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A NOTE ON THE THIRD-ORDER MOMENT STRUCTURE OF
A BILINEAR MODEL WITH NON-INDEPENDENT SHOCKS

C.M. Martins

Abstract: Formulas for the third-order theoretical moments are obtained for the

bilinear time series Xt = β Xt−k εt−l + εt, k ≥ l ≥ 1, assuming that {εt} is a strictly

stationary and ergodic sequence of random variables such that, for each t ∈ Z, εt has

some conditional moments that are finite. Thus, Gabr’s results (1988), obtained with an

independent and identically distributed Gaussian sequence {εt}, are generalized.

1 – Introduction

We consider the simple bilinear model {Xt}t∈Z:

Xt = βXt−k εt−l + εt ,(1)

where β is a real constant and {εt}t∈Z is a sequence of real random variables (r.v.).

Model (1) is called diagonal if k= l, superdiagonal if k>l and subdiagonal if k<l.

It was firstly studied by Granger and Andersen (1978) considering {εt}t∈Z as a

sequence of independent and identically distributed random variables (i.i.d. r.v.)

with zero mean and variance σ2, σ > 0. Assuming the normality of εt, t ∈ Z, they
proved that, in most cases, the autocorrelations of {Xt} are equal to zero, which

can lead it to be wrongly identified as a white noise (i.e. a sequence of centered

and uncorrelated r.v.); so, they suggested the study of higher moments of {Xt},

namely the study of the autocorrelations of {X2
t }, to obtain a characterization

of {Xt} different from a white noise. In the case of diagonal and superdiagonal

models, Li (1984) deduced formulas for the first k − 1 autocorrelations of {X2
t },
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supposing that {εt} is i.i.d. with a Gaussian distribution and that {Xt} is strictly

stationary and has moments up to the fourth order. Assuming that {εt} is a

strictly stationary, ergodic sequence of r.v. whose conditional moments satisfy

some particular hypotheses, Martins (1997a) proved that the autocorrelations of

{Xt} have the same behaviour as in the i.i.d. Gaussian case. Martins (1997b)

also obtained the autocorrelation function of the process {X2
t } in the diagonal

and superdiagonal cases, with {εt} satisfying the above-mentioned conditions.

Gabr (1988) deduced formulas for the third-order theoretical moments for

the bilinear time series model defined by (1), assuming that the error process

satisfies Li’s hypotheses and that {Xt} is strictly stationary and has moments up

to the third order. In this paper, we establish analogous properties for diagonal

and superdiagonal models, supposing that {εt} verifies the hypotheses considered

by Martins (1997a). In this way, we generalize Gabr’s results as we do require

neither the normality nor the independence of the error process.

2 – Preliminary results

Let us then consider the simple bilinear model defined by (1), where the error

process, {εt}t∈Z, is now a strictly stationary, ergodic sequence of r.v.. Let us de-

note this general hypothesis by H. Denoting the σ-field generated by {εt, εt−1, ...}

as εt, and the conditional expectation given the past εt as E( · |εt), it is also as-

sumed that, for each t∈Z, E(ε2p
t |εt−1) = µ2p> 0, E(ε2p−1

t |εt−1)=0, p=1, 2, 3,

in the diagonal case and E(ε2
t |εt−1) = µ2> 0, E(ε2p−1

t |εt−1)=0, p=1, 2, in the

superdiagonal case.

We also assume that the simple bilinear process {Xt} is strictly stationary and

that all its moments up to the third order exist. From Quinn (1982) and Azen-

cott and Dacunha-Castelle (1984, pp. 30/32), it can be shown that a sufficient

condition for the strict stationarity of the process {Xt} is ln |β|+ E(ln |εt|) < 0,

provided that the error process {εt} satisfies H and E| ln |εt|| <∞.

In this section we refer some results concerning the first and second order

moments of the process {Xt}, obtained by Martins (1997a) from which we deduce

necessary and sufficient conditions for the stationarity of the model.

For the diagonal model

Xt = βXt−k εt−k + εt , k ≥ 1 ,(2)

we have E(Xt) = βµ2, E(XtXt−k) = 2[E(Xt)]
2 and E(XtXt−j) = [E(Xt)]

2,
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j 6= k. The covariance of {Xt} at lag j, j ∈ N, is then given by

cov(Xt, Xt−j) =











β2µ2
2 if j=k,

0 if j 6=k .

After squaring (2), and using the hypotheses concerning conditional expecta-

tions and the strict stationarity of the process {X2
t ε

2
t }, we have

E(X2
t ) = β2E(X2

t ε
2
t ) + µ2

and

E(X2
t ε

2
t ) = β2E

[

X2
t−k ε

2
t−k E(ε2

t |εt−1)
]

+ E
[

E(ε4
t |εt−1)

]

+ 2βE
[

Xt−k εt−k E(ε3
t |εt−1)

]

= β2µ2 E(X2
t−k ε

2
t−k) + µ4 .

The fact that E(X2
t ) exists and µ2 > 0 implies β2µ2 < 1 and

E(X2
t ε

2
t ) =

µ4

1− β2µ2

.(3)

Finally, we obtain

E(X2
t ) =

β2µ4

1− β2µ2

+ µ2 .(4)

It is easy to prove that β2µ2 < 1 implies ln |β| + E(ln |εt|) < 0, by Jensen’s

inequality, provided that E| ln |εt|| < +∞. Then we can establish the following

necessary and sufficient condition concerning the stationarity of the process {Xt}.

Theorem 2.1. Let {Xt} be the diagonal model defined by (2). Suppose

that {εt} satisfies H and E(ε2p
t |εt−1) = µ2p > 0, E(ε2p−1

t |εt−1) = 0, p = 1, 2.

Suppose also that E(X2
t ) exists and that E| ln |εt|| < +∞. Then the process

{Xt} is strictly and weakly stationary if and only if β2µ2 < 1.

For the superdiagonal model

Xt = βXt−k εt−l + εt , k > l ≥ 1 ,(5)

we obtain E(Xt) = 0, E(XtXt−j) = [E(Xt)]
2, cov(Xt, Xt−j) = 0, j ∈ N, and

E(X2
t ) =

µ2

1−β2µ2
. We also can establish the following result.
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Theorem 2.2. Let {Xt} be the superdiagonal model defined by (5). Suppose

that {εt} satisfies H and E(ε2
t |εt−1) = µ2 > 0, E(εt|εt−1) = 0. Suppose also that

E(X2
t ) exists and that E| ln |εt|| < +∞. Then the process {Xt} is strictly and

weakly stationary if and only if β2µ2 < 1.

Taking into account the values obtained for the covariances of {Xt}, the su-

perdiagonal model appears as a white noise and the diagonal model appears as

a special MA(k) model.

In order to distinguish between these and bilinear models we need to inves-

tigate the behaviour of some moments of order greater than 2; in this sense, in

the following sections we consider the analysis of the third-order moments of the

process {Xt}.

3 – Third-order moments of {Xt}

The third-order moments of {Xt} are defined by

R(s1, s2) = E
[

(Xt−E(Xt)) (Xt−s1−E(Xt)) (Xt−s2−E(Xt))
]

= E(XtXt−s1 Xt−s2)− E(Xt)
[

γ(s1) + γ(s2) + γ(s1−s2)
]

+ 2[E(Xt)]
3 ,

(6)

where s1, s2 ∈ Z and γ(s) = E(XtXt−s), s ∈ Z.
From Subba Rao and Gabr (1984), the following symmetry relations hold:

R(s1, s2) = R(s2, s1) = R(−s1, s2−s1) = R(s1−s2, −s2) ,

where s1, s2 ∈ Z. So, it is sufficient to calculate R(s1, s2) for 0 ≤ s1 ≤ s2.

3.1. Diagonal model

Let us suppose that {Xt} and {εt} satisfy the general above-mentioned con-

ditions for the diagonal model defined by (2). The next theorem gives the values

of R(s1, s2) for this model.
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Theorem 3.1. Let {Xt} be the diagonal model defined by (2). Suppose

that {εt} satisfies H and E(ε2p
t |εt−1) = µ2p > 0, E(ε2p−1

t |εt−1) = 0, p= 1, 2, 3.

Suppose also that {Xt} is strictly stationary and that E(X3
t ) exists. Then

R(s1, s2)=



















































































3β3µ4

1− β2µ2

(β2µ4−µ2) + β3(µ6+2µ3
2), s1=s2=0,

β

1−β2µ2

[

µ4−µ
2
2+β

2µ2(µ4−µ
2
2+2β2µ3

2)
]

, s1=s2=k,

β3µ2

1− β2µ2

λ− 2β3µ3
2, s1=0, s2=k,

β2n+1µ2n
2

1− β2µ2

λ, s1=0, s2=nk, n=2, 3, ...,

β3µ3
2, s1=k, s2=2 k,

0, otherwise ,

where λ = β4(3µ2
4 − µ2 µ6) + β2(µ6 − 3µ2 µ4) + 2µ4.

Proof: The values of γ(s) were already indicated in section 2. These values

are given by

γ(s) =







2[E(Xt)]
2 if s=k,

[E(Xt)]
2 if s 6=k, s>0 .

Consider the case s1= s2 = 0. From (6) we have

R(0, 0) = E(X3
t )− 3E(Xt)E(X2

t ) + 2[E(Xt)]
3 .(7)

If we raise both sides of (2) to the third order, denote the quantity n!/[p!(n−p)!]

as Cn
p and take expectations, we have

E(X3
t ) =

3
∑

i=0

C3
i β

iE
[

Xi
t−k ε

i
t−k E(ε3−i

t |εt−1)
]

= 3β µ2
2 + β3E(X3

t ε
3
t )

(8)

and

E(X3
t ε

3
t ) =

3
∑

i=0

C3
i β

iE
[

Xi
t−k ε

i
t−k E(ε6−i

t |εt−1)
]

= µ6 +
3β2µ2

4

1− β2µ2

.



120 C.M. MARTINS

Inserting this result into (8), we obtain

R(0, 0) =
3β3µ4

1− β2µ2

(β2µ4 − µ2) + β3(µ6 + 2µ3
2) .

For s1 = s2 = s > 0 we have, from (6),

R(s, s) = E(XtX
2
t−s)− 2E(Xt) γ(s)− E(Xt)E(X2

t ) + 2[E(Xt)]
3 .(9)

Using (2), we can write

E(XtX
2
t−s) = β E(Xt−k εt−kX

2
t−s) + E(εtX

2
t−s) .

Taking now the cases s < k, s > k and s= k separately and using the strict

stationarity of the processes involved and the hypotheses about conditional mo-

ments of εt, we obtain

E(XtX
2
t−s) =























β µ4

(

1 +
3β2µ2

1− β2µ2

)

, s=k,

β µ2

(

µ2 +
β2µ4

1− β2µ2

)

, s 6=k ,

which implies

R(s, s) =















0, s 6=k

β

1− β2µ2

(

µ4 + β2µ2 µ4 − β2µ3
2 + 2β4µ4

2 − µ2
2

)

, s=k .

Let us now consider the case s1= 0, s2 = s > 0. In this case we have

R(0, s) = E(X2
t Xt−s)− E(Xt)E(X2

t )− 2E(Xt) γ(s) + 2[E(Xt)]
3 .(10)

If we square (2), multiply byXt−s, take expectations and apply the hypotheses

concerning conditional moments of εt, we obtain

E(X2
t Xt−s) = β2E(X2

t−k ε
2
t−kXt−s) + βµ2

2 .(11)

If s < k, it can be shown that

E(X2
tXt−s) = βµ2

(

β2µ4

1− β2µ2

+ µ2

)

= E(Xt)E(X2
t )

and R(0, s) = 0.

If s ≥ k, let us put s = nk +m, n∈N, m = 0, 1, ..., k−1.
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Denoting the expectation E(X2
t−k ε

2
t−kXt−s) as Vs−k, we can show that

Vs = β2µ2 Vs−k + β µ2 µ4 , s ≥ k ,

which is a difference equation in the quantity Vs.

Considering separately the cases m = 0 and 1 ≤ m ≤ k−1, we obtain the

solution for this difference equation:

Vnk+m =



















βµ2

1− β2µ2

[

µ4 + (β2µ2)
n
λ
]

, m = 0,

βµ2

1− β2µ2

µ4, m = 1, ..., k−1 ,

where λ = 3β2µ4(β
2µ4 − µ2) + β2µ6(1− β2µ2) + 2µ4.

Inserting this formulas into (11) and incorporating the results obtained into

(10) we obtain

R(0, s) =







































β3µ2

1− β2µ2

λ− 2β3µ3
2, s = k,

β2n+1µn2
1− β2µ2

λ, s = nk, n = 2, 3, ...,

0, otherwise .

Finally, we have to consider s1= s, s2 = s+ r, s ≥ 1, r ≥ 1.

In this case it can be shown that

R(s, s+r) =







β3µ3
2, s = r = k,

0, otherwise ,

which ends the proof.

3.2. Superdiagonal model

Taking l = k−m, 1 ≤ m ≤ k−1 in (5), the superdiagonal model can be written

as

Xt = βXt−k εt−k+m + εt ,(12)

where 1 ≤ m ≤ k−1, k ≥ 2.
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For {Xt} defined by (12) we obtained in section 2

E(Xt) = 0 ,

E(X2
t ) =

µ2

1− β2µ2

,

γ(s) = E(XtXt−s) = 0 , s > 0 .

The fact that E(Xt) = 0, implies

R(s1, s2) = E(XtXt−s1 Xt−s2) , s1, s2 ∈ Z .

Using an analogous methodology we can prove the next result.

Theorem 3.2. Let {Xt} be the superdiagonal model defined by (12). Sup-

pose that {εt} satisfies H and E(ε2
t |εt−1) = µ2 > 0, E(ε2p−1

t |εt−1) = 0, p=1, 2.

Suppose also that {Xt} is strictly stationary and that E(X3
t ) exists. Then

R(s1, s2) =















βµ2
2

1− β2µ2

, s1 = k−m, s2 = k,

0, otherwise .

4 – Simulation studies

The results obtained can be useful in bilinear time series modelling, particu-

larly in the choice of the orders k and l of some simple bilinear models for which

the error process is not Gaussian. It is well known that some real time series are

well described by models with a non Gaussian error process (e.g. Engle (1982)

and Weiss (1984) proposed the modelling of some financial time series by ARMA

processes with ARCH errors). Thus, with the results obtained here it is possible

to consider, as an alternative for the study of these series, nonlinear models with

such a kind of error process.

In order to illustrate the practical interest of these results, some simulation

studies were performed, considering {εt} as a sequence of i.i.d. symmetrically

distributed r.v. with zero mean. The distributions considered here are the the

Student distribution with 7 d.f. (εt ∼ t(7)) and the uniform distribution in the

interval [−1, 1] (εt ∼ U [−1, 1]). In each case, the values of β were chosen in

order to satisfy the condition β2µ2 < 1. The values considered for (k, l) are (3, 1)

and (2, 2). We construct realizations of {Xt}, of length 200, and the model is
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replicated 200 times. The sample third-order moments are calculated for each

replication and, for each (s1, s2), the mean R̄s1s2 of the sample third-order mo-

ments in the set of the replications, is recorded.

Table I gives R̄s1s2 , s1, s2=1, ..., 5, for the superdiagonal model with (k, l) =

(3, 1) as well as the corresponding theoretical values (in the parenthesis) of

R(s1, s2), s1, s2 = 1, ..., 5. The distribution considered for εt is t(7) and the

value of β is 0.5. It can be seen that simulation results agree well with theoretical

results presented in Theorem 3.2, namely, the simulated values in the cells (1, 3)

(or (3, 1)) are much larger than any other values.

Table I

Xt = 0.5Xt−3 εt−1 + εt, εt ∼ t(7)

s2 0 1 2 3 4 5
s1
0 −.064 .060 .117 .090 −.011 .140

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1 .060 .140 .019 1.553 −.011 .007
(0.0) (0.0) (0.0) (1.508) (0.0) (0.0)

2 .116 .019 −.036 −.078 −.041 −.060
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

3 .089 1.538 −.078 −.238 −.138 −.006
(0.0) (1.508) (0.0) (0.0) (0.0) (0.0)

4 −.011 −.011 −.041 −.137 .037 .016
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

5 .137 .007 −.059 −.006 .016 −.062
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table II records R̄s1s2 , s1, s2 = 1, ..., 5, for the diagonal model with k = 2

as well as the corresponding theoretical values (in the parenthesis) of R(s1, s2),

s1, s2 = 1, ..., 5. In this case εt ∼ U [−1, 1] and β = 1.0. We can see that there

are various cells that are apparently significant, namely the ones corresponding

to the following pairs (s1, s2): (0, 0), (2, 2), (0, 2), (0, 4) and (2, 4) (as well as the

corresponding cells (s2, s1)). This fact leads us to think our time series could

be well described by a diagonal model with k = 2, according to the results of

Theorem 3.1.
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Table II

Xt = Xt−2 εt−2 + εt, εt ∼ U [−1, 1]

s2 0 1 2 3 4 5
s1
0 .087 −.005 .128 −.003 .064 −.004

(.097) (0.0) (.134) (0.0) (.008) (0.0)

1 −.005 −.004 −.003 −.002 −.002 .001
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

2 .126 −.003 .209 −.001 .033 −.005
(.134) (0.0) (.215) (0.0) (.037) (0.0)

3 −.004 −.002 −.001 .001 .000 −.002
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

4 .061 −.002 .033 .000 −.004 −.001
(.008) (0.0) (.037) (0.0) (0.0) (0.0)

5 −.006 .001 −.004 −.002 −.001 −.002
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Finally, we notice that examples of discrete distributions for the error process

can also be considered, as no assumptions about densities are imposed in this

study.
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