PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 3 – 1999

NOTES ON GALOIS EXTENSIONS WITH INNER GALOIS GROUPS

X.-L. JIANG and G. SZETO

Abstract: Let S be a ring with 1, C the center of S, G a finite inner automorphism group of S of order n for some integer n invertible in S where $G = \{g_1, g_2, ..., g_n\}$ and $g_i(s) = U_i s U_i^{-1}$ for some U_i in S and all s in S, and R the subring of all elements fixed under each element in G. Then, S is a G-Galois extension of R which is an Azumaya C-algebra with a Galois system $\{n^{-1}U_i, U_i^{-1}\}$ if and only if S is a projective group ring RG_f for some factor set f which is an H-separable extension of R and R is a separable C-algebra. Moreover, some correspondence relations are given between certain sets of separable subalgebras of such an S.

1 – Introduction

Let S be a ring with 1, G a finite automorphism group of S, $G = \{1, g_2, ..., g_n\}$ for some integer n and R the subring of the elements fixed under each element in G. R. Alfaro and G. Szeto ([1] and [2]) studied the G-Galois extension S of R which is an Azumaya algebra. Let G be an inner automorphism group with $g_i(s) = U_i s U_i^{-1}$ for some U_i and all s in S and assume n is a unit in S. When R is commutative, F.R. DeMeyer [5] showed that S is a central Galois R-algebra if and only if S is an Azumaya projective group R-algebra, where a projective group algebra RG_f is an R-algebra with a basis $\{U_i / i = 1, ..., n\}, rU_i = U_i r$ for all r in R and $U_i U_j = f(g_i, g_j) U_k$ where $g_i g_j = g_k$ and $f: G \times G \to U(R)$ (the units of R) is a factor set. When R is not commutative, S.L. Jiang [8], D.X. Deng and G. Szeto [6] studied the G-Galois extension of R with Galois system

Received: September 10, 1997; Revised: November 18, 1997.

AMS Mathematics Subject Classification: 16S30, 16W20.

 $Keywords\ and\ Phrases:$ Galois extensions, Projective group rings, Azumaya algebras, H-separable extensions.

 $\{n^{-1}U_i, U_i^{-1}\}$. The purpose of the present paper is to characterize such an S in terms of H-separable extensions when R is an Azumaya algebra over C where C is the center of S and two correspondence theorems are also shown between certain sets of separable subalgebras of S.

2 – Preliminaries

Throughout, we assume n is a unit in S and keep the notations as given above. A ring extension A over a subring B is called a separable extension if there exist elements $\{a_i, b_i\}$ in A, i = 1, 2, ..., m, for some integer m such that $\sum a_i b_i = 1$ and $\sum a a_i \otimes b_i = \sum a_i \otimes b_i a$ for all a in A where \otimes is over B. A separable extension of its center is called an Azumaya algebra. If $A \otimes A$ is isomorphic with a direct summand of a finite direct sum of A as an A-bimodule where \otimes is over B, then A is called an H-separable extension of B. It is known that an H-separable extension. Let S be a ring with a finite automorphism group G as given above. Then S is called a G-Galois extension of R if there exist elements $\{c_i, d_i\}$ in S, i = 1, 2, ..., k, for some integer k such that $R = S^G = \{r \ln S / g(r) = r \text{ for all} g \ln G\}$, and $\sum c_i g(d_i) = 0$ for each $g \neq 1$ in G and $\sum c_i d_i = 1$. We call $\{c_i, d_i\}$ a G-Galois system for S. A projective group ring RG_f is defined in the same way as a projective group algebra of a group G over a ring R. Let B be a subring of a ring A, $V_A(B)$ denotes the commutator subring of B in A.

3 – Characterizations of Galois extensions

In this section, we shall give characterizations of a G-Galois extension S of R with Galois system $\{n^{-1}U_i, U_i^{-1}\}$, and of a G-Galois extension S of R which is an Azumaya algebra over the center C of S.

Theorem 3.1. By keeping the notations of Section 2, the following statements are equivalent:

- (1) S is a G-Galois extension of R with Galois system $\{n^{-1}U_i, U_i^{-1}\}$.
- (2) $S = RG_f$.
- (3) $\{U_i\}$ are linearly independent over R.
- (4) $\{g_i R_i\}$ are linearly independent in Hom(S, S) over R, where $R_i(s) = sU_i$ for each i and all s in S.

NOTES ON GALOIS EXTENSIONS WITH INNER GALOIS GROUPS 267

Proof: (1) \rightarrow (2). The proof of $RG_f \subset S$ is given on pp. 289–290 in [5] with G-Galois system $\{n^{-1}U_j, U_j^{-1}\}$. That is, we first claim that $\{U_i\}$ are linearly independent over R. Let $\sum r_i U_i = 0$ for some r_i in R. Then for each g_k in G,

$$D = \sum n^{-1} U_j \left(\sum r_i U_i \right) \left(g_k^{-1} (U_j^{-1}) \right)$$

= $\sum n^{-1} U_j \left(\sum r_i g_i \left(g_k^{-1} (U_j^{-1}) \right) U_i \right)$
= $\sum r_i \left(\sum n^{-1} U_j \left(g_i g_k^{-1} (U_j^{-1}) \right) \right) U_i$
= $r_k U_k$

(for $\{n^{-1}U_j, U_j^{-1}\}$ is a *G*-Galois system). Thus $r_k = 0$ and so $\{U_i\}$ are linearly independent over *R*. Next, we define $f: G \times G \to U(R)$ by $f(g_i, g_j) = U_i U_j U_k^{-1}$, where $g_i g_j = g_k$. Then it is straightforward to verify that *f* is a factor set such that $RG_f = \sum RU_i \subset S$. For $S \subset RG_f$, we first claim that RG_f is a *G'*-Galois extension of *R* with Galois group *G'* induced by and isomorphic with *G*. Clearly, RG_f is invariant under *G*. Let $g_i = g_j$ acting on RG_f . Then $g_i(U_k) = g_j(U_k)$, $U_i U_k U_i^{-1} = U_j U_k U_j^{-1}$ for all k = 1, ..., n. Hence $(U_i^{-1}U_j) U_k = U_k (U_i^{-1}U_j)$. Thus $U_i^{-1}U_j$ is in *R*, $U_j = U_i t$ for some *t* in *R*. But $\{U_i\}$ are *R*-linearly independent in RG_f , so i = j. This implies that $G' \cong G$. Next, since $\{n^{-1}U_i, U_i^{-1}\}$ is a *G*-Galois system contained in RG_f , RG_f is a *G'*-Galois extension of *R* with $G' \cong G$. Moreover, since *S* is also a *G*-Galois extension of *R*, $S = RG_f$.

 $(2) \rightarrow (1)$. The proof is given by Theorem 3 in [5] to show that $\{n^{-1}U_i, U_i^{-1}\}$ is a *G*-Galois system for *S* over *R*. $(2) \rightarrow (3)$ is clear. $(3) \rightarrow (1)$ is immediate because that $\{U_i\}$ are linearly independent over *R* implies that $S = RG_f$. $(4) \rightarrow (3)$. Let $\sum r_i U_i = 0$ for some r_i in *R*. Then $\sum r_i (U_i s U_i^{-1}) U_i = 0$ for all *s* in $S, \sum r_i g_i(s) U_i = 0$, that is, $\sum r_i g_i(sU_i) = 0$, or, $\sum r_i g_i R_i(s) = 0$. Hence $\sum r_i (g_i R_i) = 0$ in Hom(S, S). This $r_i = 0$ for each *i* by (4). $(3) \rightarrow (4)$ is immediate by reversing each step of $(4) \rightarrow (3)$.

Let S be a G-Galois extension of R with Galois system $\{n^{-1}U_i, U_i^{-1}\}$ as given in Theorem 3.1. When S is also an Azumaya algebra over its center C, we shall characterize such an S in terms of H-separable extensions. We note that $C \subset R$ for G is inner.

Theorem 3.2. The following statements are equivalent:

- (1) $S = RG_f$ and S is an Azumaya C-algebra.
- (2) $S = RG_f$, S is an H-separable extension of R and R is a separable C-algebra.

(3) S is a G-Galois extension of R with Galois system $\{n^{-1}U_i, U_i^{-1}\}$ and R is an Azumaya C-algebra.

Proof: $(1) \rightarrow (2)$. Since RG_f is an Azumaya *C*-algebra and RG_f is a free R-module of rank n, RG_f is an H-separable extension of R ([7], Theorem 1). Also, noting that R is an R-direct summand of RG_f and that RG_f is separable over C, we have that R is a separable C-algebra ([4], the proof on p. 120).

 $(2) \rightarrow (1)$. By the transitivity of separable extensions, RG_f is a separable C-algebra. Since $RG_f = S$, RG_f is an Azumaya C-algebra.

 $(1) \rightarrow (3)$. Let $\Delta = V_S(R)$ the commutator subring of R in S. Then $RG_f = R\Delta$ (for $\{U_i\} \subset \Delta$). Since R is an R-direct summand of RG_f and RG_f is a free R-module of rank n, R is a separable C-algebra ([4], the proof on p. 120). Also, $S = RG_f$ so S is a G-Galois extension of R with Galois system $\{n^{-1}U_i, U_i^{-1}\}$ by Theorem 3.1. Noting that RG_f is an Azumaya C-algebra by hypothesis, R is an Azumaya C-algebra ([3], Theorem 4.4, p. 58).

 $(3) \rightarrow (1)$. By the transitivity of separable extensions and Theorem 3.1, $RG_f = S$ and is an Azumaya *C*-algebra.

Next we derive a structure theorem for the skew group ring of G over RG_f as given in Theorem 3.2.

Theorem 3.3. Let S with center C be given in Theorem 3.2 and denote the skew group ring of G over S by S^*G . Then $S^*G \cong M_n(R)$, the matrix ring of order n over R.

Proof: Let $\Delta = V_S(R)$ where $S = RG_f$ by Theorem 3.2. Then $\Delta = \sum CU_i$ by a direct computation. But Δ is a *C*-algebra, so $U_i U_j = f(g_i, g_j) U_k$ is in Δ where $g_i g_j = g_k$ in *G*. Hence $f : G \times G \to U(C)$ (= units of *C*). Thus $S = RG_f \cong R \otimes CG_f$ where CG_f is a projective group algebra over *C*, where \otimes is over *C*. Therefore,

$$S^*G \cong \operatorname{Hom}_R(R \otimes CG_f, R \otimes CG_f)$$
$$\cong R \otimes \operatorname{Hom}_C(CG_f, CG_f)$$
$$\cong R \otimes M_n(C)$$
$$\cong M_n(R) . \blacksquare$$

NOTES ON GALOIS EXTENSIONS WITH INNER GALOIS GROUPS 269

4 – Correspondences of separable subalgebras

In this section, we shall give two correspondence theorems for an Azumaya projective group ring as given in Theorem 3.2. Let RG_f be an Azumaya algebra over its center C, $C = \{\text{separable } C\text{-subalgebras of } RG_f \text{ contained in } R\}$ and $\mathcal{D} = \{\text{separable } C\text{-subalgebras of } RG_f \text{ containing } CG_f\}$. We shall show that Cand \mathcal{D} are in a one-to-one correspondence. We begin with a lemma for a separable subalgebra of an Azumaya algebra.

Lemma 4.1. Let A be an Azumaya algebra over its center C and T a separable subalgebra of A. Then

- (1) T and $V_A(T)$ (the commutator subring of T in A) are Azumaya algebras over the same center D,
- (2) $T \cap V_A(T) = D$.

Proof: (1) By the commutant theorem for Azumaya algebras ([3], Theorem 4.3), $V_A(T)$ is a separable subalgebra of A and $V_A(V_A(T)) = T$. Let D be the center of T. Then $D \subset V_A(T)$ and $D \subset T = V_A(V_A(T))$. Hence $D \subset$ the center of $V_A(T)$. Conversely, the center of $V_A(T) \subset V_A(V_A(T)) = T$, so the center of $V_A(T) \subset D$. Thus (1) holds.

(2) $D \subset T \cap V_A(T)$ is clear. Conversely, for any d in $T \cap V_A(T)$, d is in T and in $V_A(T)$, so d is in D because $T = V_A(V_A(T))$ again.

Lemma 4.2.

- (1) Let B be a separable subalgebra of RG_f containing R. Then $B \cap (CG_f)$ is a separable subalgebra contained in CG_f .
- (2) Let E be a separable subalgebra of RG_f containing CG_f . Then $E \cap R$ is a separable subalgebra contained in R.

Proof: Let S be RG_f and T be CG_f .

(1) Let $A = V_S(B)$. Then A is a separable subalgebra contained in T. Since T is an Azumaya C-algebra, $V_T(A)$ and $V_S(A)$ (= B) are separable subalgebras such that $V_T(A) = B \cap T$. Hence $B \cap T$ is a separable subalgebra contained in T.

Part (2) is similar. \blacksquare

Theorem 4.3. The map $\alpha : \mathcal{C} \to \mathcal{D}$ by $B \to B(CG_f)$ for any B in \mathcal{C} is bijective with the inverse map $\beta : A \to A \cap R$ for any A in \mathcal{D} .

Let S be RG_f and T be CG_f . Since B is a separable subalge-**Proof:** bra contained in R and T is an Azumaya subalgebra of the Azumaya algebra S, $\alpha(B) = BT$ is in \mathcal{D} . But R is a C-direct summand of S, so $\beta\alpha(B) = BT \cap R = B$. This implies that α is an injection. Next, let E be a separable subalgebra containing T. Then $V_S(E) \subset R$ (for $T \subset E$ and $V_S(T) = R$). Hence $V_S(E) = V_R(E)$. Denote $V_R(E)$ by F. Since E is a separable subalgebra of the Azumaya algebra S, F is also a separable subalgebra contained in R by Lemma 4.1; and so E, F (= $V_S(E)$) and $V_R(F)$ are Azumaya algebras over the same center D by Lemma 4.1 again. $V_R(F) \subset V_S(F) = V_S(V_S(E)) = E$ as Azumaya algebras over D and T is an Azumaya C-algebra contained in E, so $V_R(F)T$ is an Azumaya D-subalgebra of E. Thus $E \cong V_R(F)T \otimes V_E(V_R(F)T)$ by the commutant theorem for Azumaya algebras where \otimes is over D ([3], Theorem 4.3). Noting that $V_R(F) = V_R(V_S(E)) = R \cap V_S(V_S(E)) = R \cap E$ and that $V_E(V_R(F)T) = E \cap (V_S(V_R(F)T)) = E \cap V_R(V_R(F)) = E \cap F \text{ (for } V_S(T) = R),$ we have that $E \cong (R \cap E) T \otimes (E \cap F) \cong (R \cap E) (E \cap F) T$ by the multiplication map ([3], Theorem 4.3). Since $E \cap F \subset E \cap R$, $E = (E \cap R)T$. Since $E \cap R = V_R(F)$ is in C by Lemma 4.2, α is a surjective with the inverse map β . Therefore \mathcal{C} and \mathcal{D} are in a one-to-one correspondence.

In the following, we want to establish a one-to-one correspondence between the set of separable subalgebras containing R and the set of separable subalgebras contained in CG_f . Let $\mathcal{C}' = \{\text{separable } C\text{-subalgebras of } RG_f \text{ containing } R\}$ and $\mathcal{D}' = \{\text{separable } C\text{-subalgebras of } RG_f \text{ containing } n\}$. Then we have

Theorem 4.4. Let RG_f be an Azumaya *C*-algebra as given in Theorem 3.3. Then \mathcal{C}' and \mathcal{D}' are in a one-to-one correspondence under $\alpha \colon B \to B \cap CG_f$ with the inverse map $\beta \colon E \to RE$ for any B in \mathcal{C}' and E in \mathcal{D}' .

Proof: Let S be RG_f and T be CG_f . At first, we note that α is well defined by Lemma 4.2 and $\alpha\beta(E) = RE \cap T = E$ for any E in \mathcal{C}' , so β is an injection. Next we claim that $B = R(B \cap T)$ for any B in \mathcal{C}' . In fact, since $R \subset B$ is a separable C-subalgebra of S, $V_S(B) \subset T$ is a separable subalgebra with the same center as B by Lemma 4.1. Let the center of B be D and $V_S(B)$ be F. T is an Azumaya C-algebra, so $V_S(F)$ is a separable subalgebra with the same center D as F by Lemma 4.1 again. But R and T are Azumaya C-algebras, so $RV_T(F) \subset R(V_S(F)) = B$ as Azumaya subalgebras over D. Thus $B \cong R(V_T(F)) \otimes V_B(R(V_T(F)))$, where \otimes is over D. Moreover, $V_T(F) = T \cap V_S(F) = T \cap V_S(V_S(B)) = T \cap B$, and $V_B(R(V_T(F))) = T \cap V_B(V_T(F)) = T \cap B \cap V_S(V_T(F)) = B \cap V_T(V_T(F)) = B \cap F = D$ by Lemma 4.1. Thus

 $B \cong R(V_T(F)) \otimes D \cong R(V_T(F)) = R(T \cap B)$. Noting that $T \cap B$ is in \mathcal{D}' , we conclude that α is surjective.

We close the paper with three examples:

- (1) S is a G-Galois extension of R such that $S = RG_f$, $C \subset R$, and R is an Azumaya C-algebra,
- (2) S is a G-Galois extension of R such that $S = RG_f$, $C \subset R$, but R is not an Azumaya C-algebra,
- (3) S is a G-Galois extension of R but $\{n^{-1}U_i, U_i^{-1}\}$ is not a G-Galois system.

Example 1. Let R be a 2 by 2 matrix algebra over the rational field Q, S = R[i, j, k], the quaternion ring over R, and $G = \{1, g_i, g_j, g_k\}$ where $g_i(s) = i s i^{-1}$, $g_j(s) = j s j^{-1}$, and $g_k(s) = k s k^{-1}$ for all s in S. Then

- (1) $S^G = R$.
- (2) S is a G-Galois extension of R with a G-Galois system $\{4^{-1}, 4^{-1}i, 4^{-1}j, 4^{-1}k; 1, i^{-1}, j^{-1}, k^{-1}\}$. Hence $S = RG_f$.
- (3) The center C of $S = Q \subset R$.
- (4) R is an Azumaya C-algebra.

Thus S satisfies the hypotheses of Theorem 3.2.

Example 2. Let R and S be given in Example 1, $G = \{1, g_i\}$. Then

- (1) $S^G = R[i].$
- (2) S is a G-Galois extension of R[i] with a G-Galois system $\{2^{-1}, 2^{-1}i; 1, i^{-1}\}$. Hence $S = S^G G_f$.
- (3) The center of $S^G = Q[i] \neq Q = C$, so S^G is not an Azumaya C-algebra.

Thus S satisfies the hypotheses of Theorem 3.1 but not Theorem 3.2.

Example 3. Let *S* be a 2 by 2 matrix algebra over the rational field *Q*, $G = \{1, g\}, g(s) = U s U^{-1}$ where $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for all *s* in *S*. Then *S* is a *G*-Galois extension of S^G with a *G*-Galois system, $\{\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}\};$ but $\{2^{-1}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 2^{-1}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1}\}$ is not a *G*-Galois system. Thus $S \neq S^G G_f$ by Theorem 3.1.

ACKNOWLEDGEMENT – This paper was revised under the suggestions of the referee. The author would like to thank him for his suggestions.

REFERENCES

- ALFARO, R. and SZETO, G. Skew group rings which are Azumaya, Comm. in Algebra, 23(6) (1995), 2255–2261.
- [2] ALFARO, R. and SZETO, G. On Galois extensions of an Azumaya algebra, Comm. in Algebra, 25(6) (1997), 1873–1882.
- [3] DEMEYER, F.R. and INGRAHAM, E. Separable Algebras over Commutative Rings, Vol. 181, Springer Verlag, Berlin, Heidelberg, New York, 1771.
- [4] DEMEYER, F.R. Some notes on the general Galois theory, Osaka J. Math., 2 (1965), 117–127.
- [5] DEMEYER, F.R. Galois theory in separable algebras over commutative rings, *Illinois J. Math.*, 10 (1966), 287–295.
- [6] DENG, X.D. and SZETO, G. On a class of free Galois extensions, Portugaliae Math., 51 (1994), 103–108.
- [7] IKEHATA, S. Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ., 23 (1981), 17–18.
- [8] JIANG, X.L. A Galois theorem for projective group rings, Math. J. Ann., 17A(6) (1966), 737–744.
- [9] SUGANO, K. On a special type of Galois extensions, Hokkaido Math. J., 9 (1980), 23–128.

Xiao-Long Jiang, Mathematics Department, Zhongshan University, 510275 Guangzhou – P. R. CHINA

and

George Szeto, Mathematics Department, Bradley University, Peoria, Illinois, 61625 – U.S.A.