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Abstract: A nonlinear system for the heat diffusion inside a material subject to

phase changes is considered. A thermal memory effect is assumed in the heat conduction

law; moreover, on account of thermodynamical considerations, a linear growth is allowed

for the latent heat density. The resulting problem couples a second order integrodifferen-

tial equation, derived from the balance of energy, with a fourth order parabolic inclusion

which rules the evolution of an order parameter χ. Homogeneous Neumann boundary

conditions guarantee that the space average of χ is conserved in time. Global existence

of solutions is proved in a variational setting.

Introduction

Let us consider a smooth, bounded, and connected domain Ω ⊂ R3 and fix a

final time T > 0. We also set Γ := ∂Ω, Qt :=Ω×(0, t) for 0 < t ≤ T , Q :=QT ,

Σ :=Γ×(0, T ) and suppose that Ω is filled with a homogeneous material where a

heat diffusion process takes place, possibly leading to a phase transition. In or-

der to represent the evolution of such a phenomenon, we appeal to the conserved
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phase field model with memory (see [7, 8, 19]) in a quite general framework.

Hence, the thermodynamical state of the substance at (x, t) is described by the

(relative) temperature θ and the order parameter χ, which in most cases is as-

sumed to attain values in between, say, 0 and 1 and whose spatial mean value is

conserved in time. Referring to [7] and, especially, to [19] for more details about

the modeling, we point out that a thermal memory effect is also accounted for, by

assuming that the heat flux only depends on the past history of the temperature

gradient through a (smooth) convolution kernel k : [0, T ] → R. Thus, if λ′(χ)

denotes the (possibly nonconstant) latent heat of the fusion-solidification process,

the resulting differential system reads as follows

(θ + λ(χ))′ −∆(k ∗ θ) = g ,(1)

χ′ −∆
(
−∆χ+ β(χ) + σ′(χ)− λ′(χ) θ

)
3 0 ,(2)

in Q, where we have set

(k ∗ θ)(x, t) :=
∫ t

0
k(t− s) θ(x, s) ds , (x, t) ∈ Q ,

and g is a given source term, β a maximal monotone graph in R×R, while σ ′, λ′

are Lipschitz continuous functions. To be more precise, the sum β+σ ′ stands for

the derivative (in a suitable sense) of the double-well part of a Ginzburg–Landau

free energy potential [5, 20]. In view of a mathematical analysis, Cauchy and

Neumann boundary conditions have to be added to the system (1)–(2). The

latter ones will be homogeneous as far as χ and the so-called chemical potential

w :=−∆χ + β(χ) + σ′(χ) − λ′(χ) θ are concerned. Consequently, it is easy to

deduce from (2) that the space average of χ remains constant in time.

Phase-field models, possibly accounting for memory effects, have been exten-

sively investigated in recent years (see, e.g., [4, 6, 9, 11, 12, 13, 16] and references

therein). For a partial comparative review of the related work, we refer to the

Introduction of [7]. In that paper, the above problem was analyzed. In particu-

lar, existence and uniqueness were proved in the case of a nonlinearity λ with at

most a linear growth at infinity (see Theorem 2.1 in [7]). Instead, in this note,

the function λ is allowed to be quadratic. This choice, which seems unusual in

the classical framework of Stefan problems, becomes rather appropriate in other

modeling contexts (see [14, 15, 20, 21]). Therefore, our goal consists in showing

that the existence part of Theorem 2.1 in [7] still holds when λ′ is (no longer

bounded but) only Lipschitz continuous. The key argument for the proof relies

on the choice of a suitable test function (which involves some technical details)

combined with a bootstrap procedure.
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It is worth mentioning that the nonconserved phase-field model with memory

and quadratic nonlinearity (which basically differs from (1)–(2) because of a sec-

ond order dynamics for χ) has been already deeply investigated. In [2], existence

and uniqueness of the solution are proved when the additional diffusion term

−k0∆θ, k0 > 0, is present on the left hand side of (1) (see also [12] for the long-

time behaviour and the existence of attractors). On the other hand, the system

related to (1) has been analyzed in [9]. There, the authors show the existence

of a solution to the corresponding initial and boundary value problem as well as

they discuss the asymptotic behaviour in time. Subsequently, in [10], the same

authors also derive a uniqueness result via a maximum principle argument which

is established by a Moser-type technique. Apparently, this procedure cannot be

applied to our fourth order kinetic equation (2) and we let the uniqueness issue

for our model remain open.

Here is the plan of the paper. In the next Section 2, a precise variational

formulation of the initial and boundary value problem associated with (1)–(2)

is given and the related existence theorem is stated. Then, we introduce an

approximating problem to which the existence result of [7] applies. In Section 3,

we derive some basic a priori estimates, which partly follow the ones performed

in the quoted paper. Finally, in Section 4, we are able to pass to the limit and

achieve the existence proof.

2 – Main result and approximation

We start by listing our hypotheses on β, k, λ, and σ. Let

j : R → [0,+∞] be proper, convex, and lower semicontinuous ,(3)

j(0) = 0 , β = ∂j and β(0) 3 0 ,(4)

k ∈W 2,1(0, T ) and k(0) > 0 ,(5)

λ, σ ∈ C1(R) , λ′ and σ′ be Lipschitz continuous .(6)

Then, we indicate byD(j) andD(β) the effective domains of j and β, respectively.

As usual, the introduction of a variational formulation for (1)–(2) requires

some machinery. First of all, we define V :=H1(Ω) and H = H ′ :=L2(Ω), in

order that (V,H, V ′) forms a Hilbert triplet. Moreover, we denote by 〈·, ·〉 the
duality pairing between V ′ and V , while ‖ · ‖ and ‖ · ‖∗ are the standard norms

in V and V ′, respectively. Also, | · | stands for the norm in H or H3 = (L2(Ω))3

and (·, ·) is the corresponding scalar product. Besides the notation, we also need
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to introduce the variational form of the Laplacian with homogeneous Neumann

boundary conditions as follows

(7) 〈Au, v〉 :=
∫

Ω
∇u · ∇v dx for all u, v ∈ V .

Observe that A : V → V ′ is not invertible; however, if we set

(8) V0 :=
{
v ∈ V : 〈v, 1〉 = 0

}
and V ′

0 :=
{
u ∈ V ′ : 〈u, 1〉 = 0

}
,

then it is straightforward to see that the restriction of A to V0 is an isomorphism

of V0 onto V ′
0 . In this case, let us call N the inverse of A restricted to V0.

In order to state our existence theorem, let us make a change of unknowns.

Setting u := 1 ∗ θ, we can rewrite equation (1) in terms of (u, χ); on account of

well-known properties of convolutions and taking advantage of (6), the obtained

equation turns out to have a hyperbolic character (cf. [6] for more details). We

are now able to present the main result.

Theorem 2.1. Assuming (3)–(6) and

g ∈ L1(0, T ;H) +W 1,1(0, T ;V ′) ,(9)

θ0 ∈ H , χ0 ∈ V , j(χ0) ∈ L1(Ω) ,(10)

m(χ0) := |Ω|−1
∫

Ω
χ0 dx ∈ IntD(β) ,(11)

there exists one quadruplet of functions (u, χ,w, ξ) enjoying the regularity prop-

erties

u ∈ C1([0, T ];H) ∩ C0([0, T ];V ) ,(12)

χ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ,(13)

w ∈ L2(0, T ;V ) ,(14)

ξ ∈ L2(0, T ;H)(15)

and satisfying the relations

(u′ + λ(χ))′ + k(0)Au = g −A(k′ ∗ u) in V ′, a.e. in (0, T ) ,(16)

χ′ +Aw = 0 in V ′, a.e. in (0, T ) ,(17)

w = Aχ+ ξ + σ′(χ)− λ′(χ)u′ in V ′, a.e. in (0, T ) ,(18)

ξ ∈ β(χ) a.e. in Q ,(19)

u(0) = 0, u′(0) = θ0, χ(0) = χ0 a.e. in Ω .(20)
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Let us observe that this result is perfectly analogous to the corresponding

Theorem 2.1 of [7], where λ was also assumed to be Lipschitz continuous. Con-

sequently, in order to apply that theorem, we shall approach the problem by

operating a suitable truncation of λ′. However, if only this approximation is

done, we are not able to perform in a rigorous way the a priori estimates that are

needed to generalize the existence part of the quoted theorem. For this reason,

rather than proceeding formally, we prefer to regularize β as well. This choice

allows us to estimate ξ by a new argument, which is different and more delicate

than the one used in [7].

Thus, we substitute β with its Yosida regularization βε (cf. [3]) and we ap-

proximate λ, for instance, in this way

(21) λε(r) = λ(0) +

∫ r

0
λ′ε(s) ds , λ′ε(r) :=





λ′(−ε−1) if r ≤ −1/ε,
λ′(r) if −1/ε < r < 1/ε,

λ′(ε−1) if r ≥ 1/ε,

where ε > 0 is the approximation parameter, intended to go to 0 in the limit.

Replacing now β, λ by βε, λε into (16)–(20), we obtain a system to which Theo-

rem 2.1 of [7] can be applied. This yields the ε-solution (uε, χε, wε, ξε) enjoying

the regularity properties (12)–(15). In addition, the Lipschitz continuity of βε

also implies ξε ∈ C0([0, T ];H). In the next section, our goal will be that of

deriving some a priori estimates, independent of ε, for the ε-solution.

3 – A priori estimates

Throughout this section, whenever we mention relations (16)–(20), we always

refer to their approximate formulations involving the ε-solution. Moreover, C

will denote a positive constant which may depend on data, but it is always inde-

pendent of ε. This generic constant can vary from line to line.

First estimate. Test (16) by u′ε, (17) by Nχ′ε, and (18) by χ′ε. Integrate

over (0, t), with 0 < t ≤ T , and add the results together. Proceeding exactly as

in [7], we find out that

(22) ‖uε‖L∞(0,T ;V )∩W 1,∞(0,T ;H) + ‖χε‖L∞(0,T ;V )∩H1(0,T ;V ′) ≤ C .

Notice that λ does not play any role in this step, since the two related terms

in (16) and (18) cancel out. Furthermore, observe that the procedure is just



164 P. COLLI, G. GILARDI, M. GRASSELLI and G. SCHIMPERNA

formal, due to the low regularity of the test functions; for a rigorous argument we

should argue as, e.g., in [7], where this estimate is obtained in a Faedo–Galerkin

approximation scheme.

Second estimate. Let us consider the function φ ∈ C1(R) specified by

(23) φ(r) :=





r

2
+

1

2
sin

(
π r

2

)
if |r| ≤ 1,

|r|1/2 sign(r) if |r| > 1 .

Moreover, for any t ∈ (0, T ], define xε(t) as the unique solution of the equation

(24) Φ(t, xε(t)) = 0, where Φ(t, r) :=

∫

Ω
φ
(
ξε(x, t)− r

)
dx, r ∈ R .

As Φ is continuous in [0, T ]×R, note that the existence and uniqueness of xε(t)

are guaranteed by the behaviour at infinity and the strict monotonicity of Φ with

respect to the second variable. Furthermore, since ξε ∈ C0([0, T ];H), then ∂rΦ

is continuous and the implicit function theorem easily yields xε ∈ C([0, T ]).

Now, thanks to the Lipschitz continuity of φ, we see that φ(ξε − xε) is an

admissible test function for (18). Moreover, its spatial mean value is 0. Then, we

can use (17) and derive

(25)

∫

Ω
φ′(ξε − xε)(t)β

′
ε(χε(t)) |∇χε(t)|2 +

(
ξε(t), φ(ξε − xε)(t)

)
=

=
(
Fε(t), φ(ξε − xε)(t)

)
,

where we have set

Fε := −Nχ′ε − σ′(χε) + λ′(χε)u
′
ε .

Owing to (6), to (22), and to the continuous embedding V ⊂ L6(Ω), we easily

deduce that Fε is bounded in L2(0, T ;L3/2(Ω)) independently of ε. Hence, from

(25) and Young’s inequality, we derive

(
ξε(t), φ(ξε(t)− xε(t))

)
≤

≤
∫

Ω
|Fε(t)|

(
1 + |ξε(t)− xε(t)|1/2

)

≤ ‖Fε(t)‖L1(Ω) +
2

3
‖Fε(t)‖3/2L3/2(Ω)

+
1

3
‖ξε(t)− xε(t)‖3/2L3/2(Ω)

.
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Therefore, we also have that

‖ξε(t)− xε(t)‖3/2L3/2(Ω)
≤

≤
∫

Ω

(
(ξε − xε)(t)φ(ξε − xε)(t) + 1

)

≤
(
ξε(t), φ(ξε(t)− xε(t))

)
+ |Ω|

≤ |Ω|+ ‖Fε(t)‖L1(Ω) +
2

3
‖Fε(t)‖3/2L3/2(Ω)

+
1

3
‖ξε(t)− xε(t)‖3/2L3/2(Ω)

,

where |Ω| stands for the Lebesgue measure of Ω. Now, from (27) it is a standard

matter to infer the bound

(28) ‖ξε − xε‖L2(0,T ;L3/2(Ω)) ≤ C .

At this point, we can repeat the argument of Kenmochi, Niezgódka, and Pawlow

[17] (already used and detailed in [7]) to deduce, for a suitable δ > 0,

(29)
δ ‖ξε(t)‖L1(Ω) ≤

∫

Ω
(ξε(t)− xε(t)) (χε(t)−m0) + C

≤ ‖ξε(t)− xε(t)‖L3/2(Ω) ‖χε(t)−m0‖L3(Ω) + C ,

where δ is fixed and depends on the position ofm0 inside the domain D(β). Thus,

on account of (22) and (28), we derive the bound

(30) ‖ξε‖L2(0,T ;L1(Ω)) ≤ C .

The above estimate can be improved by simply using the fact that xε(t) is

constant in Ω for almost any t ∈ (0, T ). Indeed, we have that

(31)

∫

Ω
|ξε(t)|3/2 ≤

√
2

∫

Ω
|ξε(t)− xε(t)|3/2 +

√
2

∫

Ω
|xε(t)|3/2

≤
√
2

∫

Ω
|ξε(t)− xε(t)|3/2 +

√
2 |Ω|−1/2

(∫

Ω
|xε(t)|

)3/2

≤
√
2 ‖ξε(t)− xε(t)‖3/2L3/2(Ω)

+
√
2 |Ω|−1/2

(∫

Ω
|ξε(t)− xε(t)| +

∫

Ω
|ξε(t)|

)3/2

whence it is easy to infer

‖ξε‖L2(0,T ;L3/2(Ω)) ≤
≤ C ‖ξε − xε‖L2(0,T ;L3/2(Ω)) + C ‖ξε − xε‖L2(0,T ;L1(Ω)) + C ‖ξε‖L2(0,T ;L1(Ω))
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so that, recalling (28) and (30), we obtain the desired estimate

(32) ‖ξε‖L2(0,T ;L3/2(Ω)) ≤ C .

Third estimate. We test both (17) and (18) by wε. Adding and integrating

over (0, t) for 0 < t ≤ T , we get

(33)

∫ t

0
‖wε(s)‖2 ds = −

∫ t

0
(χ′ε(s), wε(s)) ds +

∫ t

0
(∇χε(s),∇wε(s)) ds

+

∫ t

0

((
ξε + σ′(χε)− λ′ε(χε)u

′
ε

)
(s), wε(s)

)
ds

≤ C +
1

2

∫ t

0
‖wε(s)‖2 ds ,

where the last inequality follows as a consequence of (22) and (32), provided we

take the continuous embedding V ⊂ L6(Ω) into account. We finally see that

(34) ‖wε‖L2(0,T ;V ) ≤ C .

Fourth estimate. By comparison in (18), we easily infer that Aχε is

bounded in L2(0, T ;L3/2(Ω)) independently of ε, whence classical elliptic reg-

ularity results yield

(35) ‖χε‖L2(0,T ;W 2,3/2(Ω)) ≤ C .

Fifth estimate. It is now possible to rewrite (18) in the form

(36) χε +Aχε + ξε = F̃ε in V ′, a.e. in (0, T ) ,

where

(37) F̃ε := χε + wε − σ′(χε) + λ′ε(χε)u
′
ε .

Recalling (6), (22), (34)–(35) and taking advantage of the inclusion W 2,3/2(Ω) ⊂
Lp(Ω), which holds for any p ∈ [1,+∞), one can easily verify that

(38) ‖F̃ε‖L2(0,T ;L2−δ(Ω)) ≤ Cδ for all δ ∈ (0, 1] .

We now apply to the elliptic equation (36) the following monotonicity argu-

ment. If F̃ε ∈ L2(0, T ;Lq(Ω)) for some q ∈ (1,∞), then χε and ξε belong to

L2(0, T ;Lq(Ω)); whence also Aχε ∈ L2(0, T ;Lq(Ω)). Therefore, we conclude that

(39) ‖ξε‖L2(0,T ;L2−δ(Ω)) + ‖χε‖L2(0,T ;W 2,2−δ(Ω)) ≤ Cδ .
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Then, since W 2,2−δ(Ω) ⊂ L∞(Ω) for δ < 1/2, going back to (37), we can improve

(38) as follows

(40) ‖F̃ε‖L2(0,T ;H) ≤ C ,

so that (36) implies

(41) ‖ξε‖L2(0,T ;H) + ‖χε‖L2(0,T ;H2(Ω)) ≤ C .

We eventually observe that estimates (22), (34), and (41) are the same as the ones

entailed by (4.38), (4.47)–(4.48) of [7]. In particular, such regularity properties

still hold for the solution to the original problem which is obtained in the next

section by passing to the limit as ε→ 0.

4 – Passage to the limit

First of all, recalling (6) and (21) we observe that

(42) λε → λ and λ′ε → λ′ uniformly on compact subsets of R .

Moreover, in view of (22), (34), and (41), there exist functions u, χ, w, ξ such

that, at least on a subsequence of ε→ 0,

uε → u weakly star in L∞(0, T ;V ) ∩W 1,∞(0, T ;H) ,(43)

χε → χ weakly star in L∞(0, T ;V ) ,(44)

χε → χ weakly in H1(0, T ;V ′) ∩ L2(0, T ;H2(Ω)) ,(45)

wε → w weakly in L2(0, T ;V ) ,(46)

ξε → ξ weakly in L2(0, T ;H) .(47)

We aim to show that the quadruplet (u, χ,w, ξ) fulfills the conditions required

in Theorem 2.1. Now, (13)–(15) follow at once, while the regularity (12) is not

simply ensured by (43) and will be discussed later on. On the other hand, to

show the validity of (16)–(20), we start by observing that, thanks to (43)–(45),

the Aubin compactness lemma (see, e.g., [18, p. 58]) gives

uε → u strongly in C0([0, T ];H) ,(48)

χε → χ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) .(49)

Hence, (6) immediately yields

(50) σ′(χε)→ σ′(χ) strongly in C0([0, T ];H) .
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Instead, the term λε(χε) deserves a more careful analysis, because of the quadratic

growth of λ. We first remark that (6) implies the existence of a constant L > 0

such that

(51) |λε(r)| ≤ L(1 + |r|2) for all r ∈ R and ε > 0

(of course, this also holds for λ). In addition, with the help of (42), it is not

difficult to verify that

(52) χε → χ and λε(χε)→ λ(χ) a.e. in Q ,

possibly up to the extraction of another subsequence. Moreover, by virtue of

(44), (51) and exploiting the continuous embedding V ⊂ L6(Ω), we can deduce

the bound

(53) ‖λε(χε)‖L∞(0,T ;L3(Ω)) ≤ C .

Thus, (52) and (53) entail (cf., e.g., [18, Lemme 1.3, p. 12])

λε(χε)→ λ(χ) weakly star in L∞(0, T ;L3(Ω))(54)

and strongly in L2(0, T ;H) .

The same argument applied to λ′ yields in particular

(55) λ′ε(χε)→ λ′(χ) strongly in L2(0, T ;H) ,

which, combined with (43), entails

λ′ε(χε)u
′
ε → λ′(χ)u′ weakly in L1(Q) .

Recalling (43)–(50) and (54)–(55), we now have enough information to pass

to the limit in the ε-approximation of (16)–(18) and also to deduce the first and

third conditions in (20). In order to complete the proof, it is convenient to take

the limit of the integrated version of (16), as well. This gives

(56) u′ + λ(χ) + k(0)A(1 ∗ u) = θ0 + λ(χ0) + 1 ∗ g −A(k′ ∗ 1 ∗ u)

in V ′, a.e. in (0, T ). Now, (13) and (6) entail λ(χ) ∈ L2(0, T ;V ) and χ ∈
C0([0, T ];L4(Ω)), whence the inequality

|λ(r1)− λ(r2)| ≤
∣∣∣∣
∫ r2

r1
λ′(η) dη

∣∣∣∣ ≤ L1
(
1 + |r1|+ |r2|

)
|r1 − r2| ,
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holding for all r1, r2 ∈ R and for some constant L1 > 0, leads to λ(χ) ∈
C0([0, T ];H). Then, by comparison in (56) we see that u′ ∈ C0([0, T ];V ′) and

this implies u′(0) = θ0. Moreover, the regularity (12) can now be shown arguing

as in the Conclusion of the proof of [7, Lemma 4.2]. Finally, we have to check

(19). To this purpose, we exploit (47), (49), and apply the standard monotonicity

argument of [1, Prop. 1.1, p. 42].
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[3] Brézis, H. – Opérateurs Maximaux Monotones et Semi-groupes de Contractions

dans les Espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland, Ams-
terdam, 1973.

[4] Brochet, D.; Hilhorst, D. and Novick-Cohen, A. – Maximal attractor and
inertial sets for a conserved phase field model, Adv. Differential Equations, 1 (1996),
547–578.

[5] Caginalp, G. – The dynamics of a conserved phase field system: Stefan-like,
Hele–Shaw, and Cahn–Hilliard models as asymptotic limits, IMA J. Appl. Math.,

44 (1990), 77–94.

[6] Colli, P.; Gilardi, G. and Grasselli, M. – Global smooth solution to the
standard phase-field model with memory, Adv. Differential Equations, 2 (1997),
453–486.

[7] Colli, P.; Gilardi, G.; Grasselli, M. and Schimperna, G. – The conserved
phase-field system with memory, Adv. Math. Sci. Appl., to appear.
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