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LINEAR FLOW IN POROUS MEDIA
WITH DOUBLE PERIODICITY

R. Bunoiu and J. SAINT JEAN PAULIN

Abstract: We study the classical steady Stokes equations with homogeneous
Dirichlet boundary conditions. We work in a 3-D domain which contains solid obstacles,
two-periodically distributed with period e (respectively £2), where ¢ is a small parameter.
Our aim is to study the asymptotic behaviour, as ¢ — 0. We use the 3-scale convergence

for getting the 3-scale limit problem. The problem obtained is a three-pressures system.

Résumé: On étudie le probleme de Stokes stationnaire classique, avec des conditions
de Dirichlet homogenes au bord. Le probléeme est posé dans un domaine qui contient
des inclusions solides réparties périodiquement, avec périodicité de I'ordre d’un petit
parametre € et de Iordre de £2. Pour le passsage & la limite en ¢, on utilise la méthode
de convergence 3-échelle. Le probleme limite 3-échelle obtenu est un probleme a trois

pressions.

Introduction

We study here the homogenization of the Stokes steady flow in double peri-
odic media. We will apply the multi-scale convergence method, introduced by
G. Allaire, M. Briane [1]. This method generalizes the two-scale convergence
method introduced by G. Nguetseng [10] for the simply periodic domains.

The problem presented here was first treated by J.-L. Lions [8]. The method
used for getting the limit problem was the formal expansion of the velocity and
of the pressure. The results we present here justify the expansions.

In §1 we give the mathematical model of the problem. We define the domain
which has two parts: the fluid part and the solid part. The solid part is made
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by solid obstacles two-periodically distributed, with period e (respectively £2),
where € is a small parameter.

In §2 we give a priori estimates and convergence results for the velocity. Next
we recall and prove some results related on the three-scale convergence.

In §3 we construct the extension of the pressure to the whole of 2 and we
give a convergence result. The difficulty is here the construction of an extension
operator for the pressure to the solid part of the domain. We already know
some methods for constructing such an extension (cf. L. Tartar [12], R. Lipton,
M. Avellaneda [9], C. Conca [2], I-A. Ene, J. Saint Jean Paulin [5]). The last
two methods are applied for a problem with Neumann type boundary conditions
at the fluid-solid interface. The extension presented here is a generalization of
the method presented in L. Tartar [12].

In §4 we pass to the limit as € — 0 in the initial problem. We obtain the
3-scale limit system, which represents a three-pressures problem.

The Stokes problem in double periodic media was already studied by T. Lévy
[7] and P. Donato, J. Saint Jean Paulin [3], but the domain presented here is a
different one. The solid obstacles periodically distributed with period ¢ in the
domain presented here are replaced in [7] and [3] by the fluid, which corresponds
to a porous fissured rock.

An analogous result for the Poisson equation in porous fissured rocks was
studied by P. Donato, J. Saint Jean Paulin [4].

1 — Positionning of the problem

Let Q be a bounded open domain of boundary 0§ in RY, N > 2.

Let us consider two sets ¥ =], ]0,1[ and Z =[Y.,]0,1[ and two closed
subsets Y; CY, Z;C Z, with non-empty interior, contained in Y (respectively 7).
We define:

Y*'=Y\Ys,, Z*=72\Z.

Let € be a small positive parameter. Let us suppose that there exists an £ such
that the domain Y is exactly covered by a finite number of cells £Z. Moreover,
let us suppose that Y is exactly covered by a finite number of cells ¢Z. This last
hypothesis implies some restrictions for the geometry of Y (see an example in
Figure 1.1). We deduce that there is no intersection between the solid obstacles
Ys and Z; i% the cell Y, as we can see in Figure 1.3. If we consider all the small
parameters o the above assumptions are still true.
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Fig. 1.1 — Domain Y. Fig. 1.2 — Domain ~Z.

We multiply the new cell (Figure 1.3) by ¢ and we repeat it in the domain
Q). We assume (for simplicity), that Q is exactly covered by a finite number of
cells €Y. We define €. by taking out of € the domains €Yy and 2Z,. Let us
notice that there is no intersection between the solid obstacles €Y, and £2Z; in
()., because there is no intersection between the solid ostacles Y and €7 in the
cell Y. The domain €. (which corresponds to the fluid) is connected, but the
union of solid obstacles is not connected.

Fig. 1.1 — Domain Y with obstacle Y; and obstacles €Z;.

Let xy+ and xz+ be the characteristic functions of the domains Y* and Z*,

defined by:
1 in Y™, 1 in Z%,
* = x|\ Z) =
W= vy, O 0 gz

We extend the characteristic functions xy= (respectively xz+) by periodicity,
with period 1 in y; and in z;, for i = 1,..., N. The domain )., defined as above
is described by:

(1.1) Q. = {x\x €0, xy+ (g) X7+ (%) = 1} :
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The domain €2, presents a double periodicity, with small solid obstacles of
order € and with very small obstacles of order 2. This domain modelizes a rigid
porous medium with double periodicity.

We define the boundary of )., denoted by 0. and composed by three parts:

— the boundary of obstacles €Y,

— the boundary of obstacles £2Z,,

— the boundary of €.
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Fig. 1.4 — A porous medium with double periodicity.

In Q. defined as above, we consider the following Stokes problem:
—2 Auf +VpF = f in Q,,
(1.2) divuf =0 in Q.
u® =0 on 0 .

The first relation in (1.2) represents the classical steady Stokes equation. The
term €2 represents the order of fluid’s viscosity. This assumption is not essential
for a linear problem, because we can always rescale. The second relation is the
incompressibility condition of the fluid. On the boundary of 2. we consider

Dirichlet homogeneous conditions. We recall that for a domain D we define the
spaces L?(D) and H} (D) by:

L*(D) = (L (D)™,

Hy(D) = {v e 12(D), 3

eﬂﬁun,¢:00nap}.



LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 225

The exterior body forces are denoted by f. The function f = (fi)i=1,..N
belongs to L2(2) and the right hand side of relation (1.2) represents the restriction
of f to Q.. The existence and the uniqueness of a solution (u®,p°) € Hp () x
L3(Q)/R for (1.2) is classical (see R. Temam [13]).

2 — A priori estimates and convergence results for the velocity

Our aim is to study the asymptotic behaviour, as € — 0, of the solution of
problem (1.2). For passing to the limit we need extensions of velocity and pressure
to the whole of 2. We first give a Poincaré’s type lemma, adapted at the domain
presented in §1:

Lemma 2.1. For any function ¢ € H}(€2.), we have:

(2.1) Bli20.) < e IVolpen -

In the following, ¢ denotes a constant independent of €.

Let uf be the extension of u€ by zero to the whole of Q. For the function u®
we can easily prove the following a priori estimates:

Proposition 2.2. Ifu® is solution of (1.2), then we have:

(2.2) ’V/U‘,E‘[H}(QE)}N <c,

(23) ”ZL\E’LQ(QE) < 662 .

Before establishing convergence of the velocity, we first recall and prove some
general results adapted below to our case.

Let us denote by Cp° (Y x Z) the space of C* functions, Y-periodic and
Z-periodic. We have the following lemma:

Lemma 2.3 (G. Allaire, M. Briane [1]). Let v® be a sequence of bounded
functions in IL2(Q). Then there exists a subsequence still denoted v¢ and a func-
tion v € L2(Q x Y x Z) such that:

(2.4) lim v’%x)gp(ac, E, %) dr = ///v(x,y, 2)o(x,y,z)dxdydz
e—0 e €
Q

QY Z
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for every function p(z,y, z) € L*(Q, C,2(YxZ)). Wesay that v® 3-scale converges
to v. Moreover,

v" — g ://vdydz weakly in L2(Q) .
YZ

As in G. Allaire, M. Briane [1], we prove the result:

Proposition 2.4. Let v° be a bounded sequence in L?(Q2) which 3-scale
converges to v and such that

(2.5) dive®* =0 1in Q.

Then the limit v satisfies the following relations:

(2.6) div, //vdz dy =0,
YZ

(2.7) divy/vdz =0,
Z
(2.8) div,v=0.

Proof: Let ¢ be a function in D(2). We multiply relation (2.5) by ¢ and
integrating by parts, we get:

0= lir% (dive®(x)) p(x) dz = —lin%) v* Vodzr .
£e— s

Q Q

But
;ii]% v Vopdr = ///v(a:,y,z) Vo(z)drdydz
Q QY Z
since v® 3-scale converges to v.
We deduce

/divw<//fudzdy> p(x)de =0, VYeeD(Q),
Q Yz

which implies (2.6). Multiplying (2.5) by particular functions ¢ € D(Q, C5°(Y))
and p € D(Q,C°(Y x Z)), we obtain the relations (2.7)-(2.8). u

Remark 2.5. For a set D, let H}(D) be the space of functions Hj  (RY)
which are D-periodic.
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Choosing particular test functions ¢ € H(Y) (respectively ¢ € HJ(Z)) in
relation (2.7) (respectively (2.8)), we obtain the following periodicity condition:

[ / v(z,y,2,) dz} vy takes opposite values on opposite faces of Y,

v vy takes opposite values on opposite faces of Z ,

where vy (resp. vz) represents the unit outward normal to Y (resp. Z).

For the velocity’s extension u¢ we prove the following results:

Proposition 2.6. Let u¢ be defined as before. Then there exists u€L?(Qx
Y x Z) such that, up to a subsequence, we have:

(2.9) e 2uf —u  3-scale,

(2.10) u(z,y,2) =0 in QxYsxZs,

(2.11) e2uF — wyg ://udzdy weakly in 1L2(Q) ,
Y*Z*

(2.12) Vué — Vou  3-scale .

Proof: Relation (2.9) is a direct consequence of Lemma 2.3 applied for

2

v = ¢ 2uf. This is possible according to estimate (2.3).

For proving (2.10) we note that, for v° = &2 ¢, relation (2.4) becomes:

r X
T —

lim 826‘5($)4p< y = 2) dx :///u(x,y,z)cp($,y,z) dzdydx .
e—0 € €
Q QY Z

We choose a test function ¢ such that ¢ = 0 in Q x Y*x Z*. Using uf = 0 in
0\ Q, we deduce:

0= ///u(x,y,z)go(x,y,z)dzdyd;r ,
QY. Zs
wich implies (2.10).
Relation (2.11) is a direct consequence of Lemma 2.3 and of relation (2.10).
For proving relation (2.12) we note that relation (2.2) and Lemma 2.3 imply
the existence of a function & € [L?(Q x Y x Z)]V such that:

lim Vﬁ@(x,i%) dr = /// &(x,y, 2,) p(x,y, 2)dzdy dx .
e—0 g €
Q

QY Z
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Integrating the left hand term by parts, we get:

/7ﬂ5gp(a;, —6,—€2>daﬁ = /Egdivw<x,—,—§;)dx
Q Q
- /~<d'v —|—71 div +—1 div <p>d
uf | divg @ 1Vy @ 1V, T
e y £2

= —/5_2(52ﬂgdiv$go—i—&?ﬂgdivy@—i-ﬂgdivzgo) dz .
Q

Passing to the limit in €, we derive:
—///u(x,y, z)div, o(x,y,z)dzdydx = ///§(w,y, 2)o(x,y,z)dzdy dz .
QY Z QY Z
Integrating the left hand side of the previous relation by parts we deduce:
[[[6@9.2-Veute,y.2)] elw.p, ) dzdydz = 0, Vi e DOLCF(V=2))
QY Z

consequently &(x,y, z) = V,u(z,y, z), which ends the proof. u

Proposition 2.7. Let u be the function defined by Proposition 2.6. Then
we have:

(2.13) div, //udzdy =0,

Y*Z*
(2.14) divy/udz =0,

Z*
(2.15) div,u=0,
(2.16) {//udydz}-u—O on 0N,
Y*Z*
(2.17) u - vy takes opposite values on opposite faces of Z
(2.18) [/ udz] - vy takes opposite values on opposite faces of Y
Z*

(2.19) u-vz=0 on 0Zs,

(2.20)

/udz}-yy:() on 0Yy .
Z*
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Proof: The relations (2.13)-(2.15) are a consequence of Proposition 2.4
applied to the sequence 2 uf (which 3-scale converges to u) and of relation
(2.10).

In order to obtain relation (2.16), we use the linearity and the continuity of
the normal trace application from

H(div, ) = {¢ € L(Q)| divy € LX(Q)}

into Hfé(aﬁ), then we use the relations (2.10)—(2.11).

The relations (2.17)—(2.18) are a consequence of Remark 2.5 and of relation
(2.10).

Multiplying (2.15) by a test function ¢ € H;)(Z) and using (2.17) we obtain
relation (2.19). We get relation (2.20) by multiplying (2.14) by ¢ € HI(Y) and
using (2.18). m

3 — Extension of the pressure and convergence result

We now construct a restriction operator S.» from HY(Q2) into H(€.). Using
this operator we will define an extension for the pressure to the whole of €.
Let Y be the domain defined by:

Y;:Y\(Ysu(u sZS)) .

We define the space Hy(YF) by:

HL(Yf) = {¢> e H'(Yf)| ¢ =0 on Y, and on 8(U(5Zs)>} .
We define the space H!(Y*) by:
Hy(Y*) = {g e H'(Y")| ¢ =0 on OV, } .

To prove the claimed result, we first construct a restriction operator R from
the space H!(Y) into the space H!(Y*) and next we construct the operator W
from the space H!(Y*) into the space H(Y?). Using operators R and We, we
construct the operator

Se: H'(Y) — H'(YF)

and next we define S.2 by applying St to each period €Y of .



230 R. BUNOIU and J. SAINT JEAN PAULIN

So we construct S,z in three steps, corresponding to the three following lem-
mas.

Lemma 3.1. There exists a restriction operator
R: HYY) — HL(Y™)

such that for v € HY(Y) we have:

(3.1) Rv=v if v=0 inYs,
(3.2) divRv=0 inY* if divo=0 inY,
(3.3) [Rolg vy < clvlmy) -

Proof: Let us consider a smooth surface v strictly contained in Y, enclosing
Ys. We denote by Y the domain between v and 0Ys.

Y,

Fig. 3.1 — Domain Y.

As in Lemma 3 of L. Tartar [12], we have the following result:

If v € HY(Y), there exist w € H(Y;), ¢ € L?(Y;)/R such that:
—Aw=—-Av+ Vq in Yy,
1 —
divw:divv—l—T/divvdy in Y,
w|’Y = U"Y? w‘ays =0,

where \?S] represents the measure of Y;. Moreover, there exists a constant c
independent of v such that:

Wl < clolmyy -
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Let us notice that: Y =Y*UY, = (Y* \?S) UY,UYs.
We define the operator R by:

v(y) ifyey*\Yi,
Ro(y) = < w(y) ifyeY,,
0 ifyeYs.

This definition and properties satisfied by the function v imply the relations
(3.1)—(3.3). m

Lemma 3.2. There exists a restriction operator
We: Hy(Y*) — HL(YF)

such that for Rv € H(Y*) we have:

(3.4) W.(Rv) =Rv if Rov=0 in | J(eZ,),
(3.5) divWe(Rv) =0 inY; if divRv=0 inY",
(3.6) e? ’VWa(RUNﬁL?(Y;)]N + ’WE(RU)‘I%Q(YJE) < clolfpgyy -

Proof: Let H!(Z*) be the space defined by:
Hy(2%) = {¢ € H'(Z")| ¢ =0 in 0Z,} .
In the fixed cell Z, let us consider a smooth surface 7 strictly contained in Z.

We denote by Z the domain between 4 and 0Z;. The domain Z is independent
of the parameter €.

. -

L Z.

Fig. 3.2 — Domain Z.
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As in lemma 3 of L. Tartar [12], we have the following result. If @ € H'(Z),

there exist w € H'(Zy), g € L*(Z4)/R such that:

—Aw = —-Au+ Vg in Z,

1 —
divw =divu + — /divﬁdy in Zs,
Ay
1D|;:u|;, 1D|5ZS =0.
Moreover, there exists a constant ¢ independent of @ such that:

’w|H1(Z;) < C’a‘Hl(Z) .

Let us notice that Z = Z* U Z, = (Z* \ Zs) U Zs U Zs.
For every function 4 € H'(Z) we construct an application

W: HY(2) — HY{(ZY)

defined by:

u(z) ifze Z*\ Zs,
(3.7) W(a)(z) = w(z) ifz€ Zy,

0 it z e Zy ,

and satisfying:

(3.8) (W(@) | (z) < cluluz) -

Fig. 3.3 — Cell Y with solid obstacle Y5 and obstacles €Z5.
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Next we apply W to every period €Z of Y \ Y and we obtain a function W,
We: HY(Y™) — HL(YF) ,

satisfying the relations (3.4) and (3.5). We apply W, to Rv € H}(Y*) and using
relation (3.8) we get:

g’ ‘VWS(RU)’[QLQ(Y;)]N + \WE(RU)\I{Q(Y;) < 2 |VRu[f sy + [RO[E 2y -
Since | Rv|m1(yy < ¢|vlp(y), we deduce:
€2WW(RU)|[21L2(Y;)]N + ’W(RU”]%?(YJE) < ol ey,
which is exactly (3.6). u

Lemma 3.3. There exists a restriction operator

Se2: H(l)(Q) — H[l)(QE)

such that:
(3.9) So(v)=v in Q. YveH (),
(3.10) divSe2v =0 in§, if divve=0 inQ,
1 1
(3.11) ‘VS€2U|DL2(Q€)]N < C<5—2 |U|L2(Q) + g |VU|[L2(Q)}N> y
(3.12) [Sezvliaony < e [vlia) +& Vol ) -

Proof: Let S.: H!(Y) — Hl(Yfa) be the application defined by:

S.0(y) W.(Rv)(y) ifyeY™,
el =
Y7 0 ifyev,.

Using the construction of W, we also have:
We(Ro)(y) ify €Yy,
0 otherwise ,

and S. satisfies (3.9)—(3.10).
Due to (3.6), the application S, satisfies:

(313) 82 |ng’U‘[2]L2(YfE)}N + |SEU’]%2(yfa) < C|U|H2-]I1(Y) .
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We define S.2 by applying S to each period €Y. The relation (3.13) then
implies:

et [V S20[faqyn + 18202,y < C(|U\12L2(Q) +é’ ’VU|[21L2(Q)]N) ;
and we deduce relations (3.11)—(3.12). u

Let v be a functin of H(£2). As Vp* € H™1(Q.), we define the application F*
by:
(3.14) (Fe,v)q = (Vp°, Se2v)q

e 7

where S,2 is the operator defined by Lemma 3.3. The following proposition gives
us the extension of the pressure p® to the whole 2. Moreover, we establish a
strong convergence result for this extension. Following the ideas of L. Tartar
[12], we can prove:

Proposition 3.4. Let p° be as in (1.2). Then, for each € there exists an
extension P of p° defined on ) such that:

Pe=p° in Q..
Moreover, up to a subsequence, we have:

(3.15) P? — py strongly in L*(Q)/R .

The function F¢ and the pressure p° are linked by:

(3.16) F*=VP:.

4 — Passage to the limit and 3-scale limit problem

We recall that as in I.-A. Ene [6] we have the following “de Rham”-type result:

Lemma 4.1. Let w € L2(Q x Y x Z) be a function satisfying:

(4.1) ///w(x,y, 2)¢(z,y,z)dedydz = 0,

QY Z

for all function ¢ belonging to D(§2, C;°(Y x Z)) such that:

(4.2) divy ¢(z,y,2) =0, div, ¢(z,y,2) =0.
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Then there exist two functions q € L*(Q,H(Y)/R) and g2 € L*(Q2 x Y,
H(Z)/R) such that:

(43) U}(.fL‘,y,Z) :va1($ay)+qu2($aya Z) :
Let us recall that we denoted by u the 3-scale limit of e~2uf (see relation
(2.9)) and that pg (defined in relation (3.15)) represents the strong limit of the

pressure’s extension in L2(€2). Using Lemma 4.1 and 3-scale convergence results
of §2-83, we prove the main result of this paper:

Theorem 4.2. Let u and py be as before. Then there exist p; € L2(Q,
HL(Y*)/R) and py € L?(Q x Y, H}.(Z*)/R) such that:

(4.4) —Au+Vepo+Vypi +Vepe = f in QxY*x 2.

Proof: We recall the first equation of (1.2):
—?AuF+VpF=f in Q..

We multiply it by a function ¢ € D(2, C;°(Yx Z)) such that div, p(z,y,2) =0
and div, ¢(z,y,z) = 0. Integrating the first term of the left hand side by parts
we get:

EQ/VU‘E(.Z') Vgo(w,z,%) dw—i—/VpE(w)(p(:):,z,%) dr =
e e e e
Qe Qe
T T
Qe

Using the definition of the extension u#, relations (3.14) and (3.16) and making
the additional assumption ¢(z,y,2)=0in Q x Y x Zs (i.e. p(x, £, %) € H}(Q))

) e 22
we obtain:

(4.5)

Passage to the 3-scale limit in (4.5) implies:

///Vzu(a:,y,z) Vep(z,y, 2) dacdydz—///po(x) div, p(z,y,2) dedy dz =

QY*Z* QY*Z*

:///f(x)gp(:v,y,z)d:vdydz.

QY*Z*
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Hence,

[-8euw.y.2) + Varo(w) ~ £(@)] o(a.y.2) dodydz = 0.
QY*Z*

Using the particular form of ¢, Lemma 4.1 then implies relation (4.4). m

Conclusions

Theorem 4.2 and the results of §2 imply the following three-scale system (4.6).

A u+Vepo+Vypr +Vopy = f in QxY*x Z*,
divx//udzdy =0 in €,
Y*Z*
divy/udz:O in QxY*
Z*
div,u=20 in QxY*x Z*,
udydz| -v=20 on Of)
(4.6) Yy )
Y*Z*

u - vz takes opposite values on opposite faces of Z,

/ udz| - vy takes opposite values on opposite faces of Y,
Ze
u-vy =0 on 0Z,
/udz-yy:O on 0Yj .
Ze

Remark 4.3. System (4.6) is obtained in J.-L. Lions [8, Chapter 2, Section 3],
with the method of asymptotic expansion on the velocity and of the pressure. The
first equation is a three-pressure equation. The three pressures pg, p1, p2 are the
three first terms in the asymptotic expansion of the pressure p€. We recall here
that, as in J.-L. Lions [8], we may write the function u in two different ways:

(i) The function u satisfies the homogenized equation (a Darcy-law type):

u(@,y,2) = $(y,2) (F(@) = Vo (@) .

where the function ¢ is solution of a local problem in Y* x Z*.
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1
With the notation M(¢) = Iz // ¢(y, z) dy dz, the function py is
Y* 2z
solution of the following Neumann problem:

(M(9) (f = Vemo), Va) =0, Vge H'(Q) .

(ii) We can also express u by a relation depending of both pressures py and
p1.- We have:

w(@,y,2) = 61(2) (f = Vapol) = Vypr(z,1)) ,

where ¢, is solution of a local problem in Z* and the pressure p;(x,y) is
solution of the following Neumann problem:

(M(¢1) (f — Vepo(z) — Vypl(ai,y)), Vy Q1> =0,

Y*
Vg € HY(Y*), ¢ Y-periodic .

Remark 4.4. The results presented here may be generalized. Let . be a
parameter depending on € such that:
Te

— =0 if e—0.
€

In the domain Q we replace the very small obstacles of order 2 by obstacles of
order r., periodically distributed with periodicity r.. We consider the problem:

—r:Auf+Vp*=f in Q.
(4.7) divut =0 in Q.
ut =0 on 0f), .

The case already treated corresponds to r. = 2.

For the extension of the velocity, solution of (4.7), we can prove the conver-
gences:

LW > u  3-scale ,

Te
rotuE — g ://udzdy weakly in L2(Q) ,
Y*Z*
Vus — V.,u  3-scale .
For the strong convergence of pressure’s extension we have Proposition 3.4,

which still holds. We can prove that velocity and pressure limits satisfy the
system (4.6).
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