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Introduction

Discriminator varieties were introduced by A. Pixley in 1971. Classical exam-

ples of discriminator varieties, amongst which is the variety B of Boolean algebras,

may be found in the first survey on discriminator varieties, a monograph by H.

Werner [W], published in 1978. Since then discriminator varieties have deserved

special interest. For instance, in the book [B&S]; in a paper by S. Burris [4], at-

tention is focused on discriminator varieties as a tool for computational research

and on the reduction of first-order logic to equational logic using discriminator

varieties, given by McKenzie in [13]; in a paper by B. Jónsson [10].

Dual discriminator varieties were investigated by E. Fried and A. Pixley in

[7] as a generalization of discriminator varieties. The best-known example of a

dual discriminator variety is the variety D of distributive lattices. The variety of

median algebras, independently studied by many authors under different names

and different approaches, is a dual discriminator variety, as pointed out by H.-J.

Bandelt and J. Hedĺıkova in [2]. Other important examples were studied in [7]

and [8].

These varieties are congruence distributive, semisimple and have equationally

definable principal congruences. A dual discriminator variety is a discriminator

variety if and only if it is congruence permutable [7]. This fact suggested to

Pixley the observation that certain properties of discriminator varieties might be

obtained as corollaries of more general properties on dual discriminator varieties

by adding the extra hypothesis of congruence permutability. Some examples of

results presented in parallel for the two theories were given in [15].

In this note some results on (dual) discriminator varieties are revisited. As a

consequence of analyzing the characterizations of (dual) discriminator varieties
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by equational conditions and by congruence properties, given in [13], [7] and [15],

some different proofs and new characterizations came to light. In section 1, the

basic definitions and results are recalled. In section 2, it is shown that in the

equational characterization of dual discriminator varieties, given in [7; 3.2], one

of the conditions can be omitted. It is also shown that in the equational char-

acterization of discriminator varieties, given in [13; Th. 1.3], two conditions can

be omitted. Other characterizations of (dual) discriminator varieties by congru-

ence properties, related to those in [15; Th. DD] and [6; Th. 4.16], [15; Th. D]

are established. From these characterizations we can conclude that, if a vari-

ety has the congruence extension property, being a (dual) discriminator variety

may be tested by congruence properties of its free algebra on three generators.

In section 3, some propositions regarding congruences of algebras of varieties more

general than dual discriminator varieties are established. They provide alternate

arguments for proving results of [7].

For basic facts on Universal Algebra the reader is referred to [ALV], [B&S],

and [GR]. For congruence distributive varieties, including discriminator varieties

and varieties with equationally definable principal congruences, the survey paper

[10], which contains the necessary references, is recommended.

1 – Preliminaries

Let A be any nonvoid set. The ternary discriminator (resp. dual discrimina-

tor) operation d (resp. q) on A is defined by

d(x, y, z) =

{
z if x = y

x if x 6= y

(
q(x, y, z) =

{
x if x = y

z if x 6= y

)
.

We first recall some important identities satisfied by these operations.

The discriminator operation d is a Pixley operation [14] ( 2
3
-minority opera-

tion):

P1. d(x, x, z) = z ; P2. d(x, y, y) = x ; P3. d(x, y, x) = x .

The dual discriminator operation q is a majority operation:

M1. q(x, x, z) = x ; M2. q(x, y, y) = y ; M3. q(x, y, x) = x .
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For any MaÃlcev operation p(x, y, z) (i.e., an operation satisfying P1 and P2):

D. d(x, y, z) = p
(
x, q(x, y, z), z

)
.

DD. q(x, y, z) = p
(
x, d(x, y, z), z

)
,

particularly,

DD1. q(x, y, z) = d
(
x, d(x, y, z), z

)
.

I. q
(
x, y, q(x, y, z)

)
= q(x, y, z) ,

J1. d
(
x, y, d(x, y, z)

)
= d(x, y, z) .

J. d
(
x, d(x, y, z), y

)
= y .

For any n-ary operation f , the following identity also holds for d:

Df . q
(
x, y, f(z1, ..., zn)

)
= q

(
x, y, f

(
q(x, y, z1), ..., q(x, y, zn)

))

(
and whenever f is an idempotent operation,

D′
f . q

(
x, y, f(z1, ..., zn)

)
= f

(
q(x, y, z1), ..., q(x, y, zn)

) )
.

Remarks.

(1.1) Identities I and D′
f imply Df :

q
(
x, y, f(z1, ..., zn)

)
= q

(
x, y, q

(
x, y, f(z1, ..., zn)

))

= q

(
x, y, f

(
q(x, y, z1), ..., q(x, y, zn)

))
.

(1.2) Identities J and D′
f imply Df as in (1.1), noting that J implies J1:

d
(
x, y, d(x, y, z)

)
= d

(
x, d

(
x, d(x, y, z), y

)
, d(x, z, y)

)
= d(x, y, z) .

(1.3) If |A| ≤ 2, then the DD-operation q is a symmetric operation, i.e.,

S2. q(x, y, z) = q(z, y, x)
(
or S3. q(x, y, z) = q(z, x, y)

)
.

Conversely, if q is a DD-operation on A satisfying S2, then |A| ≤ 2.

In fact, for a, b, c ∈ A, with a 6= b, c = q(a, b, c) = q(c, b, a) = a or b.
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Analogously, a D-operation d on a set A satisfies

S2. d(x, y, z) = d(z, y, x)

iff |A| ≤ 2. In fact, for a, b, c ∈ A, with a 6= b, we have that a =

d(a, b, c) = d(c, b, a) = x, where x = c if c 6= b, and x = a if c = b.

A ternary term d (resp. q) in the language of an algebra A is called a discrimi-

nator term on A (resp. dual discriminator on A), (a D-term (resp. a DD-term) for

short) if dA (qA) is the (dual) discriminator operation on A. An algebra is called

a discriminator algebra (resp. dual discriminator algebra), (a D-algebra (resp. a

DD-algebra) for short) if it has a D-term (resp. a DD-term).

A ternary term d (q) in the language of a class H of algebras is called a D-term

(a DD-term) on H if q is a D-term (a DD-term) on every algebra in H.

A classH is a discriminator (a dual discriminator) class (aD-class (aDD-class)

for short) if there is a D-term (a DD-term) on H.

A variety is a discriminator (a dual discriminator) variety (a D-variety

(a DD-variety) for short), if it is generated by a D-class (a DD-class).

An algebra (A; d) (resp. (A; q)) of type (3) is called a pure (dual) discrimi-

nator algebra if d (q) is the dual discriminator operation on A. The pure (dual)

discriminator variety PD (PDD) is the variety of type (3) generated by the class

of all pure D-algebras (DD-algebras) ([2], [4]).

The following results are quoted from [7].

• [7, Th. 2.1] Any subalgebra of a DD-algebra is simple.

• [7, Th. 2.2] A DD-variety is CD.

• [7, Lem. 2.2 (iii)] A DD-variety is a D-variety iff it is CP.

The first characterization of DD-varieties may be proved by arguments anal-

ogous to those in [10; Th. 4.5] for D-varieties.

Theorem 1.1. A variety V is a DD-variety if and only if SiV is a DD-class.

Corollary 1.2. Let V = V(H) be a variety generated by a DD-class H, with

q a dual discriminator term. Then, for every non-trivial algebra A ∈ V, t.f.a.e.:

(i) A ∈ SiV;

(ii) A is simple;

(iii) A ∈ ISPuH;

(iv) q is a DD-term on A.
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By DD1, any D-algebra is a DD-algebra, and any D-variety is a DD-variety.

By P1, P2 and P3, D-varieties are CD and CP [10; Th. 2.4].

A variety V is semisimple (SS) if every nontrivial subdirectly irreducible al-

gebra in V is simple, equivalently, every algebra in V is a subdirect product of

simple algebras (said semisimple). By the preceding results, any (D)D-variety is

subsemisimple (Sub SS), i.e., is simple and every nontrivial subalgebra of a simple

algebra is simple.

2 – On characterizations of (dual) discriminator varieties

In every DD-variety V there exists a ternary term q for which the identities

M1, M2, M3, I and Df (for every basic V-operation symbol f) hold. In the

next theorem the converse is proven. This shows that, in the characterization

of DD-varieties by equational conditions given in [7; Th. 3.2], the equation (c)

q(z, q(x, y, z), q(x, y, w)) = q(x, y, z) can be omitted. Another characterization of

DD-varieties, involving an identity and a property of congruences, is also provided

in the same theorem.

Theorem 2.1. For a variety V and a ternary term q, t.f.a.e.:

(1) V is a DD-variety and q a DD-term on SiV.

(2) V satisfies the following identities:

M1. q(x, x, y) = x;

M2. q(x, y, y) = y;

M3. q(x, y, x) = x;

I. q(x, y, q(x, y, z)) = q(x, y, z);

and, for each n-ary operation symbol f of V,

Df . q(x, y, f(z1, ..., zn)) = q(x, y, f(q(x, y, z1), ..., q(x, y, zn)))

(or D′
f . q(x, y, f(z1, ..., zn)) = f(q(x, y, z1), ..., q(x, y, zn)) if f induces

an idempotent operation).

(3) V satisfies the identity

M1. q(x, x, y) = x,

and for any A ∈ V, and a, b ∈ A, there exists γ(a, b) ∈ Con A such that:

(i) if a 6= b, (a, b) /∈ γ(a, b);

(ii) for any c ∈ A, (c, q(a, b, c)) ∈ γ(a, b).
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Proof: (1)⇒(2) Obvious.

(2)⇒(3) Suppose the identities in (2) hold in V. Let A ∈ V and a, b ∈ A. The

identities Df ensure that the equivalence relation defined by γ(a, b) = {(x, y) ∈

A×A : q(a, b, x) = q(a, b, y)} is a congruence of A. By M1, γ(a, a) = ∇, so

condition (ii) holds whenever a = b. Assume now that a 6= b.

(i) (a, b) /∈ γ(a, b) if a 6= b, by M2 and M3.

(ii) (c, q(a, b, c)) ∈ γ(a, b), for all c ∈ A, by the identity I.

(*) For any c ∈ A, (q(a, b, c), q(a, a, c)) ∈ θ(a, b), i.e., (q(a, b, c), a) ∈ θ(a, b),

by M1. This, together with (ii), yields q(a, b, c) ∈ c/γ(a, b) ∩ a/θ(a, b), and for

any c ∈ A, c/γ(a, b) ∩ a/θ(a, b) 6= ∅. This yields

∇ = γ(a, b) ◦ θ(a, b) ◦ θ(a, b) ◦ γ(a, b)

= γ(a, b) ◦ θ(a, b) ◦ γ(a, b)

= γ(a, b) ∨ θ(a, b) .

(3)⇒(1) Since M1 holds in V, it remains to show that, for any nontrivial

A ∈ SiV, and any a, b, c ∈ A, a 6= b implies q(a, b, c) = c.

Let A ∈ SiV be nontrivial with monolith θ(x, y). Let γ(x, y) be a congruence

of A satisfying all the conditions in (3). So θ(x, y) 6⊆ γ(x, y), which implies

γ(x, y) = ∆, since θ(x, y) is the monolith. Then, by (*), θ(x, y) = ∇ and A is a

simple algebra.

Now let a, b ∈ A, with a 6= b. Let γ(a, b) be a congruence of A satisfying all the

conditions in (3). By the simplicity of A, γ(a, b) = ∆, since, by (i), γ(a, b) 6= ∇.

Hence, by (ii), q(a, b, c) = c, for all c ∈ A.

Remarks. The proof of (2)⇒(3) combines arguments from the proofs of

Theorems 3.2 and 3.8 in [7]. The proof of (3)⇒(1) could be slightly shortened

by invoking a characterization of semisimple algebras from [16]: an algebra A is

semisimple iff for each principal congruence θ(a, b), with a 6= b, there exists a

congruence θ′ such that (a, b) /∈ θ′ and θ(a, b) ∨ θ′ = ∇.

In the next theorem we show that two conditions in the characterization of

D-varieties by equational conditions, due to R. McKenzie [13; Th. 1.3] can be

omitted.

Theorem 2.2. For a variety V and a ternary term d, t.f.a.e.:

(1) V is a D-variety with d a D-term on SiV.
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(2) V satisfies the following identities:

P2. d(x, y, y) = x;

J. d(x, d(x, y, z), y) = y;

and, for each n-ary operation symbol f of V,

Df . d(x, y, f(z1, ..., zn)) = d(x, y, f(d(x, y, z1), ..., d(x, y, zn))).

(3) V satisfies the identity

P1. d(x, x, y) = y;

and, for each A∈V, and any a, b, c ∈ A, with a 6= b, (a, b) /∈ θ(a, d(a, b, c)).

Proof: (1)⇒(2) These identities hold in V, since they hold in SiV (see §1).

(2)⇒(3) First note that P2 and J imply P1: By J, d(x, d(x, z, z), z) = z, which

implies d(x, x, z) = z, by P2. Analogously, J and P1 is equivalent to J and P3.

Now, let A ∈ V, and a, b ∈ A, with a 6= b. The identities Df ensure that

the equivalence relation τ = {(x, y) ∈ A×A : d(a, b, x) = d(a, b, y)} ∈ Con A.

To show that τ = θ(a, b), first observe that, by P2 and P3, (a, b) ∈ τ . Let

θ ∈ Con A with (a, b) ∈ θ. Then, for all x, y ∈ A, (d(a, a, x), d(a, b, x)) ∈ θ, and

(d(a, a, y), d(a, b, y))∈θ. By P1, we obtain (x, d(a, b, x))∈θ and (y, d(a, b, y))∈θ,

for all x, y ∈ A. Let (x, y) ∈ τ , i.e., d(a, b, x) = d(a, b, y). Then, by the transitivity

of θ, (x, y) ∈ θ. Hence, τ ⊆ θ.

By P3, d(a, d(a, b, c), a)=a; by J, d(a, d(a, b, c), b)=b. So (a, b) /∈θ(a, d(a, b, c)).

(3)⇒(1) Let A ∈ SiV be nontrivial with monolith θ(a, b). By the hypothesis,

(a, b) /∈ θ(a, d(a, b, c)), for all c ∈ A, since a 6= b. Hence a = d(a, b, c), for all

c ∈ A. This implies, by P1, (a, c) = (d(a, b, c), d(a, a, c)) ∈ θ(a, b), for all c ∈ A.

Hence θ(a, b) = ∇, and A is a simple algebra. Thus, for any x, y ∈ A, x 6= y, we

have θ(x, y) = ∇, and as, by the hypothesis, (x, y) /∈ θ(x, d(x, y, z)), it must be

x = d(x, y, z), for all z ∈ A. This concludes the proof that d is a D-term on SiV,

since V satisfies P1.

An algebra A is said to have the principal congruence intersection property

(PCI) if whenever a principal congruence θ(a, b) has a complement θ′, then c/θ′∩

a/θ(a, b) 6= ∅, for all c ∈ A [15]. A variety V is said to have PCI if every algebra

in V has PCI. A variety V has complemented principal congruences (PCC, for

short) if each of its algebras has complemented principal congruences [15], [6].

In [15; Th. DD], DD-varieties were characterized as those CD varieties having

PCC and PCI. The characterization of D-varieties as those CD varieties having

PCC and CP, due to Fried and Kiss [6; Th. 4.16], was then obtained as a corollary

[15; Cor. D], by using [7; Lem. 2.2(iii)].
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Some properties of a variety V, equivalent to MaÃlcev conditions, such as being

CD or CP or CD and CP, can be tested in its free algebra on three generators

FV(3) [10; Th. 6.3]. Our aim will be to show that, for any variety V having CEP,

being a (D)D-variety can be tested on the free algebra FV(3). This will follow

as a corollary from a new characterization of DD-varieties close to that in [15;

Th. DD]. The following propositions will be needed.

Proposition 2.3. If a CD algebra A has PCC, then so has H(A).

Proof: Let h : A → B be an onto homomorphism. There exists an order

isomorphism η : Con B → [kerh,∇] ⊆ Con A [B&S; 6.20]. To θ(h(a), h(b)) ∈

Con B, corresponds θ(a, b) ∨ kerh ∈ Con A. If θ′ is the complement of θ(a, b) in

Con A, then the image of θ′ ∨ kerh under η is the complement of θ(h(a), h(b)) in

Con B.

Proposition 2.4. Any CD and PCC variety is Sub SS.

Proof: By [6; 4.13], for any variety V, CD+PCC ⇔ EDPC+SS. By [6; 4.5],

EDPC ⇒ CEP. Thus, every nontrivial subalgebra of a simple algebra is simple.

Theorem 2.5. For a variety V, the following are equivalent:

(1) V is a DD-variety.

(2) V is CD, PCC and PCI.

(3) V is PCC and FV(3) is CD and PCI.

(4) Every n-generated (n ≤ 3) subalgebra of a subdirectly irreducible algebra

of V is in SiV, and FV(3) is CD, PCC and PCI.

Proof: (1)⇔(2) [15; Th. DD].

(2)⇒(3) Obvious.

(3)⇒(4) By [10; 6.3], V is CD. By Proposition 2.4, V is Sub SS.

(4)⇒(1) By [10; 6.3], V is CD. We want to show the existence of a DD-term

on every A ∈ SiV.

Let F = FV({x, y, z}) be a V-free algebra freely generated by {x, y, z}. Let γ

be the complement of θ(x, y) (γ 6= ∇ exists by PCC, and is unique by CD). By

PCI, there exists q = q(x, y, z) ∈ F such that

(i)
(
z, q(x, y, z)

)
∈ γ,

(ii)
(
q(x, y, z), x

)
∈ θ(x, y).
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Let A ∈ V, a, c ∈ A, and ϕ : F → A be the homomorphism defined by

a = ϕ(x) = ϕ(y) and c = ϕ(z). As θ(x, y) ⊆ kerϕ, we must have (q, x) ∈ kerϕ,

by (ii), i.e., q(a, a, c) = ϕ(q(x, y, z)) = ϕ(x) = a.

Now, let A ∈ SiV be nontrivial. For any a, b, c ∈ A, with a 6= b, let ψ : F → A
be the homomorphism defined by ψ(x) = a, ψ(y) = b, ψ(z) = c. By the hypoth-

esis, ψ(F) ∈ SiV, since ψ(F) ∈ S(A) is n-generated, n ≤ 3. Moreover, ψ(F) is a

simple algebra since, by PCC, F is SS. Thus ∇ = θ(a, b) ∈ Conψ(F). By Propo-

sition 2.3, (ψ×ψ)(γ) ∈ Conψ(F) is the complement of θ(a, b), so (ψ×ψ)(γ) = ∆.

Hence, by (i), c = ψ(z) = ψ(q) = q(a, b, c). This shows that q is a DD-term on

SiV.

Corollary 2.6. For a variety V with CEP, the following are equivalent:

(i) V is a DD-variety.

(ii) FV(3) is CD, PCC and PCI.

The corresponding characterizations of D-varieties (including that given in

[15; Th. D] or [6; 4.16]) are next given.

Theorem 2.7. For a variety V, t.f.a.e.:

(1) V is a D-variety.

(2) V is CD, PCC and CP.

(3) V is PCC and FV(3) is CD and CP.

(4) Every n-generated, n ≤ 3, subalgebra of a subdirectly irreducible of V is

in SiV, and FV(3) is CD, PCC and CP.

Corollary 2.8. For a variety V with CEP, the following are equivalent:

(i) V is a D-variety.

(ii) FV(3) is CD, PCC and CP.

Remark. The results of this section were presented, without proof, in a

talk held at the Conference LOGICA98 [17], in honor to late Professor António

Aniceto Monteiro. In this talk, equational bases for the variety PDD (PD) and

for its least non trivial subvariety were also presented (the later by using (1.3)).
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3 – On results related to some properties of DD-varieties

The proof that any DD-variety V has PCC, given in [7; 3.8], is based in

a proposition concerning CD varieties. First it is observed that D1(x, y, z, t) =

q(x, y, z), D2(x, y, z, t) = q(x, y, t) is a pair of terms such that (P): for any A ∈ SiV

and a, b, c, d ∈ A, D1(a, b, c, d) = D2(a, b, c, d) ⇔ a = b or c = d. Proposition 2.9

in [1] ensures that such terms form a pair of principal intersection terms, i.e.,

for any A ∈ V, and any a, b, c, d ∈ A, θ(a, b) ∩ θ(c, d) = θ(q(a, b, c), q(a, b, d)).

This fact was then used to deduce that, for any algebra A ∈ V and any a, b ∈ A,

γ(a, b) ∩ θ(a, b) = ∆. So γ(a, b) and θ(a, b) are complements of each other.

An alternate way of showing that θ(a, b) ∩ γ(a, b) = ∆, without needing con-

gruence distributivity, follows as a corollary of (1)⇒(2) in either of the following

two propositions. The definition of γ(a, b) by equations is crucial in their proofs.

Proposition 3.1. Let V be a variety and {Di(x, y, z, t), Di′(x, y, z, t) : i ∈ I}

be any family of quaternary terms. Then, t.f.a.e.:

(1) For any A ∈ SiV and any a, b, c, d ∈ A,

Di(a, b, c, d) = Di′(a, b, c, d) for all i ∈ I ⇐⇒ a = b or c = d .

(2) For any A ∈ V and any a, b ∈ A,

γ(a, b) =
{

(x, y) : Di(a, b, x, y) = Di′(a, b, x, y) for all i ∈ I
}
∈ Con A ,

γ(a, a) = ∇ and θ(a, b) ∩ γ(a, b) = ∆ .

Proof: (1)⇒(2) Let A ∈ V and a, b ∈ A. To check that γ(a, b) ∈ Con A, it

suffices to use (1), observing that (x, y) ∈ γ(a, b) iff, for every onto homomorphism

h : A → B, where B ∈ SiV, (h(x), h(y)) ∈ γ(h(a), h(b)).

Obviously (1) implies γ(a, a) = ∇. As θ(a, a) = ∆, then (2) holds whenever

a = b. Assume now that a 6= b. For any c.m.i. ρ ∈ Con A, we have that

θ(a, b) 6⊆ ρ ⇔ (a, b) /∈ ρ ⇔ ã 6= b̃, where ã ∈ A/ρ denotes the ρ-class of a

⇔ γ(ã, b̃) = ∆, by (1), since A/ρ ∈ SiV

⇔ γ(a, b) ⊆ ρ .

Hence, θ(a, b) ∩ γ(a, b) = ∆.

(2)⇒(1) Let A ∈ V and a, b ∈ A. By the reflexivity of γ(a, b), Di(a, b, c, c) =

Di′(a, b, c, c) for all c ∈ A and all i ∈ I. As γ(a, a) = ∇, then Di(a, a, c, d) =

Di′(a, a, c, d) for all c, d ∈ A and all i ∈ I.
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Assume now that A ∈ SiV, a, b, c, d ∈ A, a 6=b and Di(a, b, c, d) = Di′(a, b, c, d)

for all i ∈ I. By (2), θ(a, b) ∩ γ(a, b) = ∆. As θ(a, b) 6= ∆, then γ(a, b) = ∆, and

c = d.

Proposition 3.2. Let V be a variety for which there exists a family of

quaternary terms {Di(x, y, z, t), Di′(x, y, z, t) : i ∈ I} such that, for any A ∈ V

and any a, b ∈ A,

γ(a, b) =
{

(x, y) : Di(a, b, x, y) = Di′(a, b, x, y), for all i ∈ I
}
∈ Con A ,

θ(a, b) ∨ γ(a, b) = ∇ .

Then t.f.a.e.:

(1) For any A ∈ V and a, b ∈ A, with a 6= b, (a, b) /∈ γ(a, b).

(2) For any A ∈ V and a, b ∈ A, θ(a, b) ∩ γ(a, b) = ∆.

(3) For any A ∈ SiV, and a, b, c, d ∈ A,

Di(a, b, c, d) = Di′(a, b, c, d) for all i ∈ I ⇐⇒ a = b or c = d .

Proof: (1)⇒(2): Let A ∈ V and a, b ∈ A. If a = b, then the claim is obvious.

Assume now that a 6= b. By [16] A is semisimple, so ∆ is the intersection of

maximal congruences. For any maximal congruence ρ, we have that

(a, b) /∈ ρ ⇔ ã 6= b̃ in A/ρ ⇔ γ(ã, b̃) 6= ∇ since, by (1), (ã, b̃) /∈ γ(ã, b̃)

⇔ γ(ã, b̃) = ∆ since A/ρ is simple .

The remaining runs like in (1)⇒(2) of Proposition 3.1.

(2)⇒(3): The same proof as in (2)⇒(1) in Proposition 3.1.

(3)⇒(1): Let A ∈ V, and a, b ∈ A, with a 6= b. We want to show that

(a, b) /∈ γ(a, b). If a 6= b, there exists an onto homomorphism h : A → B,

with B ∈ SiV, such that h(a) 6= h(b). By (3), Di(h(a), h(b), h(a), h(b)) 6=

Di′(h(a), h(b), h(a), h(b)), for some i ∈ I. Then, for some i ∈ I, Di(a, b, a, b) 6=

Di′(a, b, a, b).

In [3], Blok and Pigozzi sharpened [1; 2.9], showing that, if in a variety V

the meet of principal congruences of any of its algebras is a compact congruence

constructed in a uniform way from the generators of the principal congruences,

through a finite family of quaternary terms, then V is CD. Proposition 3.4 below

extends [1; 2.9] and [3; Th. 1.3] by dropping the finiteness of that family of terms.
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The proof relies on a characterization of distributive congruence lattices relying

on the one given in [11].

Lemma 3.3. Let Con A be the congruence lattice of an algebra A. T.f.a.e.:

(1) Con A is distributive;

(2) For every ρ, α, β ∈ Con A, ρ c.m.i., if α ∧ β ≤ ρ then either α ≤ ρ or

β ≤ ρ.

(3) For every a, b, c, d ∈ A, and ρ ∈ Con A, where ρ c.m.i., if θ(a, b)∧θ(c, d) ≤

ρ then either θ(a, b) ≤ ρ or θ(c, d) ≤ ρ.

Proof: (1)⇔(2): See [11; Lemma 2.1].

(2)⇒(3): Obvious.

(3)⇒(2): Let α=
∨

(θ(aj , bj) : j∈J), β =
∨

(θ(ck, dk) : k∈K) and α ∧ β ≤ ρ.

Assume that α 6≤ ρ. Then, for some j1 ∈ J , θ(aj1 , bj1) 6≤ ρ. However, for all

k ∈ K, θ(aj1 , bj1) ∧ θ(ck, dk) ≤ α ∧ β ≤ ρ. By (3), θ(ck, dk) ≤ ρ, for all k ∈ K.

Hence β ≤ ρ.

Proposition 3.4. For any variety V, t.f.a.e.:

(1) V is CD and there exists a family of terms {Di(x, y, z, w), Di′(x, y, z, w) :

i ∈ I} such that, (P) for any A ∈ SiV,

Di(a, b, c, d) = Di′(a, b, c, d) for all i ∈ I ⇐⇒ a = b or c = d .

(2) There exists a family of terms {Di(x, y, z, w), Di′(x, y, z, w) : i ∈ I}, such

that for all A ∈ V and a, b, c, d ∈ A,

θ(a, b) ∩ θ(c, d) =
∨

i∈I

(
θ
(
Di(a, b, c, d), Di′(a, b, c, d)

))
.

Proof: We first note that for any A ∈ V, any a, b, c, d ∈ A, and any ρ ∈

Con A,
∨

i∈I

θ
(
Di(a, b, c, d), Di′(a, b, c, d)

)
≤ ρ ⇐⇒

⇐⇒ Di(ã, b̃, c̃, d̃) = Di′(ã, b̃, c̃, d̃) for all i ∈ I, in A/ρ .

(1)⇒(2): Let A ∈ V and a, b, c, d ∈ A. We will show that, for any c.m.i.

ρ ∈ Con A,

θ(a, b) ∩ θ(c, d) ≤ ρ ⇐⇒
∨

i∈I

(
θ
(
Di(a, b, c, d), Di′(a, b, c, d)

)
: i ∈ I

)
≤ ρ .
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Let ρ ∈ Con A be c.m.i.. Then, we have that
∨

i∈I

θ
(
Di(a, b, c, d), Di′(a, b, c, d)

)
≤ ρ ⇐⇒

⇐⇒ Di(ã, b̃, c̃, d̃) = Di′(ã, b̃, c̃, d̃), for all i ∈ I

⇐⇒ ã = b̃ or c̃ = d̃ in A/ρ, by (P)

⇐⇒ θ(a, b) ≤ ρ or θ(c, d) ≤ ρ

⇐⇒ θ(a, b) ∩ θ(c, d) ≤ ρ, by CD .

(2)⇒(1): We will show that V is CD by using Lemma 3.3. Assume that

A ∈ V, a, b, c, d ∈ A, and ρ ∈ Con A is c.m.i.. Then

θ(a, b) ∧ θ(c, d) =
∨

i∈I

θ
(
Di(a, b, c, d), Di′(a, b, c, d)

)
≤ ρ ⇐⇒

⇐⇒ Di(ã, b̃, c̃, d̃) = Di′(ã, b̃, c̃, d̃), for all i ∈ I, in A/ρ

⇐⇒ θ(ã, b̃) ∧ θ(c̃, d̃) =
∨
θ
(
Di(ã, b̃, c̃, d̃), Di′(ã, b̃, c̃, d̃)

)
= ∆

⇐⇒ θ(ã, b̃) = ∆ or θ(c̃, d̃) = ∆ since A/ρ ∈ SiV

⇐⇒ θ(a, b) ≤ ρ or θ(c, d) ≤ ρ .

Arguments in the previous proof ensure the second claim (P).

If V is a DD-variety and q a DD-term, then, for any A∈V and any a, b, x, y∈A,

(x, y) ∈ θ(a, b) ⇔ x = q(x, y, q(a, b, x)) and y = q(x, y, q(a, b, y)) (implicit in

[7; pg. 92]), i.e., V has EDPC (see [5] or [12] for definition). In the following

proposition the same conclusion is obtained under weaker conditions.

Proposition 3.5. Let V be a variety having a term t(x, y, z) for which I in

Theorem 2.1 holds, and (P) for any A ∈ SiV, t(a, b, c) = t(a, b, d) ⇔ a = b or

c = d. Then V has EDPC. More precisely, for any A ∈ V, and any a, b, x, y ∈ A,

(x, y) ∈ θ(a, b) ⇐⇒

⇐⇒ t(x, y, x) = t
(
x, y, t(a, b, x)

)
and t(x, y, y) = t

(
x, y, t(a, b, y)

)
.

Proof: Let A∈V and a, b∈A. We will show that, for each c.m.i. congruence ρ

(a, b) ∈ ρ ⇐⇒

⇐⇒ θ =

{
(x, y) : t(x, y, x)= t

(
x, y, t(a, b, x)

)
, t(x, y, y)= t

(
x, y, t(a, b, y)

)}
⊆ ρ ,

noting that θ ∈ Con A, by (P).
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(⇒) Let (a, b) ∈ ρ, i.e., ã = b̃ in A/ρ ∈ SiV. If (x, y) ∈ θ, then

t(x̃, ỹ, x̃) = t
(
x̃, ỹ, t(ã, b̃, x̃)

)
, t(x̃, ỹ, ỹ) = t

(
x̃, ỹ, t(ã, b̃, ỹ)

)

which implies, by (P), t(x̃, ỹ, x̃) = t(x̃, ỹ, ỹ) and x̃ = ỹ, i.e., (x, y) ∈ ρ.

(⇐) By I, t(a, b, a) = t(a, b, t(a, b, a)), t(a, b, b) = t(a, b, t(a, b, b)), i.e., (a, b) ∈

θ ⊆ ρ.
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