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LINEAR FLOW IN POROUS MEDIA
WITH DOUBLE PERIODICITY

R. Bunoiu and J. Saint Jean Paulin

Abstract: We study the classical steady Stokes equations with homogeneous

Dirichlet boundary conditions. We work in a 3-D domain which contains solid obstacles,

two-periodically distributed with period ε (respectively ε2), where ε is a small parameter.

Our aim is to study the asymptotic behaviour, as ε → 0. We use the 3-scale convergence

for getting the 3-scale limit problem. The problem obtained is a three-pressures system.

Résumé: On étudie le problème de Stokes stationnaire classique, avec des conditions

de Dirichlet homogènes au bord. Le problème est posé dans un domaine qui contient

des inclusions solides réparties périodiquement, avec périodicité de l’ordre d’un petit

paramètre ε et de l’ordre de ε2. Pour le passsage à la limite en ε, on utilise la méthode

de convergence 3-échelle. Le problème limite 3-échelle obtenu est un problème à trois

pressions.

Introduction

We study here the homogenization of the Stokes steady flow in double peri-

odic media. We will apply the multi-scale convergence method, introduced by

G. Allaire, M. Briane [1]. This method generalizes the two-scale convergence

method introduced by G. Nguetseng [10] for the simply periodic domains.

The problem presented here was first treated by J.-L. Lions [8]. The method

used for getting the limit problem was the formal expansion of the velocity and

of the pressure. The results we present here justify the expansions.

In §1 we give the mathematical model of the problem. We define the domain

which has two parts: the fluid part and the solid part. The solid part is made
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by solid obstacles two-periodically distributed, with period ε (respectively ε2),

where ε is a small parameter.

In §2 we give a priori estimates and convergence results for the velocity. Next

we recall and prove some results related on the three-scale convergence.

In §3 we construct the extension of the pressure to the whole of Ω and we

give a convergence result. The difficulty is here the construction of an extension

operator for the pressure to the solid part of the domain. We already know

some methods for constructing such an extension (cf. L. Tartar [12], R. Lipton,

M. Avellaneda [9], C. Conca [2], I.-A. Ene, J. Saint Jean Paulin [5]). The last

two methods are applied for a problem with Neumann type boundary conditions

at the fluid-solid interface. The extension presented here is a generalization of

the method presented in L. Tartar [12].

In §4 we pass to the limit as ε → 0 in the initial problem. We obtain the

3-scale limit system, which represents a three-pressures problem.

The Stokes problem in double periodic media was already studied by T. Lévy

[7] and P. Donato, J. Saint Jean Paulin [3], but the domain presented here is a

different one. The solid obstacles periodically distributed with period ε in the

domain presented here are replaced in [7] and [3] by the fluid, which corresponds

to a porous fissured rock.

An analogous result for the Poisson equation in porous fissured rocks was

studied by P. Donato, J. Saint Jean Paulin [4].

1 – Positionning of the problem

Let Ω be a bounded open domain of boundary ∂Ω in RN , N ≥ 2.

Let us consider two sets Y =
∏N

i=1 ]0, 1[ and Z =
∏N

i=1 ]0, 1[ and two closed

subsets Ys⊂Y , Zs⊂Z, with non-empty interior, contained in Y (respectively Z).

We define:

Y ∗ = Y \ Ys , Z∗ = Z \ Zs .

Let ε be a small positive parameter. Let us suppose that there exists an ε such

that the domain Y is exactly covered by a finite number of cells εZ. Moreover,

let us suppose that Ys is exactly covered by a finite number of cells εZ. This last

hypothesis implies some restrictions for the geometry of Ys (see an example in

Figure 1.1). We deduce that there is no intersection between the solid obstacles

Ys and εZs in the cell Y , as we can see in Figure 1.3. If we consider all the small

parameters
ε

2n
, the above assumptions are still true.



LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 223

Fig. 1.1 — Domain Y . Fig. 1.2 – Domain Z.

We multiply the new cell (Figure 1.3) by ε and we repeat it in the domain

Ω. We assume (for simplicity), that Ω is exactly covered by a finite number of

cells εY . We define Ωε by taking out of Ω the domains εYs and ε2Zs. Let us

notice that there is no intersection between the solid obstacles εYs and ε2Zs in

Ωε, because there is no intersection between the solid ostacles Ys and εZs in the

cell Y. The domain Ωε (which corresponds to the fluid) is connected, but the

union of solid obstacles is not connected.

Fig. 1.1 – Domain Y with obstacle Ys and obstacles εZs.

Let χY ∗ and χZ∗ be the characteristic functions of the domains Y ∗ and Z∗,

defined by:

χY ∗(y) =

{
1 in Y ∗,

0 in Y \ Y ∗ ,
χZ∗(z) =

{
1 in Z∗,

0 in Z \ Z∗ .

We extend the characteristic functions χY ∗ (respectively χZ∗) by periodicity,

with period 1 in yi and in zi, for i = 1, ..., N . The domain Ωε, defined as above

is described by:

(1.1) Ωε =

{
x |x ∈ Ω, χY ∗

(
x

ε

)
χZ∗

(
x

ε2

)
= 1

}
.
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The domain Ωε presents a double periodicity, with small solid obstacles of

order ε and with very small obstacles of order ε2. This domain modelizes a rigid

porous medium with double periodicity.

We define the boundary of Ωε, denoted by ∂Ωε and composed by three parts:

– the boundary of obstacles εYs,

– the boundary of obstacles ε2Zs,

– the boundary of Ω.

Fig. 1.4 – A porous medium with double periodicity.

In Ωε defined as above, we consider the following Stokes problem:

(1.2)





−ε2∆uε +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε .

The first relation in (1.2) represents the classical steady Stokes equation. The

term ε2 represents the order of fluid’s viscosity. This assumption is not essential

for a linear problem, because we can always rescale. The second relation is the

incompressibility condition of the fluid. On the boundary of Ωε we consider

Dirichlet homogeneous conditions. We recall that for a domain D we define the

spaces L2(D) and H1
0(D) by:

L2(D) = (L2(D))N ,

H1
0(D) =

{
ψ ∈ L2(D),

∂ψ

∂xi
∈ L2(D), ψ=0 on ∂D

}
.
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The exterior body forces are denoted by f . The function f = (fi)i=1,...,N
belongs to L2(Ω) and the right hand side of relation (1.2) represents the restriction

of f to Ωε. The existence and the uniqueness of a solution (uε, pε) ∈ H1
0(Ωε) ×

L2(Ω)/R for (1.2) is classical (see R. Temam [13]).

2 – A priori estimates and convergence results for the velocity

Our aim is to study the asymptotic behaviour, as ε→ 0, of the solution of

problem (1.2). For passing to the limit we need extensions of velocity and pressure

to the whole of Ω. We first give a Poincaré’s type lemma, adapted at the domain

presented in §1:

Lemma 2.1. For any function φ ∈ H1
0(Ωε), we have:

(2.1) |φ|L2(Ωε) ≤ c ε2 |∇φ|[L2(Ωε)]N .

In the following, c denotes a constant independent of ε.

Let ũε be the extension of uε by zero to the whole of Ω. For the function ũε

we can easily prove the following a priori estimates:

Proposition 2.2. If uε is solution of (1.2), then we have:

|∇ũε|[L2(Ωε)]N ≤ c ,(2.2)

|ũε|L2(Ωε) ≤ c ε2 .(2.3)

Before establishing convergence of the velocity, we first recall and prove some

general results adapted below to our case.

Let us denote by C∞
p (Y ×Z) the space of C∞ functions, Y -periodic and

Z-periodic. We have the following lemma:

Lemma 2.3 (G. Allaire, M. Briane [1]). Let vε be a sequence of bounded

functions in L2(Ω). Then there exists a subsequence still denoted vε and a func-

tion v ∈ L2(Ω× Y × Z) such that:

(2.4) lim
ε→0

∫

Ω

vε(x)ϕ

(
x,
x

ε
,
x

ε2

)
dx =

∫

Ω

∫

Y

∫

Z

v(x, y, z)ϕ(x, y, z) dx dy dz ,
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for every function ϕ(x, y, z) ∈ L2(Ω, C∞
p (Y×Z)). We say that vε 3-scale converges

to v. Moreover,

vε ⇀ v0 =

∫

Y

∫

Z

v dy dz weakly in L2(Ω) .

As in G. Allaire, M. Briane [1], we prove the result:

Proposition 2.4. Let vε be a bounded sequence in L2(Ω) which 3-scale

converges to v and such that

(2.5) div vε = 0 in Ω .

Then the limit v satisfies the following relations:

divx

∫

Y

∫

Z

v dz dy = 0 ,(2.6)

divy

∫

Z

v dz = 0 ,(2.7)

divz v = 0 .(2.8)

Proof: Let ϕ be a function in D(Ω). We multiply relation (2.5) by ϕ and

integrating by parts, we get:

0 = lim
ε→0

∫

Ω

(div vε(x))ϕ(x) dx = − lim
ε→0

∫

Ω

vε∇ϕdx .

But

lim
ε→0

∫

Ω

vε∇ϕdx =

∫

Ω

∫

Y

∫

Z

v(x, y, z)∇ϕ(x) dx dy dz

since vε 3-scale converges to v.

We deduce
∫

Ω

divx

(∫

Y

∫

Z

v dz dy

)
ϕ(x) dx = 0 , ∀ϕ ∈ D(Ω) ,

which implies (2.6). Multiplying (2.5) by particular functions ϕ ∈ D(Ω, C∞
p (Y ))

and ϕ ∈ D(Ω, C∞
p (Y ×Z)), we obtain the relations (2.7)–(2.8).

Remark 2.5. For a set D, let H1
p(D) be the space of functions H1

loc(RN )

which are D-periodic.
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Choosing particular test functions ϕ ∈ H1
p(Y ) (respectively ϕ ∈ H1

p(Z)) in

relation (2.7) (respectively (2.8)), we obtain the following periodicity condition:
[∫

Z

v(x, y, z, ) dz

]
νY takes opposite values on opposite faces of Y ,

v νZ takes opposite values on opposite faces of Z ,

where νY (resp. νZ) represents the unit outward normal to Y (resp. Z).

For the velocity’s extension ũε we prove the following results:

Proposition 2.6. Let ũε be defined as before. Then there exists u∈L2(Ω×
Y ×Z) such that, up to a subsequence, we have:

ε−2 ũε → u 3-scale ,(2.9)

u(x, y, z) = 0 in Ω× Ys × Zs ,(2.10)

ε−2 ũε ⇀ u0 =

∫

Y ∗

∫

Z∗

u dz dy weakly in L2(Ω) ,(2.11)

∇ũε → ∇zu 3-scale .(2.12)

Proof: Relation (2.9) is a direct consequence of Lemma 2.3 applied for

v = ε−2 ũε. This is possible according to estimate (2.3).

For proving (2.10) we note that, for vε = ε−2 ũε, relation (2.4) becomes:

lim
ε→0

∫

Ω

ε−2 ũε(x)ϕ

(
x,
x

ε
,
x

ε2

)
dx =

∫

Ω

∫

Y

∫

Z

u(x, y, z)ϕ(x, y, z) dz dy dx .

We choose a test function ϕ such that ϕ = 0 in Ω× Y ∗×Z∗. Using ũε = 0 in

Ω \ Ωε, we deduce:

0 =

∫

Ω

∫

Ys

∫

Zs

u(x, y, z)ϕ(x, y, z) dz dy dx ,

wich implies (2.10).

Relation (2.11) is a direct consequence of Lemma 2.3 and of relation (2.10).

For proving relation (2.12) we note that relation (2.2) and Lemma 2.3 imply

the existence of a function ξ ∈ [L2(Ω× Y × Z)]N such that:

lim
ε→0

∫

Ω

∇ũε ϕ

(
x,
x

ε
,
x

ε2

)
dx =

∫

Ω

∫

Y

∫

Z

ξ(x, y, z, )ϕ(x, y, z) dz dy dx .
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Integrating the left hand term by parts, we get:

∫

Ω

∇ũε ϕ

(
x,
x

ε
,
x

ε2

)
dx = −

∫

Ω

ũε divϕ

(
x,
x

ε
,
x

ε2

)
dx

= −

∫

Ω

ũε
(
divx ϕ+

1

ε
divy ϕ+

1

ε2
divz ϕ

)
dx

= −

∫

Ω

ε−2
(
ε2 ũε divx ϕ+ ε ũε divy ϕ+ ũε divz ϕ

)
dx .

Passing to the limit in ε, we derive:

−

∫

Ω

∫

Y

∫

Z

u(x, y, z) divz ϕ(x, y, z) dz dy dx =

∫

Ω

∫

Y

∫

Z

ξ(x, y, z)ϕ(x, y, z) dz dy dx .

Integrating the left hand side of the previous relation by parts we deduce:
∫

Ω

∫

Y

∫

Z

[
ξ(x, y, z)−∇zu(x, y, z)

]
ϕ(x, y, z) dz dy dx = 0 , ∀ϕ ∈ D(Ω, C∞

p (Y×Z)) ,

consequently ξ(x, y, z) = ∇zu(x, y, z), which ends the proof.

Proposition 2.7. Let u be the function defined by Proposition 2.6. Then

we have:

(2.13) divx

∫

Y ∗

∫

Z∗

u dz dy = 0 ,

(2.14) divy

∫

Z∗

u dz = 0 ,

(2.15) divz u = 0 ,

(2.16)

[∫

Y ∗

∫

Z∗

u dy dz

]
· ν = 0 on ∂Ω ,

(2.17) u · νZ takes opposite values on opposite faces of Z ,

(2.18)

[∫

Z∗

u dz

]
· νY takes opposite values on opposite faces of Y ,

(2.19) u · νZ = 0 on ∂Zs ,

(2.20)

[∫

Z∗

u dz

]
· νY = 0 on ∂Ys .
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Proof: The relations (2.13)–(2.15) are a consequence of Proposition 2.4

applied to the sequence ε−2 ũε (which 3-scale converges to u) and of relation

(2.10).

In order to obtain relation (2.16), we use the linearity and the continuity of

the normal trace application from

H(div,Ω) =
{
ψ ∈ L2(Ω) | divψ ∈ L2(Ω)

}

into H− 1

2 (∂Ω), then we use the relations (2.10)–(2.11).

The relations (2.17)–(2.18) are a consequence of Remark 2.5 and of relation

(2.10).

Multiplying (2.15) by a test function ψ ∈ H1
p(Z) and using (2.17) we obtain

relation (2.19). We get relation (2.20) by multiplying (2.14) by ψ ∈ H1
p(Y ) and

using (2.18).

3 – Extension of the pressure and convergence result

We now construct a restriction operator Sε2 from H1
0(Ω) into H1

0(Ωε). Using

this operator we will define an extension for the pressure to the whole of Ω.

Let Y ε
f be the domain defined by:

Y ε
f = Y \

(
Ys ∪

(⋃
εZs

))
.

We define the space H1
s(Y

ε
f ) by:

H1
s(Y

ε
f ) =

{
φ ∈ H1(Y ε

f ) | φ = 0 on ∂Ys and on ∂
(⋃

(εZs)
)}

.

We define the space H1
s(Y

∗) by:

H1
s(Y

∗) =
{
φ ∈ H1(Y ∗) | φ = 0 on ∂Ys

}
.

To prove the claimed result, we first construct a restriction operator R from

the space H1(Y ) into the space H1
s(Y

∗) and next we construct the operator Wε

from the space H1
s(Y

∗) into the space H1
s(Y

ε
s ). Using operators R and Wε, we

construct the operator

Sε : H1(Y )→ H1(Y ε
f )

and next we define Sε2 by applying Sε to each period εY of Ω.
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So we construct Sε2 in three steps, corresponding to the three following lem-

mas.

Lemma 3.1. There exists a restriction operator

R : H1(Y )→ H1
s(Y

∗)

such that for v ∈ H1(Y ) we have:

(3.1) Rv = v if v = 0 in Ys ,

(3.2) divRv = 0 in Y ∗ if div v = 0 in Y ,

(3.3) |Rv|H1(Y ) ≤ c |v|H1(Y ) .

Proof: Let us consider a smooth surface γ strictly contained in Y , enclosing

YS . We denote by Ỹs the domain between γ and ∂Ys.

Fig. 3.1 – Domain Y .

As in Lemma 3 of L. Tartar [12], we have the following result:

If v ∈ H1(Y ), there exist w ∈ H1(Ỹs), q ∈ L
2(Ỹs)/R such that:





−∆w = −∆v +∇q in Ỹs ,

divw = div v +
1

|Ỹs|

∫

Ys

div v dy in Ỹs ,

w|γ = v|γ , w|∂Ys = 0 ,

where |Ỹs| represents the measure of Ys. Moreover, there exists a constant c

independent of v such that:

|w|H1(Ỹs)
≤ c |v|H1(Y ) .
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Let us notice that: Y = Y ∗∪ Ys = (Y ∗ \ Ỹs) ∪ Ỹs ∪ Ys.

We define the operator R by:

Rv(y) =





v(y) if y ∈ Y ∗ \ Ỹs ,

w(y) if y ∈ Ỹs ,

0 if y ∈ Ys .

This definition and properties satisfied by the function v imply the relations

(3.1)–(3.3).

Lemma 3.2. There exists a restriction operator

Wε : H1
s(Y

∗)→ H1
s(Y

ε
f )

such that for Rv ∈ H1
s(Y

∗) we have:

(3.4) Wε(Rv) = Rv if Rv = 0 in
⋃

(εZs) ,

(3.5) divWε(Rv) = 0 in Y ε
f if divRv = 0 in Y ∗ ,

(3.6) ε2 |∇Wε(Rv)|
2
[L2(Y ε

f
)]N + |Wε(Rv)|

2
L2(Y ε

f
) ≤ c |v|2H1(Y ) .

Proof: Let H1
s(Z

∗) be the space defined by:

H1
s(Z

∗) =
{
φ ∈ H1(Z∗) | φ = 0 in ∂Zs

}
.

In the fixed cell Z, let us consider a smooth surface γ̃ strictly contained in Z.

We denote by Z̃s the domain between γ̃ and ∂Zs. The domain Z̃s is independent

of the parameter ε.

Fig. 3.2 – Domain Z.
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As in lemma 3 of L. Tartar [12], we have the following result. If ū ∈ H1(Z),

there exist w̄ ∈ H1(Z̃s), q̄ ∈ L
2(Z̃s)/R such that:





−∆w̄ = −∆ū+∇q̄ in Z̃s ,

div w̄ = div ū+
1

|Z̃s|

∫

Ys

div ū dy in Z̃s ,

w̄|γ̃ = ũ|γ̃ , w̄|∂Zs = 0 .

Moreover, there exists a constant c independent of ū such that:

|w̄|H1(Z̃s)
≤ c |ū|H1(Z) .

Let us notice that Z = Z∗ ∪ Zs = (Z∗ \ Z̃s) ∪ Z̃s ∪ Zs.

For every function ū ∈ H1(Z) we construct an application

W : H1(Z)→ H1
s(Z

∗)

defined by:

(3.7) W (ū)(z) =





ū(z) if z ∈ Z∗ \ Z̃s ,

w(z) if z ∈ Z̃s ,

0 if z ∈ Zs ,

and satisfying:

W (ū) = ū if ū = 0 in Zs ,

divW (ū) = 0 if div ū = 0 ,

(3.8) |W (ū)|H1(Z) ≤ c |ū|H1(Z) .

Fig. 3.3 – Cell Y with solid obstacle Ys and obstacles εZs.
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Next we apply W to every period εZ of Y \ Ys and we obtain a function Wε,

Wε : H1
s(Y

∗)→ H1
s(Y

ε
f ) ,

satisfying the relations (3.4) and (3.5). We apply Wε to Rv ∈ H1
s(Y

∗) and using

relation (3.8) we get:

ε2 |∇Wε(Rv)|
2
[L2(Y ε

f
)]N + |Wε(Rv)|

2
L2(Y ε

f
) ≤ ε2 |∇Rv|2[L2(Y ∗)]N + |Rv|2L2(Y ∗) .

Since |Rv|H1(Y ) ≤ c |v|H1(Y ), we deduce:

ε2 |∇W (Rv)|2[L2(Y ε
f
)]N + |W (Rv)|2L2(Y ε

f
) ≤ c |v|2H1(Y ),

which is exactly (3.6).

Lemma 3.3. There exists a restriction operator

Sε2 : H1
0(Ω)→ H1

0(Ωε)

such that:

(3.9) Sε2(v) = v in Ωε, ∀ v ∈ H1
0(Ωε) ,

(3.10) divSε2v = 0 in Ωε if div v = 0 in Ω ,

(3.11) |∇Sε2v|[L2(Ωε)]N ≤ c

(
1

ε2
|v|L2(Ω) +

1

ε
|∇v|[L2(Ω)]N

)
,

(3.12) |Sε2v|L2(Ωε) ≤ c
(
|v|L2(Ω) + ε |∇v|[L2(Ω)]N

)
.

Proof: Let Sε : H1(Y )→ H1(Y ε
f ) be the application defined by:

Sεv(y) =

{
Wε(Rv)(y) if y ∈ Y ∗ ,

0 if y ∈ Ys .

Using the construction of Wε we also have:

Sεv(y) =

{
Wε(Rv)(y) if y ∈ Y ε

f ,

0 otherwise ,

and Sε satisfies (3.9)–(3.10).

Due to (3.6), the application Sε satisfies:

(3.13) ε2 |∇Sεv|
2
[L2(Y ε

f
)]N + |Sεv|

2
L2(Y ε

f
) ≤ c |v|2H1(Y ) .
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We define Sε2 by applying Sε to each period εY . The relation (3.13) then

implies:

ε4 |∇Sε2v|
2
[L2(Ωε)]N

+ |Sε2v|
2
L2(Ωε)

≤ c
(
|v|2L2(Ω) + ε2 |∇v|2[L2(Ω)]N

)
,

and we deduce relations (3.11)–(3.12).

Let v be a functin of H1
0(Ω). As ∇pε ∈ H−1(Ωε), we define the application F

ε

by:

(3.14) 〈F ε, v〉Ω = 〈∇pε, Sε2v〉Ωε ,

where Sε2 is the operator defined by Lemma 3.3. The following proposition gives

us the extension of the pressure pε to the whole Ω. Moreover, we establish a

strong convergence result for this extension. Following the ideas of L. Tartar

[12], we can prove:

Proposition 3.4. Let pε be as in (1.2). Then, for each ε there exists an

extension P ε of pε defined on Ω such that:

P ε = pε in Ωε .

Moreover, up to a subsequence, we have:

(3.15) P ε → p0 strongly in L2(Ω)/R .

The function F ε and the pressure pε are linked by:

(3.16) F ε = ∇P ε .

4 – Passage to the limit and 3-scale limit problem

We recall that as in I.-A. Ene [6] we have the following “de Rham”-type result:

Lemma 4.1. Let w ∈ L2(Ω× Y × Z) be a function satisfying:

(4.1)

∫

Ω

∫

Y

∫

Z

w(x, y, z)φ(x, y, z) dx dy dz = 0 ,

for all function φ belonging to D(Ω, C∞
p (Y × Z)) such that:

(4.2) divy φ(x, y, z) = 0 , divz φ(x, y, z) = 0 .
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Then there exist two functions q1 ∈ L2(Ω,H1
p(Y )/R) and q2 ∈ L2(Ω × Y,

H1
p(Z)/R) such that:

(4.3) w(x, y, z) = ∇y q1(x, y) +∇z q2(x, y, z) .

Let us recall that we denoted by u the 3-scale limit of ε−2 ũε (see relation

(2.9)) and that p0 (defined in relation (3.15)) represents the strong limit of the

pressure’s extension in L2(Ω). Using Lemma 4.1 and 3-scale convergence results

of §2–§3, we prove the main result of this paper:

Theorem 4.2. Let u and p0 be as before. Then there exist p1 ∈ L2(Ω,
H1
p(Y

∗)/R) and p2 ∈ L2(Ω× Y, H1
p(Z

∗)/R) such that:

(4.4) −∆zu+∇x p0 +∇y p1 +∇z p2 = f in Ω× Y ∗× Z∗ .

Proof: We recall the first equation of (1.2):

−ε2∆uε +∇pε = f in Ωε .

Wemultiply it by a function ϕ ∈ D(Ω, C∞
p (Y×Z)) such that divy ϕ(x, y, z) = 0

and divz ϕ(x, y, z) = 0. Integrating the first term of the left hand side by parts

we get:

ε2
∫

Ωε

∇uε(x)∇ϕ

(
x,
x

ε
,
x

ε2

)
dx+

∫

Ωε

∇pε(x)ϕ

(
x,
x

ε
,
x

ε2

)
dx =

=

∫

Ωε

f(x)ϕ

(
x,
x

ε
,
x

ε2

)
dx .

Using the definition of the extension ũε, relations (3.14) and (3.16) and making

the additional assumption ϕ(x, y, z)=0 in Ω×Ys×Zs (i.e. ϕ(x,
x
ε
, x
ε2
) ∈ H1

0(Ωε))

we obtain:

(4.5)

ε2
∫

Ω

∇ũε(x)∇ϕ

(
x,
x

ε
,
x

ε2

)
dx−

∫

Ω

P ε(x) divxϕ

(
x,
x

ε
,
x

ε2

)
dx =

=

∫

Ω

f(x)ϕ

(
x,
x

ε
,
x

ε2

)
dx .

Passage to the 3-scale limit in (4.5) implies:
∫

Ω

∫

Y ∗

∫

Z∗

∇zu(x, y, z)∇zϕ(x, y, z) dx dy dz −

∫

Ω

∫

Y ∗

∫

Z∗

p0(x) divx ϕ(x, y, z) dx dy dz =

=

∫

Ω

∫

Y ∗

∫

Z∗

f(x)ϕ(x, y, z) dx dy dz .
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Hence,
∫

Ω

∫

Y ∗

∫

Z∗

[
−∆zu(x, y, z) +∇xp0(x)− f(x)

]
ϕ(x, y, z) dx dy dz = 0 .

Using the particular form of ϕ, Lemma 4.1 then implies relation (4.4).

Conclusions

Theorem 4.2 and the results of §2 imply the following three-scale system (4.6).

(4.6)





−∆zu+∇x p0 +∇y p1 +∇z p2 = f in Ω× Y ∗× Z∗,

divx

∫

Y ∗

∫

Z∗

u dz dy = 0 in Ω,

divy

∫

Z∗

u dz = 0 in Ω× Y ∗,

divz u = 0 in Ω× Y ∗× Z∗,
[∫

Y ∗

∫

Z∗

u dy dz

]
· ν = 0 on ∂Ω,

u · νZ takes opposite values on opposite faces of Z,
[∫

Z∗

u dz

]
· νY takes opposite values on opposite faces of Y ,

u · νZ = 0 on ∂Zs ,[∫

Z∗

u dz

]
· νY = 0 on ∂Ys .

Remark 4.3. System (4.6) is obtained in J.-L. Lions [8, Chapter 2, Section 3],

with the method of asymptotic expansion on the velocity and of the pressure. The

first equation is a three-pressure equation. The three pressures p0, p1, p2 are the

three first terms in the asymptotic expansion of the pressure pε. We recall here

that, as in J.-L. Lions [8], we may write the function u in two different ways:

(i) The function u satisfies the homogenized equation (a Darcy-law type):

u(x, y, z) = φ(y, z)
(
f(x)−∇xp0(x)

)
,

where the function φ is solution of a local problem in Y ∗× Z∗.
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With the notation M(φ) =
1

|Y ∗| |Z∗|

∫

Y ∗

∫

Z∗

φ(y, z) dy dz, the function p0 is

solution of the following Neumann problem:
(
M(φ) (f −∇x p0), ∇q

)
= 0 , ∀ q ∈ H1(Ω) .

(ii) We can also express u by a relation depending of both pressures p0 and

p1. We have:

u(x, y, z) = φ1(z)
(
f −∇x p0(x)−∇y p1(x, y)

)
,

where φ1 is solution of a local problem in Z∗ and the pressure p1(x, y) is

solution of the following Neumann problem:
(
M(φ1)

(
f −∇x p0(x)−∇y p1(x, y)

)
, ∇y q1

)

Y ∗

= 0 ,

∀ q1 ∈ H
1(Y ∗), q1 Y -periodic .

Remark 4.4. The results presented here may be generalized. Let rε be a

parameter depending on ε such that:

rε
ε
→ 0 if ε→ 0 .

In the domain Ω we replace the very small obstacles of order ε2 by obstacles of

order rε, periodically distributed with periodicity rε. We consider the problem:

(4.7)





−rε∆u
ε +∇pε = f in Ωε ,

div uε = 0 in Ωε ,

uε = 0 on ∂Ωε .

The case already treated corresponds to rε = ε2.

For the extension of the velocity, solution of (4.7), we can prove the conver-

gences:

r−1ε ũε → u 3-scale ,

r−1ε ũε ⇀ u0 =

∫

Y ∗

∫

Z∗

u dz dy weakly in L2(Ω) ,

∇̃uε → ∇zu 3-scale .

For the strong convergence of pressure’s extension we have Proposition 3.4,

which still holds. We can prove that velocity and pressure limits satisfy the

system (4.6).
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Département de Mathématiques, Ile du Saulcy,

BP 80794, 57012 Metz, cedex 1 – FRANCE


