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MAXIMA AND MINIMA

OF STATIONARY RANDOM SEQUENCES

UNDER A LOCAL DEPENDENCE RESTRICTION

M. Graça Temido *

Abstract: In this paper a local mixing condition D̃(un, vn) for stationary random

sequences satisfying Davis’ condition D(un, vn) is introduced. Under these conditions,

the asymptotic joint distribution of the maxima and minima can be calculated with

the knowledge of the crossing probabilities. An illustrative example of a 2-dependent

sequence where the maxima and minima are not asymptotically independent is also

given.

1 – Introduction

Let {Xn} be a strictly stationary random sequence with marginal distribution

function F, let {un} and {vn} be real sequences and consider the maxima Mn =

max{X1, X2, ..., Xn} and the minima Wn = min{X1, X2, ..., Xn}.

It is well known that, if {Xn} is a sequence of independent and identically

distributed (i.i.d.) random variables, the maxima and minima, with linear nor-

malization, are asymptotically independent. Davis (1979) gives the sufficient

conditions D(un, vn) and D′(un, vn), under which the maxima and minima, both

jointly and marginally, behave as though the sequence {Xn} was i.i.d.. The con-

dition D(un, vn) is an asymptotic independence condition, weaker than strong

mixing, and D′(un, vn) is a local dependence condition which implies the non

existence of clustering of high and low values of the sequence {Xn} above {un}

and below {vn}, respectively.
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Oliveira and Turkman (1992) introduce the local mixing condition D∗(un, vn)

which is weaker thanD′(un, vn) and generalizesD
′′(un) of Leadbetter and Nanda-

gopalan (1989). If this condition holds along with D(un, vn) the asymptotic joint

distribution of the maxima and minima may be computed from the bivariate dis-

tribution of two consecutive random variables. Namely, the stationary sequence

{Xn} satisfies D(un, vn) if for every n and integers 1 ≤ i1 < ... < ip < j1... <

jq ≤ n, such that j1 − ip > `,

(1)

∣∣∣∣P
(
Xi1 ≤ un, ..., Xip ≤ un, Xj1 ≤ un, ..., Xjq ≤ un

)
−

− P
(
Xi1 ≤ un, ..., Xip ≤ un

)
P
(
Xj1 ≤ un, ..., Xjq ≤ un

)∣∣∣∣ ≤ αn,` ,

∣∣∣∣P
(
Xi1 > vn, ..., Xip > vn, Xj1 > vn, ..., Xjq > vn

)
−

− P
(
Xi1 > vn, ..., Xip > vn

)
P
(
Xj1 > vn, ..., Xjq > vn

)∣∣∣∣ ≤ αn,` ,

and

∣∣∣∣P
(
vn<Xi1≤un, ..., vn<Xip≤un, vn<Xj1≤un, ..., vn<Xjq≤un

)
−

−P
(
vn<Xi1≤un, ..., vn<Xip≤un

)
P
(
vn<Xj1≤un, ..., vn<Xjq≤un

)∣∣∣∣ ≤ αn,` ,

where lim
n→+∞

αn,`n
= 0 for some `n such that lim

n→+∞
`n/n = 0.

Furthermore, D∗(un, vn) is satisfied by {Xn} if lim
k→+∞

lim sup
n→+∞

S∗n,k = 0 where

S∗n,k = n

[n/k]∑

j=1

{
P
(
X1 > un, Xj ≤ un < Xj+1

)
+ P

(
X1 < vn, Xj ≥ vn > Xj+1

)

+ P
(
X1 > un, Xj ≥ vn > Xj+1

)
+ P

(
X1 < vn, Xj ≤ un < Xj+1

)}
.

For stationary sequences satisfying D(un, vn) and D∗(un, vn), Oliveira and Turk-

man (1992) consider high and low levels, un and vn, verifying lim
n→+∞

P (X2 ≤

un/X1 > un) = θ1, lim
n→+∞

P (X2 > vn/X1 ≤ vn) = θ2, lim
n→+∞

nP (X1 > un) = τ1(x)

and lim
n→+∞

nP (X1 < vn) = τ2(y), with θ1, θ2 in ]0, 1] and τ1(x), τ2(y) in ]0,+∞[.

The limit

lim
n→+∞

P
(
Mn ≤ un, Wn > vn

)
= e−(θ1τ1(x)+θ2τ2(y))

is obtained and hence, the maxima and minima, are yet asymptotically indepen-

dent.
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The constant θ1 is called the extremal index of the stationary sequence {Xn}

and θ = (θ1, θ2) is the extremal index of {Xn,−Xn}. The definition of mul-

tivariate extremal index for multivariate stationary sequences can be found in

Nandagopalan (1990). As we already said before, if {Xn} satisfies D(un, vn) and

D′(un, vn) we easily deduce θ1 = θ2 = 1.

Dealing with the asymptotic behavior of the exceedance point process for

stationary sequences satisfying Leadbetter’s condition D(un), defined by (1),

Ferreira (1996) introduce another mixing condition D̃(k)(un), which also gen-

eralizes D′′(un). The condition D̃(k)(un) is satisfied by {Xn} if k is the minimum

positive integer for which there exists a sequence of positive integers {kn}, with

lim
n→+∞

kn = +∞, lim
n→+∞

kn
`n
n
= 0, lim

n→+∞
kn αn,`n

= 0, lim
n→+∞

kn(1−F (un)) = 0

and

s(k)
n = n

∑

2≤j1<j2<...<jk≤[ n
kn

]−1

P

(
X1>un,

k⋂

i=1

{
Xji

≤un<Xji+1

})
→ 0, n→ +∞ .

The condition D′′(un) is obtained for k = 1. The author of D̃(k)(un) has

proven that, if {Xn} satisfies D̃(2)(un) and lim
n→+∞

nP (X1 ≤ un < X2) = ν, with

ν in [0,+∞[, then

lim
n→+∞

P (Mn ≤ un) = e−ν+β , β ≥ 0 ,

if and only if

lim
n→+∞

kn
∑

1≤i<j≤[ n
kn

]−1

P
(
Xi ≤ un < Xi+1, Xj ≤ un < Xj+1

)
= β .

In this paper we introduce a local mixing restriction, condition D̃(un, vn),

which generalizes D̃(2)(un) and is weaker than D∗(un, vn). Under D(un, vn) and

D̃(un, vn) the joint limit distribution of the maxima and minima can be com-

puted from the mean number of four kinds of crossings of the considered levels:

upcrossings in a cluster of high values; downcrossings in a cluster of low values;

paired upcrossings, paired downcrossings and pairs with one upcrossing and one

downcrossing in representative clusters.

It should be noticed that under D(un, vn) and D̃(un, vn) the maxima and

minima are not necessarily asymptotically independent.
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2 – Main result

As we said before we consider strictly stationary sequences satisfying Davis’

condition D(un, vn). For the proof of our main result it will be convenient to

present the following lemma.

Lemma 1 (Davis (1979)). Suppose D(un, vn) is satisfied by the stationary

sequence {Xn}. Then, for every positive integer k,

lim
n→+∞

{
P
(
Mn ≤ un, Wn > vn

)
− P k

(
Mn′ ≤ un, Wn′ > vn

)}
= 0 ,

where n′ = [n/k].

In what follows the events {Xi ≤ un < Xi+1} and {Xi > vn ≥ Xi+1} are

represented by Ai and Bi, respectively.

Definition 1. The sequence {Xn} satisfies condition D̃(un, vn) if

lim
k→+∞

lim sup
n→+∞

k S̃n,k = 0 where

(2)

S̃n,k =
∑

1≤i<j<k≤n′−1

{
P (Ai, Aj , Ak) + P (Ai, Aj , Bk) + P (Ai, Bj , Bk)

+ P (Bi, Bj , Bk) + P (Bi, Aj , Bk) + P (Ai, Bj , Ak)

+ P (Bi, Bj , Ak) + P (Bi, Aj , Ak)

}
.

This condition restricts the occurence of three or more level crossings in a

cluster.

The following theorem is the main result of this paper. We first present some

assumptions of the theorem. Specifically, we will consider that {Xn} satisfies

lim
n→+∞

nP (A1) = ν1 , lim
n→+∞

nP (B1) = ν2 ,(3)

lim
n→+∞

∑

1≤i<j≤n′−1

P (Ai, Aj) =
β1

k
+ ok(1/k) ,(4)

lim
n→+∞

∑

1≤i<j≤n′−1

P (Bi, Bj) =
β2

k
+ ok(1/k)(5)

and
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lim
n→+∞

n′−1∑

i=1

n′−1∑

j=1

P (Ai, Bj) =
β3

k
+ ok(1/k) ,(6)

with ν1, ν2, β1, β2 and β3 in [0,+∞[. It should be remarked that, under station-

arity, β1 ≤ ν1, β2 ≤ ν2, β3 ≤ ν1 − β1 and β3 ≤ ν2 − β2.

Theorem 1. Suppose that the stationary sequence {Xn} satisfies D(un, vn)

and D̃(un, vn) and that, for all positive integer k, (3), (4), (5) and (6) hold, where

{un} and {vn} are real sequences satisfying

(7) lim
n→+∞

P (X1 > un) = P (X1 ≤ vn) = 0 .

Then,

lim
n→+∞

P
(
Mn ≤ un, Wn > vn

)
= e−(ν1+ν2−β1−β2−β3) .

Proof: We start by observing that

(8)

{Mn′ > un} = {X1 > un} ∪
{n′−1⋃

i=1

Ai

}
,

{Wn′ ≤ vn} = {X1 ≤ vn} ∪
{n′−1⋃

i=1

Bi

}

and

(9)
P
(
Mn′ ≤ un, Wn′ > vn

)
= 1− P (Mn′ > un)− P (Wn′ ≤ vn)

+ P
(
Mn′ > un, Wn′ ≤ vn

)
.

From Bonferroni’s inequality we get

n′−1∑

i=1

P (Ai)−
∑

1≤i<j≤n′−1

P (Ai, Aj) ≤

(10)

≤ P (Mn′ > un)

≤ P (X1 > un) +
n′−1∑

i=1

P (Ai)−
∑

1≤i<j≤n′−1

P (Ai, Aj)

+
∑

1≤i<j<k≤n′−1

P (Ai, Aj , Ak) .



64 M. GRAÇA TEMIDO

Using now stationarity it results

lim
n→+∞

n′−1∑

i=1

P (Ai) = lim
n→+∞

(n′ − 1)P (A1) =
ν1

k

and

lim sup
n→+∞

∑

1≤i<j<k≤n′−1

P (Ai, Aj , Ak) ≤ lim sup
n→+∞

S̃n,k = ok(1/k) .

Hence, attending to (4), (7) and (10), we have

(11)

β1 − ν1

k
+ ok(1/k) ≤ lim inf

n→+∞

{
−P (Mn′ > un)

}

≤ lim sup
n→+∞

{
−P (Mn′ > un)

}

≤
β1 − ν1

k
+ ok(1/k) .

Analogously we prove

(12)

β2 − ν2

k
+ ok(1/k) ≤ lim inf

n→+∞

{
−P (Wn′ ≤ vn)

}

≤ lim sup
n→+∞

{
−P (Wn′ ≤ vn)

}

≤
β2 − ν2

k
+ ok(1/k) .

Furthermore, using (8) and Boole’s inequality, we obtain

P
(
Mn′ > un, Wn′ ≤ vn, vn < X1 ≤ un

)
=

(13) = P

( n′−1⋃

i=1

Ai,
n′−1⋃

i=1

Bi, vn < X1 ≤ un

)

≤
n′−1∑

i=1

n′−1∑

j=1

P (Ai, Bj)

and thus

lim sup
n→+∞

P
(
Mn′ > un, Wn′ ≤ vn

)
=

(14) = lim sup
n→+∞

P
(
Mn′ > un, Wn′ ≤ vn, vn < X1 ≤ un

)

≤
β3

k
+ ok(1/k) .
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On the other hand, applying Bonferroni’s inequality, we have, withB =
n′−1⋃

i=1

Bi,

(15)

P
(
Mn′ > un, Wn′ ≤ vn

)
≥ P

( n′−1⋃

i=1

Ai,
n′−1⋃

i=1

Bi

)

≥
n′−1∑

i=1

P (Ai, B) −
∑

1≤i<j≤n′−1

P (Ai, Aj , B)

and, using again the same inequality, we get

lim inf
n→+∞

n′−1∑

i=1

P (Ai, B) ≥

(16)

≥ lim inf
n→+∞

n′−1∑

i=1

n′−1∑

j=1

P (Ai, Bj)− lim sup
n→+∞

n′−1∑

i=1

∑

1≤j<k≤n′−1

P (Ai, Bj , Bk) .

Moreover, since

n′−1∑

i=1

∑

1≤j<k≤n′−1

P (Ai, Bj , Bk) =

=
∑

1≤i<j<k≤n′−1

P (Ai, Bj , Bk) + P (Bi, Aj , Bk) + P (Bi, Bj , Ak)

≤ S̃n,k

and D̃(un, vn) holds, from (16) it results

lim inf
n→+∞

n′−1∑

i=1

P (Ai, B) ≥
β3

k
+ ok(1/k) .

Let’s recall (15). Considering again Boole’s inequality we get

(17)
lim sup
n→+∞

∑

1≤i<j≤n′−1

P (Ai, Aj , B) ≤ lim sup
n→+∞

∑

1≤i<j≤n′−1

n′−1∑

k=1

P (Ai, Aj , Bk)

≤ lim sup
n→+∞

S̃n,k = ok(1/k)

and thus

(18) lim inf
n→+∞

P
(
Mn′ > un, Wn′ ≤ vn

)
≥

β3

k
+ ok(1/k) .
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From (14) and (18), we have

(19)

β3

k
+ ok(1/k) ≤ lim inf

n→+∞
P
(
Mn′ > un, Wn′ ≤ vn

)

≤ lim sup
n→+∞

P
(
Mn′ > un, Wn′ ≤ vn

)

≤
β3

k
+ ok(1/k) .

Finally, putting α = ν1 + ν2 − β1 − β2 − β3 we conclude from (9), (11), (12)

and (19), that

(20)

1−
α

k
+ ok(1/k) ≤ lim inf

n→+∞
P
(
Mn′ ≤ un, Wn′ > vn

)

≤ lim sup
n→+∞

P
(
Mn′ ≤ un,Wn′ > vn

)

≤ 1−
α

k
+ ok(1/k)

which implies

(21) lim sup
n→+∞

∣∣∣∣∣P
(
Mn′ ≤ un, Wn′ > vn

)
− 1 +

α

k

∣∣∣∣ = ok(1/k) .

Observe now that

lim sup
n→+∞

∣∣∣∣P
(
Mn ≤ un, Wn > vn

)
− e−α

∣∣∣∣ ≤

(22)

≤ lim sup
n→+∞

∣∣∣∣P
(
Mn ≤ un, Wn > vn

)
− P k

(
Mn′ ≤ un, Wn′ > vn

)∣∣∣∣

+ lim sup
n→+∞

∣∣∣∣P
k
(
Mn′ ≤ un, Wn′ > vn

)
−
(
1−

α

k

)k∣∣∣∣

+

∣∣∣∣e
−α −

(
1−

α

k

)k∣∣∣∣ .

Using Lemma 1, the first term of the right hand side of (22) is zero. Moreover,

using the well known inequality

∣∣∣∣
k∏

i=1

ai −
k∏

i=1

bi

∣∣∣∣ ≤
k∑

i=1

|ai − bi|

with a1, ..., ak, b1, ..., bk in [0, 1], we conclude that the second term of the right

hand side of (22) is bounded by lim sup
n→+∞

k|P (Mn′ ≤ un,Wn′ > vn)− (1−
α

k
)|.
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Hence, by (21) and (22), we deduce that

lim
k→+∞

lim sup
n→+∞

∣∣∣∣P
(
Mn ≤ un, Wn > vn

)
− e−α

∣∣∣∣ ≤
(23)

≤ lim
k→+∞

∣∣∣∣e
−α −

(
1−

α

k

)k∣∣∣∣ = 0

which enables us to conclude that lim
n→+∞

P (Mn ≤ un,Wn > vn) = e−α.

The following two results are important tools on the establishment of the

asymptotic independence of the maxima and minima.

Corollary 1. Suppose that {Xn} is a stationary sequence under the as-

sumptions of Theorem 1. Then, {Mn ≤ un} and {Wn > vn} are asymptotically

independent if and only if β3 = 0.

Proof: Since D(un, vn) holds, we obtain lim
n→+∞

{P (Mn≤un)−P k(Mn′≤un)}

= 0 and lim
n→+∞

{P (Wn > vn)− P k(Wn′ > vn)} = 0.

On the other hand, it results from (11) that

lim sup
n→+∞

∣∣∣∣P (Mn′ ≤ un)−
(
1−

ν1 − β1

k

)∣∣∣∣ = ok(1/k) .

Therefore, with the arguments used in (22) and (23), we deduce that

(24) lim
n→+∞

P (Mn ≤ un) = e−ν1+β1 .

Similarly we prove that

(25) lim
n→+∞

P (Wn > vn) = e−ν2+β2 .

So {Mn ≤ un} and {Wn > vn} are asymptotically independent if and only if

β3 = 0.

The proofs of Theorem 1 and Corollary 1 enables us to establish the following

theorem. Firstly we must define another local dependence condition, weaker than

D̃(un, vn).

Definition 2. The sequence {Xn} satisfies condition C̃(un, vn) if

lim
k→+∞

lim sup
n→+∞

k C̃n,k = 0 where

C̃n,k =
∑

1≤i<j<k≤n′−1

{
P (Ai, Aj , Ak) + P (Bi, Bj , Bk)

}
.
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Indeed, we will prove that, if β3 = 0, it is enough to consider C̃(un, vn) instead

of D̃(un, vn).

Theorem 2. Suppose that the stationary sequence {Xn} satisfies D(un, vn)

and C̃(un, vn) where {un} and {vn} are real sequences satisfying, for all positive

integer k, (3), (4), (5), (7) and (6) with β3 = 0. Then, {Mn ≤ un} and {Wn > vn}

are asymptotically independent with

lim
n→+∞

P
(
Mn ≤ un, Wn > vn

)
= e−(ν1+ν2−β1−β2) .

Proof: Observe that we established (24) and (25) only using the first and

the fourth terms of S̃n,k. Moreover, with β3 = 0, from (14) we deduce

lim sup
n→+∞

P
(
Mn′ > un, Wn′ ≤ vn

)
= ok(1/k) .

Then, (20) is similarly obtained (with β3 = 0), and the result follows imme-

diately.

3 – Example

Let {Yn} and {Zn} be independent sequences of i.i.d. random variables, with

marginal distribution functions H and G respectively. Suppose that G(0) =

H(0) = 0 and assume that there exists a real sequence {un} satisfying

lim
n→+∞

n(1−H(un)) = τY and lim
n→+∞

n(1−G(un)) = τZ ,

with τY and τZ in [0,+∞[.

Let {Tn} be an i.i.d. sequence, independent of {Yn} and {Zn}, with support

{1, 2, 3} and P (T1= i) = pi, i = 1, 2, 3.

Define

Xn =





Yn, Tn = 1,

max{Yn−2, Zn}, Tn = 2,

−Yn−1, Tn = 3 .

We easily prove that {Xn} is stationary and 2-dependent with marginal dis-

tribution function

F (x) = H(x) p1 +H(x)G(x) p2 + (1−H(−x)) p3 , x ∈ R ,

and satisfies D(un,−un).
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Moreover, {Xn} does not satisfy either D
∗(un,−un) or D

′′(un) once

lim sup
n→+∞

n

[n/k]∑

j=2

P
(
X1 > un, Xj ≤ un < Xj+1

)
→ τY p1 p2 , k → +∞ .

We will prove now that D̃(un,−un) holds. Observe first that lim
n→+∞

nF (−un) =

τY p3 and

(26) lim
n→+∞

n(1− F (un)) = τY p1 + (τY + τZ) p2 .

Indeed, since
∑

1≤i<j<k≤n′−1

P (Ai, Aj , Ak) is bounded by

n

k

∑

3≤i<j≤n′−1

P (A1, Ai, Aj) ≤

≤
n

k

∑

2≤i<j≤n′−1

P
(
X1 > un, Ai, Aj

)

≤
n

k

n′−3∑

i=2

{
P
(
X1 > un, Xi+1 > un, Xi+3 > un

)

+
n′−1∑

j=i+3

P
(
X1 > un, Xi+1 > un, Xj+1 > un

)}

≤
n

k

n′−3∑

i=2

P (X1 > un)P (Xi+3 > un)

+
n

k

n′−3∑

i=2

n′∑

j=i+4

P
(
X1 > un, Xi+1 > un

)
P (Xj > un)

≤
n2

k2

(
P (X1 > un)

)2
+

n2

k2
P (X1 > un)

n′−3∑

i=2

P
(
X1 > un, Xi+1 > un

)

=
n2

k2

(
P (X1 > un)

)2

+
n2

k2
P (X1 > un)

{
P
(
X1 > un, X3 > un

)
+

n′−2∑

i=4

P (X1 > un)P (Xi > un)

}

≤
2n2

k2

(
P (X1 > un)

)2
+

n3

k3

(
P (X1 > un)

)3
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using (26), we conclude that

lim
k→+∞

lim sup
n→+∞

k
∑

1≤i<j<k≤n′−1

P (Ai, Aj , Ak) = 0 .

Analogously we prove the same for the other terms of S̃n,k. Then D̃(un,−un)

holds.

The 2-dependence and the stationarity shall help us again on the computation

of the parameters.

Let us start by calculating ν1. In fact observing that lim
n→+∞

P (X1 ≤ un < X2,

T2=3) = 0 and using the Total Probability Rule, we have

(27)

nP (X1 ≤ un < X2) = nP (Y1 ≤ un < Y2) p1 p1

+ nP
(
Y1 ≤ un, max{Y0, Z2} > un

)
p1 p2

+ nP
(
max{Y−1, Z1} ≤ un, Y2 > un

)
p1 p2

+ nP
(
max{Y−1, Z1} ≤ un, max{Y0, Z2} > un

)
p2 p2

+ nP (Y1 > un) p1 p3 + nP (max{Y0, Z2} > un) p2 p3 .

Therefore ν1 = lim
n→+∞

nP (X1≤un<X2) = (τY +τZ) p2 + τY p1.

Using similar arguments and observing that

P
(
X1 > −un ≥ X2, T2 = 1

)
= P

(
X1 > −un ≥ X2, T2 = 2

)
→ 0 , n→ +∞ ,

it results ν2 = τY p3.

In what concerns the evaluation of β1, we have

∑

1≤i<j≤n′−1

P (Ai, Aj) =
n′−1∑

j=3

(n′ − j)P (A1, Aj)

= (n′ − 3)P (A1, A3) +
n′−1∑

j=4

(n′ − j)P (A1, Aj) .

Since
n′−1∑

j=4

(n′ − j)P (A1, Aj) ≤ n′
n′−1∑

j=4

P (X2 > un)P (Xj+1 > un)

≤
n2

k2

(
P (X2 > un)

)2
,
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it follows that

lim
n→+∞

∑

1≤i<j≤n′−1

P (Ai, Aj) = lim
n→+∞

n

k
P (A1, A3) + ok(1/k) .

For the computation of P (A1, A3) we must use again the arguments used in

(27). We first observe that nP (A1, A3, C) is asymptotically zero if C is one of

the events:

{T2=1, T4=1}, {T2=2, T4=1}, {T2=2, T4=2}, {T2=3} or {T4=3} .

Thus, with straightforward calculus, we deduce that β1 = τY p1 p2.

Moreover it is very easy to obtain β2 = 0.

On the other hand, the computation of β3 follows the steps used above. In

fact, as

lim
n→+∞

n′−1∑

i=1

n′−1∑

j=1

P (Ai, Bj) =
n′−1∑

j=2

(n′ − j)P (A1, Bj) +
n′−1∑

j=2

(n′ − j)P (B1, Aj)

= (n′ − 2)P (A1, B2) + (n
′ − 3)P (A1, B3)

+ (n′ − 2)P (B1, A2) + (n
′ − 3)P (B1, A3) + ok(1/k)

and lim
n→+∞

nP (A1, B3) = lim
n→+∞

nP (B1, A3) = 0, it results β3 = τY (p1p3 + p2p3).

Finally, we conclude that

lim
n→+∞

P
(
Mn ≤ un, Wn > vn

)
= e−α

where α = τY + τZp2 − τY (p1p2 + p1p3 + p2p3).

It should be noticed that un = un(x) and vn = vn(y). Hence, the parameters

τY , τZ , ν1, ν2, β1, β2 and β3 depend on the real x and y. Then, clearly α =

α(x, y).
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