. All these

notions are presented by means of covers (a cover of a frame L is a subset C of

L satisfying
∨

C = 1). They are guided by adjunctions between the respective

categories and the corresponding categories of spaces (cf. [9] and [12]) which lift

the well-known adjunction between topological spaces and frames [15].

In [18], the author introduced the notion of Weil uniformity for frames, ex-

pressed in terms of Weil entourages, which constitutes the frame-theoretic version

of Weil’s approach to uniform spaces [25]. This notion is proved to be equiva-

lent to the covering one of Isbell. The category of Weil quasi-uniform frames is

presented in [20] and it is also isomorphic to the corresponding category of cov-

ering structured frames (the quasi-uniform frames of Frith). In [19], the concept

of Weil nearness frames is introduced to generalize Weil uniform frames, in the

same spirit as nearness frames generalize uniform frames. Let us briefly recall it:

We follow Kř́ıž and Pultr [16] in defining the coproduct

L
uL
1−→ L⊕ L

uL
2←− L

of a frame L by itself: a subset A of a partially ordered set (X,≤) is said to be a

down-set if A = ↓A where ↓A denotes the set {x ∈ X | x ≤ a for some a ∈ A}.

Take the cartesian product L × L with the usual order. A down-set A of L × L
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is a C-ideal if

{x} × S ⊆ A =⇒
(

x,
∨

S
)

∈ A

and

S × {y} ⊆ A =⇒
(

∨

S, y
)

∈ A .

Put L ⊕ L as the frame of all C-ideals of L × L. Observe that the case S = ∅

implies that every C-ideal contains the set O := ↓{(1, 0)}∪ ↓{(0, 1)}. Obviously,

each ↓{(x, y)}∪O is a C-ideal. It is denoted by x⊕ y. Finally put uL1 (x) = x⊕ 1

and uL2 (y) = 1⊕ y.

If f : L→M is a frame homomorphism, we write

f ⊕ f : L⊕ L −→M ⊕M

for the unique frame homomorphism given by (f ⊕f) ·uLi = uMi ·f , for i ∈ {1, 2}.

In any frame L, a Weil entourage of L is an element E of L⊕ L such that
∨

(x,x)∈E

x = 1

or, equivalently, for which there exists a cover U of L satisfying
∨

x∈U (x⊕x) ⊆ E.

The collection WEnt(L) of all Weil entourages of L may be partially ordered by

inclusion. This is a partially ordered set with finitary meets.

For E,F ∈WEnt(L), we define the composition E ◦ F as the Weil entourage

∨

{

x⊕ y | ∃ z ∈ L\{0} : (x, z) ∈ E, (z, y) ∈ F
}

and the inverse E−1 as {(y, x) | (x, y) ∈ E}.

Definition 1.1. A Weil nearness frame is a pair (L, E) where L is a frame

and E is a non-empty filter of (WEnt(L),⊆) such that:

(1) E−1 ∈ E for every E ∈ E ;

(2) for every x ∈ L, x =
∨

{y ∈ L | y
E
< x}, where y

E
< x means that

E ◦ (y ⊕ y) ⊆ x⊕ x for some E ∈ E .

Let (L, E) and (L′, E ′) be Weil nearness frames. A Weil frame homomorphism

f : (L, E) → (L′, E ′) is a frame map f : L → L′ such that (f ⊕ f)(E) ∈ E ′

whenever E ∈ E .

This definition motivates the following problems: Which is the right spatial

concept in analogy with the chosen notion of Weil nearness frame? May this

concept be expressed in terms of Weil’s entourages for sets? In the next section

we present the answers to these questions.
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2 – Framed Weil nearness spaces

Let us denote by WEnt(X) the collection of all entourages (i.e., reflexive

relations) of the set X. For any E ∈WEnt(X), x ∈ X and A ⊆ X let

E[x] :=
{

y ∈ X | (x, y) ∈ E
}

and

E[A] :=
⋃

a∈A

E[a] .

If X is endowed with a topology T , the open entourages of (X, T ) are the

entourages of X which are open in the topological product of X by itself. In

other words, E is open if and only if it coincides with

int(E) :=
{

(x, y) ∈ X ×X | ∃U, V ∈ T : (x, y) ∈ U × V ⊆ E
}

.

Evidently, when E is open, E[x] and E−1[x], for every x ∈ X, are open.

We say that an entourage E of (X, T ) is an interior entourage provided that

int(E) remains an entourage, or, equivalently, if E contains an open entourage.

Any Weil nearness E on the frame T of open sets of a topological space (X, T )

gives rise to a set

E ′ :=
{

⋃

(A,B)∈E

A×B | E ∈ E
}

of open entourages of (X, T ) which satisfies

(Fr0) E−1 ∈ E ′ for every E ∈ E ′,

(Fr1) E ′ is a filter base (with respect to ⊆),

(Fr2) for every U ∈ T and for every x ∈ U there is V ∈ T and E ∈ E ′ such

that x ∈ V and E ◦ (V × V ) ⊆ U × U .

Indeed, conditions (Fr0) and (Fr1) are obvious since

(

⋃

(A,B)∈E

A×B
)−1

=
⋃

(A,B)∈E−1

A×B

and
⋃

(A,B)∈E∩F

A×B ⊆
(

⋃

(A,B)∈E

A×B
)

∩
(

⋃

(A,B)∈F

A×B
)

,

and condition (Fr2) is just the pointwise formulation of the admissibility condition

(2) for Weil nearness frames:
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If E ◦ (V ⊕V ) ⊆ U ⊕U then, for any (x, y) ∈ A×B, with (A,B) ∈ E, and for

any (y, z) ∈ V × V , we have B ∩ V 6= ∅, (A,B ∩ V ) ∈ E and (B ∩ V, V ) ∈ V ⊕ V

hence (A, V ) ∈ U ⊕ U , which implies (x, z) ∈ A× V ⊆ U × U .

We designate the topological spaces (X, T ) endowed with a filter of open

entourages of (X, T ) satisfying conditions (Fr0) and (Fr2) as framed Weil near-

ness spaces. The motivation for this designation comes from the corresponding

(covering) framed nearness spaces of Hong and Kim [12].

Note that E ◦ (V × V ) ⊆ U × U is equivalent to E−1[V ] ⊆ U . Thus, in

presence of (Fr0), (Fr2) means that, for any U ∈T , U =
⋃

{V ∈T | E[V ]⊆U for

some E ∈ E ′}.

The morphisms of the category FrWNear of framed Weil nearness spaces are

the maps

f : (X, T , E)→ (X ′, T ′, E ′)

for which (f × f)−1(E) ∈ E for any E ∈ E ′.

On the reverse direction, any framed Weil nearness E on (X, T ) gives rise to

a Weil nearness on the frame T so that the spatial and frame notions coincide in

this context. In order to conclude this, just take the family of all

∨

x∈X

(

E[x]⊕ E[x]
)

(E ∈ E) ,

as a base. Since

∨

x∈X

(

(E ∩ F )[x]⊕ (E ∩ F )[x]
)

⊆

(

∨

x∈X

(

E[x]⊕ E[x]
)

)

∩

(

∨

x∈X

(

F [x]⊕ F [x]
)

)

and
(

∨

x∈X

(

E[x]⊕ E[x]
)

)−1

=
∨

x∈X

(

E[x]⊕ E[x]
)

this is, in fact, a filter base.

The proof of the admissibility condition runs as follows:

For any U ∈ T and x ∈ U consider W ∈ T and E ∈ E such that x ∈ W

and E ◦ (W ×W ) ⊆ U × U , and pick V ∈ T and F ∈ E such that x ∈ V and

F ◦ (V × V ) ⊆W ×W . For G = (F ∩ E) ∩ (F ∩ E)−1 ∈ E ,

(

∨

x∈X

(

G[x]⊕G[x]
)

)

◦ (V ⊕ V ) ⊆ U ⊕ U ,

as can be easily proved.

These correspondences are functorial and establish an equivalence between

the categories of framed Weil nearness spaces and spatial Weil nearness frames.
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Therefore, the notion of framed Weil nearness space is the right spatial analog of

the frame concept of Weil nearness.

Let us see how framed Weil nearness spaces can be equated within the frame-

work of a generalization of Weil’s uniform spaces.

Definitions 2.1. Let X be a set and let E be a non-empty set of entourages

of X. Consider the following axioms:

(WN0) E−1 ∈ E for every E ∈ E ;

(WN1) If E ⊆ F and E ∈ E then F ∈ E ;

(WN2) E ∩ F ∈ E for every E,F ∈ E ;

(WN3) for each E ∈ E ,

{

(x, y) ∈ X ×X | ∃U, V ⊆ X : U = intE(U), V = intE(V ),

(x, y) ∈ U × V ⊆ E

}

∈ E ,

where, for any A ⊆ X,

intE(A) =
{

x ∈ X | ∃E ∈ E : E[x] ⊆ A
}

.

E is called aWeil prenearness onX if it satisfies (WN0) and (WN1); E is called

aWeil seminearness on X if it satisfies (WN0), (WN1) and (WN2) and E is called

a Weil nearness on X if it fulfils (WN0), (WN1), (WN2) and (WN3). The pair

(X, E) is called a Weil prenearness space (respectively, Weil seminearness space,

Weil nearness space) if E is a Weil prenearness (respectively, Weil seminearness,

Weil nearness) on X.

A Weil nearness map is just a map f : (X, E) → (X ′, E ′) between Weil pren-

earness spaces for which (f × f)−1(E) ∈ E for every E ∈ E ′.

We denote by PWNear the category of Weil prenearness spaces and Weil near-

ness maps and by SWNear and WNear its full subcategories of, respectively, Weil

seminearness spaces and Weil nearness spaces.

Remarks 2.2.

(a) If (X, E) is a Weil prenearness space then intE is an operator on P(X)

satisfying the following axioms:

(T0) x ∈ intE(X\{y}) if and only if y ∈ intE(X\{x}), for every pair x, y

of elements of X;
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(T1) intE(X) = X;

(T2) intE(A) ⊆ A for every A ⊆ X;

(T3) If A ⊆ B then intE(A) ⊆ intE(B).

If (X, E) is a Weil seminearness space then, in addition, intE satisfies the

axiom

(T4) intE(A ∩B) = intE(A) ∩ intE(B).

Finally, if (X, E) is a Weil nearness space, then intE also satisfies the axiom

(T5) intE(intE(A)) = intE(A).

Thus any Weil nearness structure E on X induces on X a symmetric

topology TE (i.e., a topology satisfying the axiom (T0) of Šanin [23]).

Axiom (WN3) says that, with respect to the product topology TE × TE ,

int(E) ∈ E whenever E ∈ E .

(b) The Weil seminearness spaces are the semi-uniform spaces of Čech [6]. In

this case intE may not be an interior operator. It only defines a closure

operator in the sense of Čech [6].

The non-symmetric (i.e., without (WN0)) Weil seminearnesses are studied

by H.W. Pu and H.H. Pu in [21] and [22].

(c) Every uniform space is a Weil nearness space since the refinement condi-

tion

∀E ∈ E ∃F ∈ E : F ◦ F ⊆ E

implies condition (WN3). Indeed, if we pick a symmetric F ∈ E such that

F 3 ⊆ E then F ⊆ int(E) so int(E) ∈ E .

The category SWNear is bicoreflective in PWNear. If (X, E) is a Weil prenear-

ness space and ES is the set of all entourages ofX which contain the intersection of

a finite number of elements of E , then 1X : (X, ES)→ (X, E) is the bicoreflection

of (X, E) with respect to SWNear.

The category WNear is bireflective in SWNear. For (X, E) ∈ SWNear define,

for every ordinal α, the operator intα on P(X) by

• int0(A) :=A,

• intα(A) := intβ(A)\{x ∈ intβ(A) | ∀E ∈ E E[x]∩ (X\A) 6= ∅} if α = β+1,

• intα(A) :=
⋂

β<α int
β(A) if α is a limit ordinal.
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Then

int(A) :=
⋂

α∈Ord

intα(A)

is the “largest” operator on P(X) satisfying axioms (T0), (T1), (T2), (T3), (T4)

and (T5) and so it defines a symmetric topology T on X. Putting

EN :=
{

E ⊆ X ×X | int(E) ∈ E
}

,

1X : (X, E)→ (X, EN ) is the bireflection of (X, E) with respect to WNear.

Let us now consider on a Weil nearness space (X, E) the spatial analog of the

partial order
E
< .

For subsets A and B of X, we write A <E B whenever there is E ∈ E such

that E[A] ⊆ B. In particular, x <E A means that x ∈ intTE (A). Moreover, if

A <E B then A ⊆ intTE (B).

Proposition 2.3. Let (X, T , E) be a framed Weil nearness space and let E

be the filter of (WEnt(X),⊆) generated by E . Then:

(a) TE = TE = T ;

(b) (X, E) is a Weil nearness space satisfying the condition

x <E A =⇒ ∃B ⊆ X : x <E B <E A .

Proof: (a) Let A ∈ T and x ∈ A. By assumption, there are V ∈ T and

E ∈ E such that x ∈ V and E[V ] ⊆ A. Then E[x] ⊆ A, so x ∈ intTE (A) and

A ∈ TE . Conversely, if A ∈ TE , there is, for each x ∈ A, Ex ∈ E with Ex[x] ⊆ A.

Therefore

A =
⋃

{

Ex[x] | x ∈ A
}

∈ T .

The other equality is now obvious.

(b) The proof that (X, E) is a Weil nearness space is trivial.

Assume x <E A, i.e., x ∈ intT
E
(A). Then x ∈ intT (A). By hypothesis, there

are B ∈ T and E ∈ E such that x ∈ B and E[B] ⊆ intT (A). Since B is open,

x <E B. On the other hand, B <E A because E ∈ E ⊆ E .

Proposition 2.4. Let (X, E) be a Weil nearness space satisfying axiom

(WN4) x <E A =⇒ ∃B ⊆ X : x <E B <E A,

and let
◦
E= {int(E) | E ∈ E} be the set of open entourages in E . Then (X, TE ,

◦
E)

is a framed Weil nearness space.



242 J. PICADO

Proof: Since int(E1) ∩ int(E2) = int(E1 ∩E2), it is evident that
◦
E is a filter

of open entourages of (X, TE).

Axiom (Fr0) is a consequence of the fact that (int(E))−1 = int(E−1).

Let us check axiom (Fr2): consider U ∈ TE and x ∈ U . Then x <E U , so,

by assumption, there is some B ⊆ X such that x <E B <E U . This means that

x ∈ intTE (B) and E[intTE (B)] ⊆ E[B] ⊆ U , for some E ∈ E , so it suffices to take

V = intTE (B) and int(E) ∈
◦
E .

Condition (WN4) is an analog, for Weil nearnesses, of condition ([12], Defini-

tion 1.1).

Corollary 2.5. The category FrWNear is isomorphic to the full subcategory

WNear(WN4) of WNear of all Weil nearness spaces satisfying (WN4).

Proof: Let us begin by showing that, for any morphism f : (X, E)→ (X ′, E ′)

in WNear(WN4),
f : (X, TE ,

◦
E)→ (X ′, TE ′ ,

◦

E ′)

belongs to FrWNear. So, consider E ∈
◦

E ′, that is, E ∈ E ′ with int(E) = E. By

hypothesis, (f × f)−1(E) ∈ E . But

(f × f)−1(int(E)) ⊆ int((f × f)−1(E)) .

In fact, if (f(x), f(y)) ∈ int(E), there are U, V ∈ TE ′ such that (f(x), f(y)) ∈

U × V ⊆ E which implies (x, y) ∈ f−1(U) × f−1(V ) ⊆ (f × f)−1(E) with

f−1(U), f−1(V ) ∈ TE .

Therefore (f × f)−1(E) is an open entourage of E and, thus, it belongs to
◦
E .

On the reverse direction, the fact that f : (X, E) → (X ′, E ′) belongs to

WNear(WN4) whenever f : (X, T , E) → (X ′, T ′, E ′) belongs to FrWNear is ob-

vious.

Now the existence of the isomorphism is an immediate corollary of Proposi-

tions 2.3 and 2.4 and the following two obvious facts:

•
◦

E= E for any framed Weil nearness E ;

•
◦
E = E for any Weil nearness E satisfying (WN4).

3 – The category WNear as a unified theory of (symmetric) topology,

proximity and uniformity

The classical correspondence between uniform covers and uniform entourages

still works for nearnesses; in fact, for any nearness space (X,µ), the collection of



WEIL NEARNESS SPACES 243

all
⋃

U∈U

U × U (U ∈ µ)

forms a base for a Weil nearness on X and, conversely, for any Weil nearness

space (X, E), the covers

{

E[x] : x ∈ X
}

(E ∈ E)

form a base for a nearness on X. These correspondences are functorial and define

a Galois correspondence which is an isomorphism precisely when restricted to

uniformities. Furthermore, as Bentley pointed out in [4], there is no concrete

isomorphism between the categories of nearness spaces and Weil nearness spaces

(considered as concrete categories over the category Set of sets and functions).

In spite of this, our category of Weil nearness spaces still have the nice cat-

egorical properties that Herrlich was looking for when searching for a good ax-

iomatization of nearness ([10], [11]).

For example:

Proposition 3.1. The category WNear is a well-fibred topological category

over the category Set.

Proof: The well-fibreness is obvious: for any set X, the class of all Weil

nearness spaces (X, E) with underlying set X is a set and there exists exactly one

Weil nearness space with underlying set X whenever X is of cardinality at most

one.

It remains to show that the forgetful functor WNear
| · |
−→ Set is topological,

i.e., that every | · |-structured source
(

X
fi−→ |Xi, Ei|

)

i∈I
has a unique | · |-initial

lift
(

(X, E)
fi−→ (Xi, Ei)

)

i∈I
.

Consider

B =

{ n
⋂

j=1

(fij × fij )
−1(Ej) | n ∈ N, ij ∈ I, Ej ∈ Eij

}

∪ {X ×X} .

A straightforward checking ensures that this is a base for a Weil seminearness

E on X. It is clear that this is the coarsest seminearness E on X for which

every (X, E)
fi−→ (Xi, Ei) is a Weil nearness map, so this is the initial lift in

SWNear. Since WNear is bireflective in SWNear, as shown in Section 2, WNear is

closed under the formation of initial sources in SWNear and, consequently, (X, E)

belongs to WNear.
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As we shall see in the sequel, WNear also unifies several types of topological

structures such as the symmetric topological spaces, the proximal spaces and the

uniform spaces.

Symmetric topological spaces

If we want to investigate whether topological spaces are embedded in WNear,

our first step should be to try to axiomatize the concept of topological space in

terms of entourages. We shall do this using interior entourages.

We have to make a restriction on the type of topological spaces we consider:

they should be symmetric.

From now on, for subsets A and B of a set X, we denote the set

(X\A×X\A) ∪ (B ×B) ,

which is an entourage of X if and only if A ⊆ B, by EX
A,B (or, briefly, by EA,B

whenever there is no danger of confusion). The set EX
{x},B will be denoted by

EX
x,B (or Ex,B).

These sets characterize the order relation <E ; we have A <E B if and only if

EA,B ∈ E .

Lemma 3.2. In a symmetric topological space (X, T ) the following assertions

are equivalent:

(i) x ∈ intT (A);

(ii) Ex,A is an interior entourage of (X, T ).

Proof: (i)⇒(ii): We need to show that, for any y ∈ X, there exists U ∈ T

such that (y, y) ∈ U × U ⊆ Ex,A.

Of course, if y ∈ intT (A), it suffices to pick U = intT (A).

On the other hand, if y ∈ X\intT (A) take U = intT (X\{x}). By the symme-

try of (X, T ), y is indeed in U :

y ∈ X\intT (A) =⇒ intT (A) ⊆ X\{y}

=⇒ x ∈ intT (X\{y})

=⇒ y ∈ intT (X\{x}) .

(ii)⇒(i): It is obvious.
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The implication (ii)⇒(i) can be generalized in the following way:

Lemma 3.3. Given two subsets A and B of a symmetric topological space

(X, T ), if EB,A is an interior entourage of (X, T ) then B ⊆ intT (A).

Proof: For every b ∈ B, (b, b) ∈ U × U ⊆ EB,A for some U ∈ T . Hence

b ∈ U ⊆ A.

Proposition 3.4. The set E of all interior entourages of a symmetric topo-

logical space (X, T ) is a Weil nearness on X satisfying the axiom

(WN5) E ∈ E whenever int(E) is an entourage of X,

and the topology induced by E coincides with T .

Proof: The fact that E is a Weil nearness on X satisfying (WN5) is obvious.

Let us prove that T coincides with the topology induced by E , i.e., that for any

subset A of X,

intT (A) =
{

x ∈ X | ∃E ∈ E : E[x] ⊆ A
}

.

For x ∈ intT (A), consider the entourage Ex,A, which, by Lemma 3.2, belongs to E .

Of course, Ex,A[x] = A. Conversely, if there is some E ∈ E with E[x] ⊆ A, then,

since int(E) ∈ WEnt(X), there exist U, V ∈ T satisfying (x, x) ∈ U × V ⊆ E.

It follows that x ∈ intT (E[x]) ⊆ intT (A).

Proposition 3.5. If E is a Weil nearness on a set X satisfying (WN5),

there exists precisely one symmetric topology T on X such that E is the set of

all interior entourages of (X, T ).

Proof: Take for T the topology TE induced by E . We already observed that

TE is a symmetric topology on X. By (WN5), E contains all interior entourages

of (X, TE).

The reverse inclusion follows from (WN3): take E ∈ E ; then int(E) belongs

to E and, in particular, it is an entourage. Hence E is an interior entourage.

The uniqueness of T is a corollary of the previous proposition.

The preceding propositions show that symmetric topological spaces can be

always identified as Weil nearness spaces satisfying axiom (WN5).

Proposition 3.6. Suppose f : (X, T )→ (X ′, T ′) is a map between symmet-

ric topological spaces and let E(X,T ) (respectively, E(X′,T ′)) denote the set of all
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interior entourages of (X, T ) (respectively, (X ′, T ′)). The following conditions

are equivalent:

(i) f is continuous;

(ii) E ∈ E(X′,T ′) implies (f × f)−1(E) ∈ E(X,T ).

Proof: Since the interior entourages are the ones that are refined by some

open entourage, the implication (i)⇒(ii) is an immediate consequence of the fact,

already proved in Corollary 2.5, that (f × f)−1(intE) ⊆ int((f × f)−1(E)).

Conversely, suppose V ∈ T ′ and let v ∈ V . Then, by Lemma 3.2, EX′

v,V ∈

E(X′,T ′). Thus (f × f)−1(EX′

v,V ) ∈ E(X,T ), that is, EX
f−1(v),f−1(V ) ∈ E(X,T ). By

Lemma 3.3, f−1(v) ⊆ intT (f
−1(V )) for every v ∈ V . Consequently,

f−1(V ) ⊆ intT (f
−1(V )) ,

i.e., f−1(V ) ∈ T .

It follows from Propositions 3.4, 3.5 and 3.6 that the category WNear(WN5)

of Weil nearness spaces satisfying (WN5) is isomorphic to the category R0Top of

symmetric topological spaces. We have now an alternative way of equipping a

set with the structure of a symmetric topological space: by prescribing the set of

interior entourages. Moreover:

Proposition 3.7. The category WNear(WN5) is a bicoreflective subcategory

of WNear.

Proof: Given a Weil nearness space (X, E), let ET denote the set of all

interior entourages of (X, TE). We already know that (X, ET ) is a Weil nearness

space satisfying (WN5). Furthermore, for any morphism f : (X, E)→ (X ′, E ′) in

WNear, f : (X, TE)→ (X ′, TE ′) is continuous so, by Proposition 3.6, f : (X, ET )→

(X ′, E ′T ) is also in WNear. We get this way a functor

T : WNear −→ WNear(WN5)

(X, E) 7−→ (X, ET )
(

(X, E)
f
−→ (X ′, E ′)

)

7−→
(

(X, ET )
f
−→ (X ′, E ′T )

)

.

This is the coreflector functor. Since E ⊆ ET , id : (X, ET ) −→ (X, E) is in WNear.

This is the coreflection map for (X, E).
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Uniform spaces

We observed in 2.2 (c) that the category UWNear of (Weil) uniform spaces

and uniformly continuous maps is a full subcategory of WNear. Furthermore, the

following holds:

Proposition 3.8. The category UWNear is bireflective in WNear.

Proof: For any (X, E) ∈WNear let

EU =

{

E∈E | ∃ (En)n∈N in E such that E1=E and E2
n+1⊆En for each n∈N

}

.

Obviously, (X, EU ) is a uniform space and 1X : (X, E) → (X, EU ) is in WNear.

This is the bireflection map. In fact, for any f : (X, E) → (X ′, E ′) in WNear

with (X ′, E ′) ∈ UWNear, f : (X, EU ) → (X ′, E ′) is uniformly continuous: for any

E ∈ E ′, as (X ′, E ′) is uniform, there is a family (En)n∈N in E ′ with E1 = E and

E2
n+1 ⊆ En for every n ∈ N. Take the family

(

(f × f)−1(En)
)

n∈N

which is in E . This shows that (f × f)−1(E) ∈ EU .

Proximal spaces

Definitions 3.9 (Efremovič [8]; cf. Naimpally and Warrack [17]).

(1) Let X be a set and let ¿ be a binary relation on P(X). The pair (X,¿)

is a proximal space provided that:

(P1) X ¿ X and ∅ ¿ ∅;

(P2) A¿ B implies A ⊆ B;

(P3) A ⊆ B ¿ C ⊆ D implies A¿ D;

(P4) A¿ C and B ¿ C imply A ∪B ¿ C;

(P5) A¿ B and A¿ C imply A¿ B ∩ C;

(P6) if A¿ B there exists a subset C of X such that A¿ C ¿ B;

(P7) A¿ B implies X\B ¿ X\A.

(2) Let (X1,¿1) and (X2,¿2) be proximal spaces. A function f : X1 → X2

is a proximal map if f−1(A)¿1 f
−1(B) whenever A¿2 B.
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(3) Proximal spaces and proximal maps are the objects and morphisms of the

category Prox.

The relation ¿ defined above is usually called a proximity on X.

It is well-known that Prox is isomorphic to the category of totally bounded

uniform spaces and uniformly continuous maps (which is bireflective in UWNear).

Thus, since the considered categories are topological, we have by Proposition 3.8:

Proposition 3.10. Prox is, up to isomorphism, a bireflective subcategory of

WNear.

Let us present, in the sequel, another way of concluding Proposition 3.10

which yields as a corollary a characterization of proximal spaces in terms of Weil

nearnesses.

A straightforward verification shows that, in case (X, E) ∈ UWNear, <E is a

proximity on X.

Let us now consider the converse problem of endowing a proximal space with

a (functorial) Weil nearness structure.

Lemma 3.11. Let (X,¿) be a proximal space.

(a) For every A,B,C ⊆ X, (EA,C ∩ EC,B) ◦ (EA,C ∩ EC,B) ⊆ EA,B.

(b) If E =
⋂n
i=1 EAi,Bi

, E′ =
⋂n
i=1 ECi,Di

and, for every i ∈ {1, ..., n}, Ai ¿

Ci ¿ Di ¿ Bi, then, for every x ∈ X, E ′[x]¿ E[x].

(c) If
⋂n
i=1 EAi,Bi

⊆ EA,B and, for every i ∈ {1, ..., n}, Ai ¿ Bi, then A¿ B.

Proof: (a) Let (x, y), (y, z) ∈ EA,C ∩ EC,B such that (x, z) 6∈ X\A ×X\A.

In case x ∈ A, y is necessarily in C, which, in turn, implies that x ∈ B (since

(x, y) ∈ EC,B) and z ∈ B (since (y, z) ∈ EC,B). Hence (x, z) ∈ B ×B ⊆ EA,B.

The case z ∈ A can be proved in a similar way.

(b) An easy computation shows that, for every x ∈ X, EC,D[x] ¿ EA,B[x]

whenever A¿ C ¿ D ¿ B. Now a proof by induction on n ≥ 1 is evident:

If E =
⋂n+1
i=1 EAi,Bi

and E′ =
⋂n+1
i=1 ECi,Di

with Ai ¿ Ci ¿ Di ¿ Bi for every

i ∈ {1, ..., n+ 1}, then, for every x ∈ X,

E′[x] = EC1,D1
[x] ∩

n+1
⋂

i=2

ECi,Di
[x] .
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By inductive hypothesis and by the case n = 1 already proved, we obtain

E′[x]¿ EA1,B1
[x] ∩

n+1
⋂

i=2

EAi,Bi
[x] = E[x] .

(c) For any i ∈ {1, ..., n} let Ci be such that Ai ¿ Ci ¿ Bi. An application

of (a) yields
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)2 ⊆
n
⋂

i=1

EAi,Bi
⊆ EA,B .

Let

E =
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)

and define

X1 :=
{

x ∈ X | E[x] ∩A = ∅
}

and

X2 :=
{

x ∈ X | E[x] ∩A 6= ∅
}

.

Note that X2 6= ∅ whenever A 6= ∅. Now we have A ⊆ X\
⋃

x∈X1
E[x]. For each

i ∈ {1, ..., n} consider A′i, C
′
i, C

′′
i and B′i such that

Ai ¿ A′i ¿ C ′i ¿ Ci ¿ C ′′i ¿ B′i ¿ Bi .

From (b) we may conclude that, for every x ∈ X, E ′[x]¿ E[x], where E ′ denotes

the entourage
n
⋂

i=1

(EA′
i
,C′

i
∩ EC′′

i
,B′

i
) .

Then we have

A ⊆ X\
⋃

x∈X1

E[x] ⊆ X\
⋃

x∈X1

E′[x] ⊆
⋃

x∈X2

E′[x] .

It is now easy to conclude that, due to the special form of E ′, there is a finite

subset F2 of X2 such that

⋃

x∈X2

E′[x] =
⋃

x∈F2

E′[x] .

Indeed, since E′ is of the form
⋂2n
j=1 EA′′

j
,B′′

j
we have

⋃

x∈X2

E′[x] =
⋃

x∈X2

2n
⋂

j=1

(EA′′
j
,B′′

j
[x]) ,
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and it suffices now to form F2 by choosing exactly one element from each non-

empty set of the following 32n disjoint sets

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩A

′′
2n−1 ∩A

′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩A

′′
2n−1 ∩ (B′′2n\A

′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩A

′′
2n−1 ∩ (X\B′′2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (B′′2n−1\A

′′
2n−1) ∩A

′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (B′′2n−1\A

′′
2n−1) ∩ (B′′2n\A

′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (B′′2n−1\A

′′
2n−1) ∩ (X\B′′2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (X\B′′2n−1) ∩A

′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (X\B′′2n−1) ∩ (B′′2n\A

′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ ... ∩ (X\B′′2n−1) ∩ (X\B′′2n)

...

X2 ∩ (X\B′′1 ) ∩ (X\B′′2 ) ∩ ... ∩ (X\B′′2n−1) ∩ (X\B′′2n) ,

whose union is X2.

Thus, by (b),

A ⊆
⋃

x∈F2

E′[x]¿
⋃

x∈F2

E[x] .

Now, if y ∈ E[x] for some x ∈ F2, there is a ∈ A with (x, a) ∈ E. Since E is

symmetric,

(a, y) ∈ E2 ⊆
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)2 ⊆ EA,B

and, consequently, y ∈ B. Hence
⋃

x∈F2
E[x] ⊆ B and A¿ B.

Proposition 3.12. Suppose (X,¿) is a proximal space. Then
{

EA,B | A,B ⊆ X and A¿ B
}

is a subbase for a Weil uniformity E(¿) on X. Furthermore, the proximity <E(¿)

induced by E(¿) coincides with ¿.

Proof: It is obvious that E(¿) is a non-empty family of entourages of X.

Since ¿ interpolates, Lemma 3.11 (a) ensures us that E(¿) is a Weil uniformity

on X.

The non-trivial part of the equivalence of the binary relations <E(¿) and ¿

is an immediate consequence of Lemma 3.11 (c).
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For any (X, E) ∈ UWNear satisfying

(WN6) ∀E∈E ∃A1, B1, ..., An, Bn⊆X:

( n
⋂

i=1

EAi,Bi
⊆ E and

n
⋂

i=1

EAi,Bi
∈ E

)

,

the Weil nearness E(<E) induced by <E coincides with E . Thus, the proximal

spaces may be identified as the Weil uniform spaces satisfying (WN6). The same

happens for morphisms:

Proposition 3.13. Let (X1,¿1) and (X2,¿2) be proximal spaces. A map

f : X1 → X2 is a proximal map from (X1,¿1) to (X2,¿2) if and only if it is a

Weil nearness map from (X1, E(¿1)) to (X2, E(¿2)).

Proof: Suppose E ∈ E(¿2) and let A1, B1, ..., An, Bn ⊆ X2 such that
⋂n
i=1 E

X2

Ai,Bi
⊆ E and Ai ¿2 Bi for every i ∈ {1, ..., n}. Then, for each i,

f−1(Ai)¿1 f
−1(Bi) and, therefore,

n
⋂

i=1

EX1

f−1(Ai),f−1(Bi)
∈ E(¿1) .

To prove that (f × f)−1(E) ∈ E(¿1) it suffices now to check that it contains

n
⋂

i=1

EX1

f−1(Ai),f−1(Bi)
,

which is straightforward since each EX1

f−1(Ai),f−1(Bi)
is equal to (f × f)−1(EX2

Ai,Bi
).

Conversely, suppose that A¿2 B. Then EX2

A,B ∈ E(¿2) and, consequently,

EX1

f−1(A),f−1(B) = (f × f)−1(EX2

A,B) ∈ E(¿1) .

By Lemma 3.11, f−1(A)¿1 f
−1(B).

Then immediately:

Corollary 3.14. The categories Prox and UWNear(WN6) are isomorphic.

Note that the category UWNear(WN6) is a bireflective subcategory of UWNear:

Given (X, E) in UWNear we already know that (X, E(<E)) belongs to

UWNear(WN6). Since E(<E) ⊆ E , 1X : (X, E) → (X, E(<E)) is in UWNear.

This is the bireflective map of (X, E) in UWNear(WN6); indeed, if

f : (X, E)→ (X ′, E ′)

belongs to UWNear, with (X ′, E ′) ∈ UWNear(WN6),

f : (X, E(<E))→ (X ′, E ′)
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is also in UWNear: for any E ∈ E ′ we may write
⋂n
i=1 E

X′

Ai,Bi
⊆ E where each

EX′

Ai,Bi
∈ E ′. Therefore

EX
f−1(Ai),f−1(Bi)

= (f × f)−1(EX′

Ai,Bi
)

belongs to E and, since

n
⋂

i=1

EX
f−1(Ai),f−1(Bi)

⊆ (f × f)−1(E) ,

(f × f)−1(E) ∈ E(<E).

As a conclusion, we may now use Weil entourages as a base for the left part

of the following diagram, which summarizes the hierarchy of spatial nearness

structures in the senses of Tukey and Weil (A → B andA ↔ B mean, respectively,

that category A is fully embeddable in category B and that categories A and B

are isomorphic; for each A, QA denotes the category of the corresponding non-

symmetric structures):

? ?

?

?

?

?





À





À





À

´
´

´
´

´
´

´
´

´
+́

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs´

´
´

´
´

´
´

´
´

+́

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs´

´
´

´
´

´
´

´
´

+́

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs





À





À

-¾

-¾

QWNear

¨
§

¥
¦ QNear

¨
§

¥
¦

WNear

¨
§

¥
¦ Near

¨
§

¥
¦

QUnif1
¨
§

¥
¦ QUnif2

¨
§

¥
¦

FrWNear

¨
§

¥
¦

R0Top
¨
§

¥
¦

FrNear

¨
§

¥
¦

Unif1
¨
§

¥
¦ Unif2

¨
§

¥
¦

QProx

¨
§

¥
¦

Prox

¨
§

¥
¦

1in the sense of Weil [25]
2in the sense of Tukey [24]
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