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EXISTENCE OF L∞ ENTROPY SOLUTIONS
FOR A REACTING EULER SYSTEM *

L. Gosse

Abstract: In this Note, we give an existence result of L∞ solutions for an isentropic

Euler system with a source term. Our method follows the analysis of DiPerna and uses

the compensated compactness theory developed by Murat and Tartar.

1 – Introduction

We are interested in the Cauchy problem for an isentropic inhomogeneous

Euler system describing the flow of two reactive species. This simple two-phase

flow model has been already studied in e.g. [14] without source terms. In a

quasi-conservative form, it reads:

(1)





∂tρ+ ∂x(ρ u) = 0

∂t(ρ c) + ∂x(ρ u c) = ρ g(c)

∂t(ρ u) + ∂x(ρ u
2 + p) = 0 ,

where ρ ≥ α > 0, c ∈ [0, 1], u ∈ R are respectively the global density of the

considered mixture, the concentration of one of the phases appearing in the flow,

and the common velocity. The pressure law p depends in general on both variables

(ρ, c). The first equation expresses the conservation of the global mass. The

second one describes the evolution of one of the mass fractions according to a

reaction process modelled by the source term g ∈ C1(R). At last, the third one is
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concerned with the global mixture momentum. For reasonable pressure laws and

if no vacuum appears, this inhomogeneous system is strictly hyperbolic, [12]. Our

goal is to study the Cauchy problem for (1) through its Lagrangian formulation:

(2)





∂tv − ∂xu = 0

∂tu+ ∂xp(v, c) = 0

∂tc = g(c)

, x ∈ R, t > 0 .

The variable v ∈ R+
∗ stands thus for the specific volume of the mixture.

It is known that this change of variables is one-to-one even for discontinuous

functions, [15]. This last system is shown to be strictly hyperbolic under the

hypotheses (3) on its pressure law p(v, c). Its entropies can be easily derived

from those of the classical p-system (see Lemma 1 and (9)). Then we consider

a sequence of viscous approximations (10) for which we present some sufficient

conditions to ensure the existence of a positively invariant region, [12] for all

ε > 0: see (11), (12) in Lemmas 2 and 3. If no vacuum appears, this provides an

L∞ bound and we can apply the theory of compensated compactness, [10, 13].

Indeed, we perform a change of variables in (10) (see (15)) in order to weaken

the coupling of its unknowns and it is therefore possible to conclude invoking

a compactness theorem of DiPerna, [8]: see Theorem 1. This result extends

towards the original Eulerian system (1) by means of [15]. At last, we give some

remarks and extensions, especially when a relaxation process is involved, [4] (see

Lemma 4), or in in the case of more complex pressure laws. We refer to [1, 2, 6,

7] for some recent contributions to such inhomogeneous problems, see also [3, 5]

for other studies in an homogeneous case. Part of this work appears in the Ph.D.

thesis [9].

2 – Elementary properties and entropies

We make the following hypotheses on the pressure law, [12]:

(3) p ∈ C2(R+
∗ ×[0, 1];R+

∗ ) , pv < 0 and pvv > 0 ,

and we note

U =



v
u
c


 , F (U) =




−u
p(v, c)

0


 , S(U) =




0
0

g(c)


 ,
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where F is the flux function, S the source term. The problem (2) rewrites in

condensed form: 


∂tU + ∂xF (U) = S(U)

U(·, 0) = U0 = (v0, u0, c0) .

Our hypotheses ensure its strict hyperbolicity since the Jacobian matrix is:

(4) ∇F =




0 −1 0
pv 0 pc
0 0 0


 .

Its eigenvalues are: Λ(U) = {−
√
−pv(v, c); 0;

√
−pv(v, c) def

= λ}. The right eigen-

vectors associated to 0, −λ, λ are:

(5) ~R0 =



pc
0
λ2


 , ~R−1 =




1
λ
0


 , ~R1 =



−1
λ
0


 .

This implies that two characteristic fields of (2) are genuinely nonlinear, [12], i.e.

〈∇λ, ~R±1〉R3 6= 0. The last one is obviously linearly degenerate since it is static.

We will also make use of the left eigenvectors of ∇F :

(6) ~L0 =



0
0
1


 , ~L−1 =




λ2

λ
−pc


 , ~L1 =



−λ2

λ
pc


 .

We want now to point out the particular structure of its entropies. At this

level, we can consider the homogeneous version (g ≡ 0) of (2) and remark that if

one gives as an initial data some uniform concentration c0(x) ≡ C0 ∈ [0, 1], one

solves in fact the following system:

(7)




∂tv − ∂xu = 0

∂tu+ ∂xp(v, C0) = 0 .

Lemma 1. Under the assumptions (3), any entropy-entropy flux pair of the

p-system (7) (η, q) ∈ C2(R+
∗ ×R) defines an entropy-entropy flux pair (η̃, q̃) ∈

C2(R+
∗ ×R×[0, 1]) for the system (2). This means that one has for all U :

(8) ∇q̃(U) = ∇η̃(U) .∇F (U) .

Proof: Let C0 ∈ [0, 1]: under the assumptions (3), the map

V : (v, u) 7→
(
p(v, C0), u

)
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is a diffeomorphism of R+
∗ ×R onto itself. Let (η, q) be an entropy-entropy flux

pair of the p-system (7). We can consider (η̄, q̄) such that




η = η̄ ◦ V
q = q̄ ◦ V

with 



∇η =
∂V

∂U
∇η̄

∇q = ∂V

∂U
∇q̄

and

∣∣∣∣
∂V

∂U

∣∣∣∣ =
∣∣∣∣
pv 0
0 1

∣∣∣∣ < 0 .

With the notation f(v, u) = (−u, p(v, C0)), the entropy flux satisfies: ∇η .∇f =

∇q. This is equivalent to: 


qv = ηu . pv

qu = −ηv .

By identification, we get:

{
pv . q̄v = η̄u . pv

q̄u = −η̄v . pv
which leads to

{
q̄v = η̄u

q̄u = −η̄v . pv .

One defines: 



q̃(v, u, c) = q̄
(
p(v, c), u

)
def
= q̄ ◦W (v, u, c)

η̃(v, u, c) = η̄
(
p(v, c), u

)
def
= η̄ ◦W (v, u, c)

where
W : R+

∗ ×R×[0, 1]→ R+
∗ ×R

(v, u, c) 7→ (p(v, c), u)
.

and we have:

∇q̃ =


q̄v . pv
q̄u

q̄v . pc


 and ∇η̃ =



η̄v . pv
η̄u

η̄v . pc


 .

From the preceding relations on ∇η and ∇q, we get:

∇q̃ =



η̄u . pv
−η̄v . pv
η̄u . pc


 which gives ∇q̃ =



η̃u . pv
−η̃v
η̃u . pc


 .

So we end up with ∇q̃ = ∇η̃ .∇F and thus we are done.
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This formulation allows one to recover for instance the entropy proposed in

[14] from the one computed in [12] (p. 399):

(9) η(v, u) =
u2

2
−
∫ v

p(s) ds gives: η̃(v, u, c) =
u2

2
−
∫ v

p(s, c) ds .

3 – Some amplitude uniform estimates

We need now a uniform bound on a sequence of viscous approximations of (2);

i.e. on the solutions Uε, Uε(·, 0) = U0 ∈ L2 ∩ L∞(R) and ε > 0 of the regularized

system

(10)





∂tv
ε − ∂xu

ε = ε ∂xxv
ε

∂tu
ε + ∂xp(v

ε, cε) = ε ∂xxu
ε

∂tc
ε = g(cε) + ε ∂xx c

ε

, x ∈ R, t > 0 .

The usual way to derive an L∞ estimate for (10) is to use the notion of positively

invariant region due to Chueh, Conley and Smoller (see [12] for detailed results).

Definition 1. We call positively invariant region a closed subset Σ in the

states space such that any solution U ε of (10) having its initial data U0 contained

in Σ remains therein for all t > 0.

Generally, Σ is expressed as an intersection of “half-spaces”:

Σ =
3⋂

i=1

{
U ∈ R+

∗ ×R×[0, 1] such that Gi(U) ≤ 0
}

where the Gi are C
2 convex and such that ∇Gi 6= ~0.

To apply this theory to the system (10), we must require that the Jacobian

matrix of the fluxes (4) for (2) admits left eigenvectors (6) which can be expressed

as gradients of some convex Riemann invariants. We are about to look for pressure

laws for which this condition can be satisfied.

Lemma 2. In the case g ≡ 0, it is sufficient for the pressure p(v, c) to satisfy

(11) p(v, c) = f
(
v +K(c)

)
where

{
f ′ < 0 , f ′′ > 0,

K ∈ C2([0, 1]) , K ′′ ≤ 0 ,

in order to ensure the existence of a positively invariant region Σ for (10).
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Proof: According to the expression of the left eigenvectors (6), difficulties

come from ~L±1, especially the term pc (except if it is zero, since in this last case,

classical results [8, 12] apply). We are about to work out ~L−1 that we rewrite

the following way:

~L−1 =



−y . pv
y .
√−pv
−y . pc


 where y(v, u, c) ∈ C1 and y 6= 0 .

We want to derive pressure laws for which there holds: curl(~L−1) = ~0:

curl(~L−1) =

∣∣∣∣∣∣

∂v −y . pv
∂u y .

√−pv
∂c −y . pc

∣∣∣∣∣∣
=




−pv . yu − (y .
√−pv)v

(y .
√−pv)c + pc . yu

−pvc . y − pv . yc + pcv . y + pc . yv


 = ~0 .

The last line gives: pc . yv = pv . yc, which is satisfied by y = a(u) . p(v, c). We

plug this expression in the first two equations:

a′(u) . p .∇p+ a(u)∇(p .
√−pv) = ~0 .

To remove any dependence in u 7→ a(u), we use the fact that pc 6= 0:

pv
pc

= −pv .
√−pv − (pvv/2

√−pv)
pc .
√−pv − (pvc/2

√−pv)
.

This gives:
pv
pc

=
pvv
pvc

=⇒ ∂

∂v

(
pv
pc

)
= 0 .

And we get: pc = k(c) . pv. We introduce now a function K : [0, 1]→ R such that

K ′(c) = k(c). It is clear that the expression

p(v, c) = f
(
v +K(c)

)

satisfies our criteria: pc(v, c) = k(c) f ′(v +K(c)) = k(c) pv(v, c).

It remains to check the convexity of the functions U 7→ Gi(U) according to

this pressure law. This is about to give the condition on the second derivative of

c 7→ K(c). We introduce:

G±1(v, u, c) = ±u−
∫ v+K(c)

λ(s) ds , ∇G±1 =




−λ
±1

−k(c)λ


 with λ =

√
−f ′ .
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Then we have:

λ .∇G−1 = −~L−1 =




f ′

−
√
−f ′

k(c) f ′


 and λ .∇G1 = ~L1 =




f ′√
−f ′

k(c) f ′


 .

The assumptions on the derivatives of f ensure that −λv = f ′′

2
√

−f ′
> 0. So the

matrix

D2G±1 =




−λv 0 −k(c)λv
0 0 0

−k(c)λv 0 −K ′′ λ− k(c)2 λv




is positive definite: ∀ ~X = (x, y, z) ∈ R3, we have:
〈
~X,D2G±1(U) . ~X

〉

R3
= (−λv)

(
x+ k(c) z

)2
+
(
−K ′′(c)λ

)
z2 .

The convexity conditions are satisfied in the case where K ′′ ≤ 0.

Lemma 3. In addition to (11), if one assumes g ∈ C1(R) and:

(12) ∀ c ∈ [0, 1] , K ′(c) ≤ 0, g(c) ≤ 0 and g(0) = 0 .

Then there exists a positively invariant region for the regularized system (10):

(13) Σ =




U = (v, u, c) ∈ (R+

∗ ×R×[0, 1]);



u ≤ C1 +

∫ v+K(c)√
−f ′(s) ds

u ≥ C2 −
∫ v+K(c)√

−f ′(s) ds




.

Proof: First, we notice that the diffusion matrix of (10) is the identity

matrix. Let Ū ∈ ∂Σ, i.e. Gi(Ū) = 0 for i = ±1 or i = 0:

−i = 0, i.e. ~L0(U) = ∇G0(U). From the expression of ~L0, we see that

G0(U) = c is convenient and the scalar product 〈∇G0(Ū), S(Ū)〉R3 is non-

positive in c = 1 and c = 0.

−i = ±1: we rewrite ~L±1 according to (11):

~L±1(U) =




−
√
−f ′(v +K(c))

±1
−k(c)

√
−f ′(v +K(c))


 .

So G±1(U) = ±u−
∫ v+K(c)√−f ′(s) ds. On the boundary, we have c ∈ [0, 1]

and u = C ±
∫ v+K(c)√−f ′(s) ds. We have to ensure that:

〈
∇G±1(Ū), S(Ū)

〉

R3
= −g(c) . k(c) .

√
−f ′(v +K(c)) ≤ 0 .

It is thus sufficient that g(c) ≤ 0 since K ′(c) is negative according to (12).
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Under the restrictions (11), (12), the “mechanical entropy” U 7→ η̃(U), (9), is

strictly convex.

We thus see that even if one assumes the restriction on the pressure law

(11), one can derive invariant regions for (10) only in the case of sink terms of

constant sign for which λ, the sound speed in the mixture, decreases. The severe

conditions on the right-hand side come from the fact that the rectangles of the

plane (v +K(c), u) are not invariant by (10).

In [4], Chen, Levermore et Liu studied a p-system endowed with a relaxation

term on the velocity equation of the form f(v)− u. The same way, they assume

the sub-characteristic condition |p′(v)|−f ′(v)2 ≥ 0 in order to preserve the usual

invariant region (see e.g. [12]) of this system.

4 – Compactness and existence of solutions

We can now state our main result concerning the existence of L∞ solutions

for (2) which is related to case 1 in Theorem 2.1, [3].

Theorem 1. Let (v0, u0) ∈ L2∩L∞(R), and c0 ∈ L2∩BV (R) with c0 ∈ [0, 1].

Under the hypotheses (3), (11), (12), the solutions of (10) satisfying |vε| ≤M <

+∞ converge almost everywhere (up to the extraction of a subsequence) as ε→ 0

towards a weak solution L∞([0, T ]×R), T ∈ R+
∗ of (2) which satisfies in the sense

of distributions:

(14) ∂tη̃(U) + ∂xq̃(U) ≤ ∇η̃(U) . S(U) .

Proof: We notice that the change of variables

(15) U = (v, u, c) 7→ Ũ = (w = v +K(c), u, c)

is a diffeomorphism which weakens the coupling in (10). We get:

(16)





∂tw
ε − ∂xu

ε − k(cε) ∂tc
ε = ε ∂xxv

ε

∂tu
ε + ∂xp(w

ε) = ε ∂xxu
ε

∂tc
ε = g(cε) + ε ∂xx c

ε .

The hypotheses (3), (11), (12) ensure the existence of a positively invariant region

for the regularized system (16). We first show the compactness of the sequence

(wε, uε).
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We have: ∂xxw
ε = ∂xxv

ε + ∂x(k(c
ε) ∂xc

ε). The first equation rewrites:

∂tw
ε − ∂xu

ε = ε
(
∂xxw

ε − k′(cε) . (∂xc
ε)2
)
+ k(cε) . g(cε) .

Let η(w, u) be a C2 entropy for the usual p-system, q(w, u) its associated entropy

flux. Following DiPerna [8], we plan to show:

(17) ∂tη(w
ε, uε) + ∂xq(w

ε, uε) compact in H−1
loc (R×R+

∗ ) .

The classical theory applies directly to the terms ε ∂xxw
ε, ε ∂xxu

ε. We are left

with:

ηw(w
ε, uε) .

[
k(cε) . g(cε)− ε k′(cε) . (∂xc

ε)2
]
,

in which cε is solution of ∂tc
ε = g(cε) + ε ∂xxc

ε.

Since we have L∞ bounds on wε, uε, cε, the regularity of η and k gives the

same type of bounds for ηw(w
ε, uε) and k(cε). Now, since g(0) = 0, g(cε) ∈

L2(R×[0, T ]), the term ηw(w
ε, uε) . k(cε) . g(cε) is uniformly bounded in L2; it is

therefore compact in H−1.

Concerning ηw(w
ε, uε) . ε k′(cε) . (∂xc

ε)2, we have to study the equation on cε.

We multiply it by cε and integrate on R×[0, T ]. Since cε(·, t) ∈ H1(R) is zero at

infinity for t ∈ [0, T ]:

ε

∫

R×[0,T ]
cε . ∂xxc

ε(x, t) dx dt = −ε
∫

R×[0,T ]
(∂xc

ε)2(x, t) dx dt ≤ 0 ,

and Gronwall’s lemma implies that:

‖cε(·, T )‖2L2(R) ≤ ‖c0‖2L2(R) exp
(
2 . ‖g′‖L∞ . T

)
.

Plugging this estimate in the equation, we obtain:

ε

∫

R×[0,T ]
(∂xc

ε)2(x, t) dx dt ≤ ‖c0‖2L2(R) exp
(
2 . ‖g′‖L∞ . T

)
.

The lemma of Murat [10] ensures that (17) holds true and the compactness the-

orem of DiPerna [8] guarantees that (wε, uε) → (w, u) strongly in all the Lp<∞

and almost everywhere up to the extraction of a subsequence. The strong con-

vergence of the sequence cε can be obtained directly using Helly’s compactness

principle.

Theorem 1 extends to the system (1) thanks to the results of [15]. For certain

pressure laws, no vacuum state can appear as soon as the initial data has a

bounded specific volume, see [12].
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5 – Remarks and extensions

This method cannot handle the case of a right-hand side of the type g(ρ, c)

since one cannot treat simultaneously the limit ε → 0 by means of DiPerna’s

theorem together with a fixed point algorithm in order to handle the coupling.

Nevertheless, we give here an extension of a stability result (see [9], p. 189) in the

case where (1) is endowed with a relaxation term, following [4].

Lemma 4. Let g(ρ, c) = µ(ρ)− c where µ ∈ C1(R+; [0, 1]) is strictly mono-

tone and satisfies the condition ∂cp(ρ, c) . ∂ρµ(ρ) ≤ 0 for all (ρ, c) ∈ R+
∗ ×[0, 1].

Then under the hypotheses (3), (11), (12), the following C2 function:

(18) η◦(ρ, ρc, ρu) =
ρu2

2
+ ρ

(∫ ρ

µ−1(c)

p(s, c)

s2
ds+

∫ µ−1(c) p(s, µ(s))

s2
ds

)

is a strictly convex entropy for (1) and satisfies ∂ρcη
◦(ρ, ρc, ρu).g(ρ, c) ≤ 0.

Proof: We have to show that ∂ρcη
◦(ρ, ρc, ρu) (µ(ρ) − c) ≤ 0. We therefore

write:

∂ρcη
◦(ρ, ρc, ρu) =

∂cη
◦(ρ, c, ρu)

ρ
.

And we get:

∂ρcη
◦(ρ, ρc, ρu) = ∂c

[∫ ρ

µ−1(c)

p(s, c)

s2
ds +

∫ µ−1(c) p(s, µ(s))

s2
ds

]
.

We carry out the differentiations inside the integral and at the endpoints of the

summation interval:

(19)

∂ρcη
◦(ρ, ρc, ρu) =

∫ ρ

µ−1(c)
∂c

(
p(s, c)

s2

)
ds

− ∂cµ
−1(c) .

p(µ−1(c), c)

µ−1(c)2
+ ∂cµ

−1(c) .
p(µ−1(c), c)

µ−1(c)2
.

And the last two terms in (19) cancel. By the smoothness of p, one can use the

mean-value theorem to find the sign of the first integral of (19). The restriction on

the signs of ∂cp(ρ, c) and ∂ρµ(ρ) allows to conclude that ∂ρcη
◦(ρ, ρc, ρu).g(ρ, c)≤0.

We check that η is a strictly convex entropy following the classical ways, see e.g.

[14].
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This work is closely related to [3] where Béreux, Bonnetier and LeFloch stud-

ied the homogeneous Euler equations in the case where the closure law is such

that the Lagrangian sound speed is a function of the pressure only . This means:

ρ2 ∂ρ(p)(ρ, S) = a(p)(ρ, S)

where S is the physical entropy of the gas dynamics system. In this context, this

restriction can be expressed:

∂ρ(p) = −
∂v(p)

ρ2
, i.e. − ∂v(p) = a(p) .

According to the sign conventions for ∂v(p), this differential equation gives:

∂v
(
A(p)

)
= 1 and ρ(v, S) = A−1

(
σ +K(S)

)
.

In [14], I. Toumi derives a (non-convex) invariant region for the Riemann

problem applied to the system (1) in the homogeneous case and with a diphasic

vapour/water pressure law of the type:

p(ρ, c) =

(
1.6 ρ (1− c)

1.6− ρ c

)γ

, γ > 1 .

We notice that it is not of the form prescribed by (11). An alternative for the

study of such a problem in the context of bounded variations functions could

follow the approach of Glimm [1, 6, 12]. See also [11] for a study of a two-phase

flow system endowed with a special pressure law using the Glimm scheme.

REFERENCES

[1] Amadori, D. and Guerra, G. – Global weak solutions for systems of balance
laws, Appl. Math. Letters, 12 (1999), 123–127.

[2] Balean, R. – Granular avalanche flow down a smoothly varying slope: the exis-
tence of entropy solutions, Submitted to Proc. Royal Soc. Edinburgh A.
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