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Abstract: Persistent bifurcation diagrams in unfoldings of the modal family

g(x, λ) = ε x4 + 2 a x2 λ + δ λ2 are described using path formulation: each bifurcation

problem in the unfoldings of g is reinterpreted as a λ-parametrized path in the universal

unfolding of x4. The space of unfolding parameters for the modal family is divided into

regions where bifurcation problems are contact-equivalent and the bifurcation diagrams

for these persistent problems are shown.

1 – Introduction

In bifurcation problems small perturbations in auxiliary parameters can give

rise to drastic changes in bifurcation diagrams.

Given the modal family of one parameter bifurcation problems

g(x, λ) = ε x4 + 2 a x2 λ+ δ λ2 ,(1)

where ε, δ = ±1 and the modal parameter a satisfies a2 6= ε δ, and given a versal

unfolding of g we want to enumerate, up to equivalence, the bifurcation diagrams

in that unfolding.
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In this work we use the notation of Golubitsky and Schaeffer [2]. The form

of a versal unfolding of this modal family is given by Keyfitz in [3]. Among the

possible versal unfoldings we choose:

G(x, λ, ã, α1, α2, α3, α4) =

= ε x4 + 2 ã x2 λ+ δ λ2 + α1 + α2 x+ α3 x
2 + α4 xλ ,

(2)

where (x, λ, ã, α1, α2, α3, α4) varies in a neighbourhood of (0, 0, a, 0, 0, 0, 0). For

most values of a (all except a finite number) the topological type of the problem

is independent of the value of a, called a modal parameter. For a topological

classification we have to consider only 4 parameters although for a differentiable

classification 5 parameters are necessary. Thus g has topological codimension 4

and differentiable codimension 5. For a more detailed discussion of topological

and differentiable codimension see ([2], ch. IV §1 and ch.V §6).

We want to describe the bifurcation diagrams arising in (2) for different choices

of the parameters a and αi, i = 1, ..., 4. A point A = (a, α1, α2, α3, α4) in parame-

ter space gives rise to a persistent bifurcation diagram if there is a neighbourhood

of A in parameter space where all bifurcation diagrams are equivalent to the bi-

furcation diagram of A. The sources of nonpersistence are the transition varieties

B, H and D denominated Bifurcation, Hysteresis and Double Limit respectively

([2], ch. III §5). The transition set, Σ = B ∪ H ∪ D, divides the space of the un-

folding parameters into connected components containing one of the persistent

perturbations of (1). In the case of this modal family we are treating transition

varieties are hypersurfaces in R5, which renders impracticable the enumeration

of the connected components of R5 − Σ.

In order to obtain an enumeration of the perturbed bifurcation diagrams of

g, as well as an identification of the regions of the universal unfolding parameters

space to which they belong, we are going to resort to path formulation. Path

formulation ([2], ch. III §12) relates one state variable bifurcation problem with

a path through the universal unfolding of a function.

In the next section we describe how we use the path formulation to identify

the bifurcation problem g with a path in the parameter space of the universal

unfolding of the function x4. Then we explain how we use the possible paths

to construct the bifurcation diagrams in the unfolding of the modal family. The

different types of local bifurcation found in this problem are presented in Sec-

tion 3 in the form of a dictionary. In Section 4 transition varieties and bifurcation

diagrams for (2) are presented in the (α3, α2, α1)-subspace of the unfolding pa-

rameter space.
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2 – Path formulation

In order to relate the universal unfolding of g to the universal unfolding of x4,

x4 +Ax2 +B x+ C ,(3)

we fix ε = 1 and rewrite the former as

G(x, λ, α1, α2, α3, α4) =

= ε x4 + (2 aλ+ α3)x
2 + (α2 + α4 λ)x+ (α1 + δ λ2) .

(4)

We identify our bifurcation problem with a path

λ →
(

A(λ), B(λ), C(λ)
)

(5)

in the space of the parameters of the versal unfolding of x4, by defining the

functions
A(λ) = 2 aλ+ α3 ,

B(λ) = α2 + α4 λ ,

C(λ) = α1 + δ λ2 .

(6)

Let M be the surface in the 4-dimensional space (x,A,B,C) defined by

M : x4 +Ax2 +B x+ C = 0 ,(7)

and let m be the points of M that have vertical tangent

m =
{

(x,A,B,C) : x4 +Ax2 +B x+ C = 0 ∧ 4x3 + 2Ax+B = 0
}

.(8)

We define π(m) as the projection of m into the 3-dimensional space (A,B,C)

as follows

π(m) =
{

(A,B,C) : ∃x : x4 +Ax2 +Bx+ C = 0 ∧ 4x3 + 2Ax+B = 0
}

.(9)

The variety π(m), called swallowtail ([1], [4]), is shown in Figure 1. It has a

curve of self-intersections and two curves of cusp points. For ease of reference we

are going to call the part of the swallowtail below the line of self-intersections the

pocket and the rest the tail.
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The swallowtail divides (A,B,C)-space in regions where the number of zeros

in the unfolding of x4 is constant. Figure 1 shows the number of zeros in each

region, see also Bröcker and Lander ([1], ch. 17).
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Fig. 1 : The swallowtail π(m): projection into (A,B,C)-space of the points where the
hypersurfaceM : x4+Ax2+Bx+C = 0 has a vertical tangent. The swallowtail
divides the space in three components where the unfolding of x4 has 4, 2 or 0
roots as indicated. On π(m) the unfolding may have 1 or 3 roots in the points
indicated, or 2 roots on the creased points at the pocket — see also Figure 2.
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Fig. 2 : Intersection of π(m), Figure 1, with the plane A = α, where α is a negative
constant, indicating the number of zeros of the unfolding of x4 in each region.
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Each bifurcation diagram is found by observing regions in (A,B,C)-space

crossed by the path. Every time the path intersects the swallowtail surface there

is a change in the number of branches.

The curve (5) is always a parabola in (r, C)-plane, where r is a line in the

(A,B)-plane. Consequently, the surfaces M and π(m) can be more easily visu-

alized if instead of working directly with the surface of the swallowtail, we work

with its intersection with vertical (r, C)-planes. We consider those vertical planes

that give rise to different curves when intersected with the swallowtail.

In Figure 3 we show the projection into (A,B)-plane of the curves of cusp

points of the swallowtail, as well as the different lines r considered. The intersec-

tion of the swallowtail with each plane defined by one of those lines is presented

in Figure 4. The swallowtail is symmetric under reflection in the (A,C)-plane.

Therefore its intersection with symmetric planes gives rise to identical transition

varieties and symmetric bifurcation diagrams, that are not considered here.

1

2
3

4
5

6

7 B

A

Fig. 3 : Lines in (A,B)-plane defining the vertical planes containing the parabolas (5).
Dashed line: projection of the two curves of cusp points in π(m).

From now on we refer to the intersection of the swallowtail with the vertical

plane containing the i th -line as case i. Cases 4, 5 and 7 give rise to identical

intersections.

The case A(λ) = constant is not considered here. It corresponds to one of

the special values of the modal parameter a, a = 0, (see (6)) and thus to the

bifurcation problem g(x, λ) = x4 + δ λ2 that has infinite codimension.
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1 2 3 4
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Fig. 4 : Intersection of π(m) with the planes defined by the lines in Figure 3.

Solving A(λ) = 2 aλ + α3 for λ we can write the parabolas (6) in A-para-

metrized form for a 6= 0:


































λ =
A− α3

2 a
,

B(A) = α2 + α4
A− α3

2 a
,

C(A) = α1 +
δ

4 a2
(A− α3)

2 .

(10)

Each parabola lies in the vertical plane containing the line defined by the

second equation. These lines are described by an equation of the form:

B = k A+ p ,(11)

with k and p given by

k =
α4

2 a
and p = α2 −

α3 α4

2 a
.(12)

The case B = constant is equivalent to α4 = 0 and α2 = constant. In the

remaining cases we can write α2 as a function of α3, α2 = k α3 + p. In this

study we established the value 1 for δ, which implies that the parabolas have

the concavity turned up. We do not consider the parabolas with the concavity

turned down, that correspond to the case δ = −1.

When A tends to −∞ the graph of the parabolas with opening less than 1
4

is located in the interior of the swallowtail pocket and the graph of the parabo-

las with opening greater than 1
4
is located in the region above the tail of the
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swallowtail. Therefore these paths give rise to bifurcation diagrams that possess

respectively four and no zeros when λ→−∞. The opening of the parabola is de-

termined by the value of the parameter a and we consider parabolas with opening

less than 1
4
, which implies |a| > 1.

The paths can be traced from left to right or vice-versa, originating bifurcation

diagrams symmetric in relation to the vertical axis. We are going to consider

the case where the paths are traced from left to right, which is equivalent to

considering a < 0. This, together with the previous condition on a, means that

a < −1.

3 – Dictionary

In this section we enumerate the types of bifurcation found in the unfolding of

the modal family. We indicate instances where each type of bifurcation diagram

occurs, that is which cases and which paths originate the diagram.

We start with local bifurcation problems of codimension less than or equal to

3 ([2], ch. IV §4, [3]). Then we discuss Double Limit points and finally tangencies

and transversal crossing of transition varieties. We represent the zeros of each

bifurcation problem in a bifurcation diagram with λ in the horizontal axis and x

in the vertical axis.

Bifurcation diagrams are found by inspection of the relative positions of the

intersection of each case i and a parabola. The intersection of these two curves in

the plane containing the parabola is sometimes so intricate that it is more easily

understood in a deformed representation of the parabola.

3.1. Bifurcation problems of codimension 1 to 3

Chapter IV of [2] is dedicated to the study and classification of all local bifur-

cation problems of codimension less than or equal to three in one state variable.

Such singularities are called elementary bifurcation problems. Most of these prob-

lems have a name, the rest will be identified by the numbers in [2]. The graphs

of the transition varieties and the graphs of the persistent perturbed bifurcation

diagrams of the elementary bifurcation problems are listed in ([2], ch. IV §4).

In [3] bifurcation problems of codimension up to seven with one state vari-

able are classified. This classification includes a description of the subordination

relations between those singularities. Given two bifurcation problems g and h,
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we say that g is subordinate to h if g is equivalent to a germ in the universal

unfolding of h. If two singularities are related by subordination, they are called

adjacent.

In Figure 5 we transcribe the part of Figure 1 of [3] which represents the

subordination relations between some of the problems of codimension less than

or equal to 5. Each line segment represents an adjacency, and indicates that the

singularity of lower codimension is subordinated to that of higher codimension.
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Fig. 5 : Subordination relations between the bifurcation problems subordinated
to the modal familiy in study with height indicating codimension.

According to [3], except for singularities subordinated to modal singularities,

each subordination relation between singularities of codimension less than eight

can be realized through subordinations between bifurcations of consecutive codi-

mension. In the case of our modal family, as it has topological codimendion 4 even

though the codimension is 5, the germs of highest codimension in its unfolding

are those of codimension 3.

The bifurcation problems subordinated to the modal family g are Limit point,

Simple bifurcation, Isola center, Hysteresis, Asymmetric cusp, Pitchfork, Quar-

tic fold, Bifurcation problem number 8, Winged cusp and Bifurcation problem

number 10.

A universal unfolding of the Bifurcation problem number 10 is given by

x4−λx+α+β λ+ γ x2 ([2], ch. IV §4). When γ < 0 the graph of the transition

set in the (α, β)-plane presents symmetry in relation to the α-axis.

We present the bifurcation diagrams in β > 0. The remaining bifurcation

diagrams appear when we intersect the swallowtail with planes symmetric to

those considered here.
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The following is a list of how bifurcations are created.

Fig. 6 : Simple limit point arises from paths intersecting the swallowtail
transversely at a regular point.

Fig. 7 : Simple bifurcation, ([2], ch. IV §4), arises from paths tangent to
the posterior part of the swallowtail pocket.

Fig. 8 : Isola center, ([2], ch. IV §4), arises from paths tangent to the swallowtail
at any points not in the posterior part of its pocket.

Fig. 9 : Hysteresis, ([2], ch. IV §4), arises from paths through one of the
cusp points of the swallowtail.
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Fig. 10 : Asymmetric Cusp, ([2], ch. IV §4), arises from paths like this one
and of its perturbations.

Fig. 11 : Pitchfork, ([2], ch. IV §4), only occurs in case 7 and arises from paths crossing
the swallowtail at a cusp point like this one.

Fig. 12 : Winged cusp, ([2], ch. IV §4), with universal unfolding x3+λ2+α+β λ+γ xλ,
only appears in case 3. It arises from paths as those presented, respectively
when γ < 0 and γ > 0.

Note that Quartic fold and Bifurcation problem number 8 are absent from

this list because they have a different origin. These bifurcations arise when we

move between two planes in Figure 3, that is, when we transform the intersecting

parabola itself. We shall come back to this in Section 4.
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a) b)

c) d)

e)

Fig. 13 : Example of paths that give rise, respectively, to
a) intersection of bifurcation with hysteresis,
b) tangency of bifurcation with double limit point,
c) intersection of hysteresis with double limit point,
d) intersection of bifurcation with hysteresis and
e) intersection of hysteresis with hysteresis,

that occur in the universal unfolding of the bifurcation
problem number 10.

3.2. Global bifurcations

The simplest global bifurcation is the Double Limit, the only non-local type

of generic point in the transition varieties.

We find transverse crossings of all the transition varieties, with the exception

of the crossing of two Double Limit lines. This crossing corresponds to the exis-

tence of four double zeros and we have already seen that in the problem under

consideration there are at most four simple zeros. The intersection of Bifurca-

tion with Hysteresis happens in case 7, the tangency of Bifurcation with Double

Limit, the intersection of Hysteresis with Double Limit and the intersection of

Bifurcation with Hysteresis occur in cases 1, 2 and 3, and the intersection of

Hysteresis with Hysteresis only happens in case 3.
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Fig. 14 : Double limit points arise from paths crossing the
swallowtail at its line of self-intersections.

Fig. 15 : Tangency between Bifurcation and Double limit points,
is found in cases 1, 2 and 3 and arises from paths like this.

4 – The modal family

We return to the discussion of bifurcation diagrams of g(x, y) obtained from

the intersection of a parabola with the swallowtail.

From the second equation in (10) it follows that the parameters α2 and α4

define the position of the plane containing the parabola, whereas the parameters

α1 and α3 induce, respectively, horizontal and vertical translations of the parabola

within this plane.

For each case i we sketch in (α1, α3)-plane the relative positioning of the

transition lines. We also show the persistent bifurcation diagrams, discussed in

Section 3, corresponding to each region. We use thin dashed lines for Simple

bifurcation, bold dashed lines for Isola center, thin solid lines for Hysteresis and

bold solid lines for Double Limit.
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α3

α1

Fig. 16 : Case 1 – Sketch of the transition lines and persistent bifurcation diagrams
in the (α1, α3)-plane. Conventions for the transition lines in the text.

α3

α1

Fig. 17 : Case 2 – Sketch of the transition lines and persistent bifurcation diagrams
in the (α1, α3)-plane. Conventions for the transition lines in the text.
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α3

α1

Fig. 18 : Case 3 – Sketch of the transition lines and persistent bifurcation diagrams
in the (α1, α3)-plane. Conventions for the transition lines in the text.
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Fig. 19 : Case 6 – Sketch of the transition lines and persistent bifurcation diagrams
in the (α1, α3)-plane. Conventions for the transition lines in the text.

Let ∆ be the projection of the transition set in the (α1, α2, α3)-subspace of

parameter space. Each plane containing a parabola is parallel to the C-axis and

contains a line B = k A + p. As we have seen in Section 2, when B = k A + p

we have α2 = k α3 + p, i.e., in the 3-dimensional subspace (α1, α2, α3) we have a

plane parallel to the α1-axis that contains a line α2 = k α3 + p.

To imagine the surface ∆ it is suficient to make the connection between the

(α1, α3)-planes found for each case i appealing to Figure 3 and to the correspon-

dence between the lines B = k A+ p and the lines α2 = k α3 + p.
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α3

α1

Fig. 20 : Case 7 – Sketch of the transition lines and persistent bifurcation diagrams
in the (α1, α3)-plane. Conventions for the transition lines in the text.
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Fig. 21 : Region in (α1, α3)-plane of case 3 and region in (α1, α3)-plane of case 7 (analogous
to that of case 4) in which connection appears the bifurcation problem Quartic fold.
Arrows indicating that in the transition of case 3 to case 4 the transition lines H1, D
and H2 become closer and closer until they join and give rise to the transition line H3.
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We are now able to find the bifurcation problems Quartic fold and number 8

in the versal unfolding of the modal family.

In the transition from case 3 to case 4 (which as we have seen is analogous

to case 7) we find the bifurcation problem Quartic fold. In Figure 21 we show

the region in (α1, α3)-plane of case 3 and the region in (α1, α3)-plane of case 7

in which connection appears the bifurcation problem Quartic fold. For a better

understanding let us observe Figure 3 again and let us consider lines of type 3

closer and closer of the line of type 4. When we make this approach the transition

lines identified in Figure 21 as H1, D and H2 become closer and closer, until when

we move to line of type 4 those transition lines join and originate the transition

line identified H3 in Figure 21, according to the arrows.

In Figure 22 we represent, in the parameter space (β, γ, α), the universal

unfolding of the bifurcation problem number 8. Let us consider the intersection

of Figure 22 with planes parallel to the α-axis defined by lines γ = k β + p and

β = 0 with k ≥ 0.

Fig. 22 : Universal unfolding in parameter space (β, γ, α)
of the bifurcation problem number 8.
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In Figure 23 we show the different results of these intersections. We draw

attention to the fact that intersection 2 is the result of intersecting Figure 22

with a plane tangent to one of the curves of cusp points of the Bifurcation variety

of problem number 8, and intersection 5 results of intersecting Figure 22 with

the plane defined by β = 0.

1 2

3

7

6

Fig. 23 : Different intersections of Figure 7 with planes parallel to the
α-axis defined by lines γ = k β + p and β = 0 with k ≥ 0.

Note that each intersection i is identified with a region in the (α1, α3)-plane

of case i. This is not totally true in what concerns intersection 1 and case 1.

What happens in case 1 is that the region in the (α1, α3)-plane that contains

intersection 1 suffers the action of the passage of a Double Limit line. So, what

we find in that region is not properly intersection 1 but its result after the action

of a Double Limit, see Figure 24.

Furthermore, the line that gives origin to case i and the line that gives origin

to intersection i represent the same line, respectively, in the (A,B)-plane and in

the (β, γ)-plane.

This way we prove that bifurcation problem number 8 is subordinated to the

modal family g, as promised.



424 M. AGUIAR, S. CASTRO and I. LABOURIAU

Fig. 24 : Intersection 1 (Figure 8) after the action of a Double limit.

ACKNOWLEDGEMENTS – The first author benefitted from funding from Action 5.2

of PRODEP, grant 3/98. The last two authors benefitted from funding from Fundação

para a Ciência e Tecnologia, Portugal, grant 2/2.1/MAT/407/94 of programme PRAXIS
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