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Abstract: We investigate the evolution problem

utt + δ ut −m
(

∫

Ω

|∇u|2 dx
)

∆u+ f(u) = 0 ,

u(0, x) = u0(x), ut(0, x) = u1(x) , x ∈ Ω, t ≥ 0 ,

where n ≤ 3, Ω ⊂ Rn is a bounded open set, δ > 0, and m : [0,+∞[ → [0,+∞[ is a

locally Lipschitz continuous function, with m(0)=0 and m(r)>0 in a neighborhood of 0,

and f(u)u ≥ 0.

We prove that this problem has a unique global solution for positive times, pro-

vided that the initial data (u0, u1) ∈ (H1
0 ∩H2)(Ω)×H1

0 (Ω) and f satisfy suitable

smallness assumptions and the non-degeneracy condition u0 6= 0. We prove also that

(u(t), u′(t), u′′(t))→ (0, 0, 0) in (H1
0 ∩H2)(Ω)×H1

0 (Ω)× L2(Ω) as t→∞.

1 – Introduction

Let Ω ⊆ Rn (n ≤ 3) be an open domain, H :=L2(Ω), with norm ‖ · ‖ and

scalar product 〈·, ·〉. Let us set A :=−∆, with domain D(A) :=(H1
0 ∩ H2)(Ω).

We consider the Cauchy problem







u′′(t) + δ u′(t) +m(‖A1/2u(t)‖2)Au(t) + f(u(t)) = 0 , t ≥ 0 ,

u(0) = u0 , u′(0) = u1 ,
(1.1)
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where δ > 0, m : [0,+∞[ → [0,+∞[ is a locally Lipschitz continuous function,

f ∈ C1(R) and f(u)u ≥ 0.

If Ω = [0, L] is an interval of the real line, this equation is a model for the

damped small transversal vibrations of an elastic string with fixed endpoints.

It is well known that the motion of a clamped string in the 3-dimensional

Euclidean space is described by a system of three quasilinear hyperbolic equa-

tions, whose unknowns are the transversal displacement u and the two compo-

nents of the longitudinal displacement v. Unfortunately, the three equations in

the exact system cannot be uncoupled. However, in the monograph [7], Kirchhoff

showed that under the Ansatz that vtt = o(utt), the string tension can be assumed

to be independent of x. Therefore it can be approximated by its x-average. This

allows to decouple the system (see [1] for the details), leading to the following

equation for the transversal motion u (that is the original form of (1.1)):

ρ hutt + δ ut + f =

(

m0 +
Eh

2L

∫ L

0
|ux|2

)

uxx

where L is the rest-length, E is the Young modulus, ρ is the mass density, h is

the cross-section area, m0 is the initial axial tension, δ is the resistance modulus

and f is a nonlinear perturbation effect.

The Kirchhoff correction, where m(r) is a general stress-strain function, is less

drastic that the linear approximation, which correspond to consider the tension

independent of x and t.

The case m0 > 0 which in mathematics gives strict hyperbolicity, physically

correspond to a pre-stressed string. In this paper we are interested in strings

with zero rest-tension (m0=0), which mathematically corresponds to weak hy-

perbolicity. Moreover we do not limit ourselves to the case where the stress-strain

function m(r) has a polynomial decay at r = 0.

The case δ = 0, f = 0 (free vibrations) has long been studied: the interested

reader can find appropriate references in the surveys of A. Arosio [1] and

S. Spagnolo [13].

In the case δ=0, f(u) = ±|u|α u with large α and m(r)≥ν>0, P. D’Ancona

and S. Spagnolo [4] proved that if u0, u1 ∈ C∞0 (Rn) are small, then problem (1.1)

has a global solution.

The non-degenerate case (i.e. m(r) ≥ ν > 0) with δ > 0 and f = 0 was con-

sidered by E. H De Brito, Y. Yamada, and K. Nishihara [2, 12, 3, 9]: they proved

that for small initial data (u0, u1) ∈ D(A)×D(A1/2) there exists a unique global

solution of (1.1) that decays exponentially as t→∞.
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Degenerate equations (m(r) ≥ 0) with δ > 0, f = 0, were considered by

K. Nishihara and Y. Yamada [10], for m(r) = rγ (γ ≥ 1), and for a general

m(r) ≥ 0 in [5]. In [5] it was proved the existence and uniqueness of a global

solution u(t) of (1.1) for small initial data (u0, u1) ∈ D(A)×D(A1/2) with

m(‖A1/2u0‖2) 6= 0 and the asymptotic behaviour (u(t), u′(t), u′′(t))→ (u∞, 0, 0)

in D(A)×D(A1/2)×H as t→ +∞, where either u∞ = 0 or m(‖A1/2u∞‖2) = 0.

The case m(r) ≥ ν > 0, δ > 0, f(u) = |u|α u has been considered by

M. Hosoya and S. Yamada [6] under the following condition:

0 ≤ α <
2

n− 4
if n ≥ 5 , 0 ≤ α < +∞ if n ≤ 4 .

They proved that, if the initial data are small enough, problem (1.1) has a global

solution which decays exponentially as t→ +∞.

Degenerate equations of type (1.1) were considered by K. Ono [11] when n ≤ 3,

for δ > 0, m(r) = rγ , f(u) ∼= |u|α u. He proved that if the initial data are small

enough, u0 6= 0, and:

α > 2 γ − 1 if n = 1, 2 , α > 4 γ − 2 if n = 3 ,(1.2)

then problem (1.1) has a global solution, that decays with a polynomial rate as

t→ +∞. However the technique of [11] which (besides the result of [10]) is based

on a decay Lemma by M. Nakao [8] does not seem to be extendible to more

general cases.

In this paper we consider problem (1.1) where m is any non-negative locally

Lipschitz continuous function, and m(0) = 0, m(r) > 0 in a neighborhood of 0.

We prove that there exists a unique global solution for (u0, u1) ∈ D(A)×D(A1/2)

provided that (u0, u1) and f satisfy suitable smallness assumptions (cf. Theorem

2.2) and the non-degeneracy condition u0 6= 0 holds. Moreover we prove that

u(t)→ 0 as t→∞. (cf. Theorem 2.4).

NOTATIONS

In this paper, we denote by a1, a2, bε, a3 some constants such that

‖u‖ ≤ a1 ‖A1/2u‖ u ∈ D(A1/2) n = 1, 2, 3 ;

‖u‖∞ ≤ a2 ‖A1/2u‖ u ∈ D(A1/2) n = 1 ;

‖u‖∞ ≤ bε ‖Au‖ε ‖A1/2u‖1−ε u ∈ D(A) n = 2, 0 < ε ≤ 1 ;

‖u‖∞ ≤ a3 ‖Au‖1/2 ‖A1/2u‖1/2 u ∈ D(A) n = 3 .

(1.3)
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2 – Statement of the results

In this section we state the main results of this paper. For completeness’ sake,

we recall the following local existence result, which may be proved by fixed point

theorems (a sketch of the proof is included in Section for the convenience of the

reader).

Theorem 2.1. (Local existence) Let δ > 0, let m : [0,+∞[→ [0,+∞[ be a

locally Lipschitz continuous function, f ∈C1(R), and let (u0, u1) ∈ D(A)×D(A1/2)

with m(‖A1/2u0‖2) > 0.

Then there exists T > 0 such that problem (1.1) has a unique solution

u ∈ C2([0, T ];H) ∩ C1([0, T ];D(A1/2)) ∩ C0([0, T ];D(A)) .

Moreover, u can be uniquely continued to a maximal solution defined in an

interval [0, T∗[, and at least one of the following statements is valid:

(i) T∗ =∞ ;

(ii) lim sup
t→T−

∗

(‖A1/2u′(t)‖2 + ‖Au(t)‖2) = +∞ ;

(iii) lim inf
t→T−

∗

m(‖A1/2u(t)‖2) = 0 .

We can state the global existence result.

Theorem 2.2. (Global existence) Let δ > 0, and let m(r) be a locally

Lipschitz continuous function with m(0) = 0 and m(r) > 0 on some ]0, r0].

Let us assume that f(y) is a C1 function on R satisfying one of the following

conditions in some neighborhood of u = 0:

either

(i) f(y)y ≥ 0 and:

max
|y|≤s

|f ′(y)| ≤







C m(s2+ε) if n = 1, 2

C m(s4) if n = 3
(2.1)

or

(ii) f(0) = 0, f ′ ≥ 0 and:

max
|y|≤s

|f ′(y)| ≤







C m(s2+ε)s−1+ε if n = 1, 2

C m(s4)s−2+ε if n = 3
(2.2)

for some ε > 0.
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Moreover let us assume that the initial data (u0, u1) ∈ D(A)×D(A1/2) are

small enough and satisfy the non-degeneracy condition u0 6= 0.

Then problem (1.1) admits a unique global solution

u ∈ C2([0,+∞[;H) ∩ C1([0,∞[;D(A1/2)) ∩ C0([0,∞[;D(A)) .

Remark 2.3. Theorem 2.2 (i) is still true, when n = 1, if we replace the

condition (2.1) with:

sup
|y|≤a2 s

|f ′(y)| ≤ Cm(s2) ,(2.3)

where a2 is a constant for which (1.3) holds.

If m(r) = rγ and |f ′(u)| ≤ k |u|α, thanks to (2.3), by Theorem 2.2 (i), we

obtain the result of [11] under the stronger assumption that:

α ≥ 2 γ if n = 1 , α > 2 γ if n = 2 , α ≥ 4 γ if n = 3 .

On the other hand, Theorem 2.2 (ii) allows us to obtain the same conclusion

of [11] with m(r) = rγ , f(u) = |u|α u under the assumption (1.2).

Finally we have the following result.

Theorem 2.4. (Asymptotic behaviour)Under the assumptions of Theorem2.2

we have that:

(i) m(‖A1/2u(t)‖2) > 0 for all t ≥ 0;

(ii) (u(t), u′(t), u′′(t))→ (0, 0, 0) in D(A)×D(A1/2)×H as t→∞.

The proof of Theorem 2.4 relies on a result about the asymptotic behaviour of

solutions of the linearization of (1.1) (see Lemma 3.2 for the precise statement).

3 – Proofs

3.1. Local existence

Proof of Theorem 2.1 (see [11]): Since the argument is standard, we only

sketch the main steps of the proof.
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Step 1. Let us set:

m0 :=m(‖A1/2u0‖2) , m∗ :=max

{

1,
2

m0

}

,

F0 := ‖A1/2u1‖2 +m0 ‖Au0‖2 , R2 = 3m∗ F0 ,

cR := ‖m′‖L∞([0,a2

1
R2]) , αR := 2 cR(a

2
1 + 1)

R2

m0
,

fR := max
|y|≤c1R

|f ′(y)|, where c1 :=











a1 a2 n = 1,
b1 n = 2,
a3
√
a1 n = 3 .

Moreover let us define:

T := min

{

log 2

αR
,

δ log 2

3 (fR + 2 cRR)2 a21m∗

}

.(3.1)

Let us set C :=C0w([0, T ];D(A))∩C1w([0, T ];D(A1/2)) and let us consider the

functional space

XR,T :=
{

v ∈ C : v(0) = u0, v
′(0) = u1,

‖A1/2u′(t)‖2 + ‖Au(t)‖2 ≤ R2, t ∈ [0, T ]
}

.

This space, with the distance:

d(v1, v2) := max
t∈[0,T ]

(

‖(v1 − v2)
′(t)‖2 + ‖A1/2(v1 − v2)(t)‖2

)1/2

is a complete metric space.

Let us set, for v ∈ XR,T :

cv(t) :=m(‖A1/2v(t)‖2) .

Since

|c′v(t)| ≤ cR (a21 + 1)R2 <
m0

2T

it follows that

cv(t) >
m0

2
∀ t ∈ [0, T ] .(3.2)
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We can therefore define

[Φ(v)] (t) = u ,

where u ∈ C is the unique solution of the linear problem

{

u′′(t) + δ u′(t) + cv(t)Au(t) + f(v(t)) = 0 , t ≥ 0 ,

u(0) = u0 , u′(0) = u1 .
(3.3)

Step 2. We show that Φ maps XR,T into itself.

To this end, let us define:

F (t) := ‖A1/2u′(t)‖2 + cv(t) ‖Au(t)‖2 .

By a standard computation, we obtain:

F ′(t) ≤ αR F +
(fR a1R)

2

δ
.

Hence, recalling the definition of R, since
ey−1
y

is an increasing function and

αR T ≤ log 2:

F ≤ F0 e
αRT + (eαRT− 1)

(fR a1R)
2

δ αR
≤ 3F0 .

Thus we have proved that

‖A1/2u′(t)‖2 + ‖Au(t)‖2 ≤ 3m∗ F0 = R2 .

Step 3. We show that Φ is Lipschitz continuous, with a Lipschitz constant

less then 1. For v1, v2 ∈ XR,T let us set u1 = Φ(v1), u2 = Φ(v2), w = u1 − u2.

If we consider

Fw(t) := ‖w′(t)‖2 + cv1
(t) ‖A1/2w(t)‖2 ,

then

F ′w(t) ≤ αR Fw +
a21
δ
(2 cRR+ fR)

2 d2(v1, v2) .

Hence

d2(u1, u2) ≤ m∗(e
αRT− 1)

a21
δ αR

(2 cRR+ fR)
2 d2(v1, v2) ≤ 1

2
d2(v1, v2) .

This complete the proof of this step.



8 MARINA GHISI

Step 4. By step 2 – step 3, the map Φ has a unique fixed point u that is a

weakly solution of (1.1); moreover in a standard way (see [14]) one can prove

that

u ∈ C2([0, T ];H) ∩ C1([0, T ];D(A1/2)) ∩ C0([0, T ];D(A)) .

Step 5. Let us prove the last part of the statement.

Let [0, T∗[ be the maximal interval where the solution exists, and let us as-

sume by contradiction that (i), (ii), and (iii) are false. Then there exist two

constants ν, M such that m(‖A1/2u(t)‖2) ≥ ν > 0 in a left neighborhood of T∗,

and ‖A1/2u′(t)‖2 + ‖Au(t)‖2 ≤ M for every t ∈ [0, T∗[. By (3.1) it follows that,

for all S in a left neighborhood of T∗, the life span of the solution of







w′′(t) + δ w′(t) +m(‖A1/2w(t)‖2)Aw(t) + f(w(t)) = 0 , t ≥ S ,

w(S) = u(S) , w′(S) = u′(S) ,

is larger then a strictly positive quantity independent of S. This contradicts the

maximality of T∗.

3.2. Global existence

In the sequel we need the following comparison result for ODEs (the simple

proof is omitted).

Lemma 3.1. Let T > 0, and let g ∈ C1([0, T [,R). Let us assume that

g(t) ≥ 0 in [0, T [ and that there exist two constants c1 > 0, c2 ≥ 0 such that

(g(t))′ ≤ −
√

g(t)
(

c1

√

g(t)− c2
)

∀ t ∈ [0, T [ .

Then
√

g(t) ≤ max

{

√

g(0),
c2
c1

}

for all t ∈ [0, T [.

From now on we use the following notations:

φε(n) :=



















(aε1 a2)
−2/ε n = 1,

(bε)
−2/ε n = 2,

(a3)
−4 n = 3 ,
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β :=

{

1 if n = 1, 2,

1/2 if n = 3 ,

µf (s) := max
|y|≤s

|f ′(y)| ,
√
c := C .

With these notations, without loss of generality, we can rewrite (2.1)–(2.2) as

follows:

µf (s
β−ε) ≤

√
c m(s2) s ∈ [0,

√
r0](3.4)

for some 0 < ε < 1 if n = 1, 2, and ε = 0 if n = 3, and:

µf (s
β−ε0) ≤

√
c m(s2) sε1−1 s ∈ [0,

√
r0](3.5)

for some 0 < ε0 < 1 if n = 1, 2, ε0 = 0 if n = 3, and 0 < ε1 < 1.

Proof of Theorem 2.2:

Case (i)

Let us set:

E0 := ‖u1‖2 +
∫ ‖A1/2u0‖2

0
m(s) ds + 2

∫

Ω

∫ u0

0
f(s) ds ,

F0 :=
‖A1/2u1‖2

m(‖A1/2u0‖2)
+ ‖Au0‖2 +

c

δ

(

〈u0, u1〉+
δ

2
‖u0‖2

)

+
c

2 δ2
E0

G0 := max

{

‖u1‖
m(‖A1/2u0‖2)

,
2

δ
(
√
c a21 + 1)

√

F0

}

cF0
:= max

0≤s≤a2

1
F0

|m′(s)| .

Let us suppose that the initial data verifies:

cF0
G0
√

F0 <
δ

4
, F0 < min

{

φε, r0 a
−2
1

}

=: σ .

We prove that under these smallness assumptions the solution u of (1.1) is a

global solution.

In the following let us set

c(t) = m(‖A1/2u(t)‖2) .

Let us assume that m ∈ C1([0,+∞[;R), and let [0, T∗[ be the maximal interval

where the solution exists.
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Step 1. A priori estimates

Let us set

E(t) := ‖u′(t)‖2 +
∫ ‖A1/2u(t)‖2

0
m(s) ds + 2

∫

Ω

∫ u

0
f(s) ds + 2 δ

∫ t

0
‖u′(s)‖2 ds .

Since E is a conserved energy and f(u)u ≥ 0, we have:

‖u′(t)‖2 + 2 δ

∫ t

0
‖u′(s)‖2 ds ≤ E(0) = E0 t ∈ [0, T∗[ .(3.6)

Furthermore, by taking the scalar product of the equation (1.1) with u, and

integrating on [0, t] we obtain:

∫ t

0

(

c(s) ‖A1/2u(s)‖2 + 〈f(u(s)), u(s)〉
)

ds =

=

∫ t

0
‖u′(s)‖2 ds + 〈u0, u1〉 − 〈u(t), u′(t)〉+

δ

2
‖u0‖2 −

δ

2
‖u(t)‖2

≤
∫ t

0
‖u′(s)‖2 ds +

‖u′(t)‖2
2 δ

+ 〈u0, u1〉+
δ

2
‖u0‖2

≤ 1

2 δ
E0 + 〈u0, u1〉+

δ

2
‖u0‖2 .

Hence, for t ∈ [0, T∗[:

∫ t

0
c(s) ‖A1/2u(s)‖2 ds ≤ 1

2 δ
E0 + 〈u0, u1〉+

δ

2
‖u0‖2 .(3.7)

Step 2. Definitions – considerations

Let us set

T := sup

{

τ ∈ [0, T∗[: c(t)>0,

∣

∣

∣

∣

c′(t)

c(t)

∣

∣

∣

∣

≤ δ

2
, ‖Au(t)‖2 ≤ σ ∀ t ∈ [0, τ ]

}

.(3.8)

We show that T = T∗. Let us assume by contradiction that T < T∗. Since
∣

∣c′(t)
∣

∣ ≤ δ

2
c(t) in [0, T [ we have that

0 < c(0) e−δT/2 ≤ c(T ) ≤ c(0) eδT/2 .(3.9)

Moreover, by ‖Au(t)‖2 ≤ σ we obtain:

‖A1/2u(t)‖2 ≤ a21 ‖Au(t)‖2 ≤ r0 t ∈ [0, T ] .
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Since c(·), c′(·), and ‖Au(·)‖2 are continuous functions, by the maximality of T

we have that necessarily
∣

∣

∣

∣

c′(T )

c(T )

∣

∣

∣

∣

=
δ

2
;(3.10)

or

‖Au(T )‖2 = σ .(3.11)

Step 3. (3.11) is false

Let us set

F (t) :=
‖A1/2u′(t)‖2

c(t)
+ ‖Au(t)‖2 .

Then, a standard calculation shows that on [0, T [ we have:

F ′(t) ≤ −
(

2 δ +
c′(t)

c(t)

) ‖A1/2u′(t)‖2
c(t)

+
2

c(t)
‖A1/2u′(t)‖ ‖f ′(u(t))A1/2u(t)‖

≤ −δ
2

‖A1/2u′(t)‖2
c(t)

+
1

δc(t)
‖f ′(u(t))A1/2u(t)‖2 .

Since ‖Au(t)‖2 ≤ φε, we have:

|u(t, x)| ≤ ‖u(t)‖∞ ≤ ‖A1/2u(t)‖β−ε ,(3.12)

hence, by (3.4)

‖f ′(u(t))A1/2u(t)‖2 ≤ µf

(

‖A1/2u(t)‖β−ε
)2
‖A1/2u(t)‖2(3.13)

≤ c m
(

‖A1/2u(t)‖2
)2
‖A1/2u(t)‖2 .

By this fact:

F (t) ≤ F (0) +
c

δ

∫ t

0
c(s) ‖A1/2u(s)‖2 ds ;

therefore, by (3.7)

F (T ) ≤ F0 < σ .(3.14)

This contradicts (3.11).

Step 4. (3.10) is false

Let us define G(t) :=
‖u′(t)‖
c(t)

. By a simple computation, on [0, T [ we obtain:

(G2(t))′ ≤ −δ G2(t) + 2G(t) ‖Au(t)‖+ 2G(t)
‖f(u(t))‖

c(t)
.
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Since f(0) = 0, by (3.4) (see (3.12)–(3.13)) we have:

∫

Ω
f(u(t, x))2 =

∫

Ω
f ′(ξu(t, x))

2 u2(t, x)(3.15)

≤ µf

(

‖A1/2u(t)‖β−ε
)2
‖u(t)‖2

≤ c a41m
(

‖A1/2u(t)‖2
)2
‖Au(t)‖2 .

By this fact, using the analogous of (3.14) for t ∈ [0, T [:

(G2(t))′ ≤ −G(t)
(

δ G(t)− 2 (1 +
√
c a21)

√

F0
)

.

Hence, applying Lemma 3.1 with g = G2 we have:

G(T ) ≤ max

{

G(0),
2 (1 +

√
c a21)

δ

√

F0

}

= G0 .(3.16)

By (3.14)–(3.16), we have then

∣

∣

∣

∣

c′(T )

c(T )

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2m′(|A1/2u(T )|2) 〈u′(T ), Au(T )〉
c(T )

∣

∣

∣

∣

∣

≤ 2 max
0≤r≤a2

1
F0

|m′(r)| |u
′(T )|
c(T )

|Au(T )|

≤ 2 cF0
G0
√

F0 <
δ

2
.

This contradicts (3.10).

Step 5. Conclusion

Let us assume by contradiction that T∗ < +∞. By (3.9) and (3.14) it follows

that

lim inf
t→T−

∗

m(‖A1/2u(t)‖2) ≥ m(‖A1/2u0‖2) e−δT∗/2 > 0 ,

lim sup
t→T−

∗

‖A1/2u′(t)‖2 + ‖Au(t)‖2 ≤ max
{

1, c(0) eδT∗/2
}

F0 < +∞ .

By the last statement of Theorem 2.1 this is a contradiction. This completes

the proof if m′ is continuous. If m is only locally Lipschitz continuous, thesis

follows from a standard approximation argument.
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Case (ii)

Let us set:

E0 :=
‖u1‖2

m(‖A1/2u0‖2)
+ ‖A1/2u0‖2 , F (0) :=

‖A1/2u1‖2
m(‖A1/2u0‖2)

+ ‖Au0‖2

H0 :=
δ

ε1
‖A1/2u0‖ε1 +

〈Au0, u1〉
‖A1/2u0‖2−ε1

, c1 := sup
0≤s≤1

|m′(s)| .

Moreover let us define:

σ :=min
{

φε0 , r0 a
−2
1

}

, σ1 := δ
1− E(0)1−ε1/2

c a21
, σ2 :=

δ(σ − F (0))

c
.

Let us suppose that, for a suitable λ:

0 < λ < λ0 := min{σ1, σ2} , a21

(

H0 +
2 c1
δ

F0

)

< λ , c1G0
√

F0 <
δ

4
,

where

G0 := min

{

‖u1‖
m(‖A1/2u0‖2)

,
2

δ
(
√

F0 +
√
c a1+ε1

1 F
ε1/2
0 )

}

F0 := F (0) +
c λ

δ

(

E(0)1−2/ε1 +
c a21
δ

λ

)

ε1
2−ε1

.

Then we prove that under these smallness conditions the solution u of (1.1) is a

global solution.

In the following let us set

c(t) = m(‖A1/2u(t)‖2) .

Let us assume that m ∈ C1([0,+∞[,R) and let [0, T∗[ be the maximal interval

where the solution exists.

Step 1. Definitions – considerations

Let us set

T := sup

{

τ ∈ [0, T∗[ : c(t) > 0,

∣

∣

∣

∣

c′(t)

c(t)

∣

∣

∣

∣

≤ δ

2
, ‖Au(t)‖2 ≤ σ(3.17)

∫ t

0
c(s) ‖A1/2u(s)‖ε1 ds ≤ λ ∀ t ∈ [0, τ ]

}

.
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We show that T = T∗. Let us assume by contradiction that T < T∗.

Firstly let us remark that in [0, T ] we have:

‖A1/2u(t)‖2 ≤ a21 ‖Au(t)‖2 ≤ r0 .

Furthermore, since
∣

∣c′(t)
∣

∣ ≤ δ

2
c(t) in [0, T [, we have that

0 < c(0) e−δT/2 ≤ c(T ) ≤ c(0) eδT/2 .(3.18)

Since c(t), c′(t),

∫ t

0
c(s) ‖A1/2u(s)‖ε1 ds and ‖Au(t)‖2 are continuous functions,

by the maximality of T we have that necessarily
∣

∣

∣

∣

c′(T )

c(T )

∣

∣

∣

∣

=
δ

2
;(3.19)

or

‖Au(T )‖2 = σ ,(3.20)

or
∫ T

0
c(s) ‖A1/2u(s)‖ε1 ds = λ .(3.21)

Step 2. (3.20) is false

Let us set:

E(t) :=
‖u′(t)‖2
c(t)

+ ‖A1/2u(t)‖2 .

Hence a simple calculation show that in [0, T [ we have:

E′(t) ≤ −δ
2

‖u′(t)‖2
c(t)

+
‖f(u(t))‖2
δ c(t)

;

therefore, as in (3.15), using (3.5), and ‖Au(t)‖2 ≤ φε0 (see (3.12)):

E′(t) ≤ c a21
δ

c(t) ‖A1/2u(t)‖2 ε1 ≤ c a21
δ

c(t) ‖A1/2u(t)‖ε1Eε1/2 .

By this fact, since λ ≤ λ0 we have:

E(t)1−ε1/2 ≤ E(0)1−ε1/2 +
c a21
δ

λ =: γ ≤ 1 .(3.22)

We can now estimate

F (t) :=
‖A1/2u′(t)‖2

c(t)
+ ‖Au(t)‖2 .
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In fact, by using an estimate likes (3.13), we have:

F ′(t) ≤ −δ
2

‖A1/2u′(t)‖2
c(t)

+
c c(t)

δ
‖A1/2u(t)‖ε1Eε1/2(t) ,

hence:

F (T )+
δ

2

∫ T

0

‖A1/2u′(s)‖2
c(s)

ds ≤ F (0)+
c λ

δ
γ

ε1
2−ε1 = F0 ≤ F (0)+

c λ

δ
< σ .(3.23)

Step 3. (3.21) is false

By taking the scalar product of the equation (1.1) with
Au

‖A1/2u‖2−ε1
we

obtain:

( 〈u′(t), Au(t)〉
‖A1/2u(t)‖2−ε1

+
δ

ε1
‖A1/2u(t)‖ε1

)′

− ‖A1/2u′(t)‖2
‖A1/2u(t)‖2−ε1

+
c(t) ‖Au(t)‖2
‖A1/2u(t)‖2−ε1

+

+
(2− ε1) 〈u′(t), Au(t)〉2

‖A1/2u(t)‖4−ε1
+

〈

f ′(u(t))A1/2u(t), A1/2u(t)
〉

‖A1/2u(t)‖2−ε1
= 0 .

Hence integrating on [0, T [, since f ′ ≥ 0, using (3.22)–(3.23):

∫ T

0
c(t)

‖Au(t)‖2
‖A1/2u(t)‖2−ε1

dt ≤ −
( 〈u′(T ), Au(T )〉
‖A1/2u(T )‖2−ε1

+
δ

ε1
‖A1/2u(T )‖ε1

)

+ H0 +

∫ T

0

‖A1/2u′(t)‖2
c(t)

c(t)

‖A1/2u(t)‖2−ε1
dt

≤ H0 +
ε1
2 δ

‖A1/2u′(T )‖2
‖A1/2u(t)‖2−ε1

+ c1

∫ T

0

‖A1/2u′(t)‖2
c(t)

dt

≤ H0 + c1

(

‖A1/2u′(T )‖2
δ c(T )

+

∫ T

0

‖A1/2u′(t)‖2
c(t)

dt

)

≤ H0 +
2 c1
δ

F0 .

Therefore, by the smallness assumptions on the initial data:

∫ T

0
c(t) ‖A1/2u(t)‖ε1 dt ≤ a21

(

H0 +
2 c1
δ

F0

)

< λ .
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Step 4. (3.19) is false

Proceeding as in the proof of case (i), step 4, we can now estimate

G(t):=
‖u′(t)‖
c(t)

as follows:

(G2(t))′ ≤ −δ G2(t) + 2G

(

‖Au(t)‖+ ‖f(u(t))‖
c(t)

)

≤ −G(t)
(

δ G(t)− 2
√

F0 +
√
c a1+ε1

1 F
ε1/2
0

)

,

hence, applying Lemma 3.1, with g :=G2 we obtain G(t) ≤ G0. Then as in the

proof of case (i), step 4:
∣

∣

∣

∣

c′(T )

c(T )

∣

∣

∣

∣

≤ 2 c1G0
√

F0 <
δ

2
.

Step 5. Conclusion

We can conclude as in step 5 of the proof of case (i).

Proof of Remark 2.3: It is enough to replace σ with r0 a
−2
1 (taking ε = 0)

and to proceed as in the proof of Theorem (2.2) (i).

3.3. Asymptotic behaviour

In order to study the asymptotic behaviour of the solutions of (1.1), we con-

sider the linearized problem
{

v′′(t) + δ v′(t) + c(t)Av(t) + f(t, x) = 0 , t ≥ 0 ,

v(0) = v0 , v′(0) = v1 .
(3.24)

In the following lemma we examine the asymptotic behaviour of the solutions

of (3.24).

Lemma 3.2. Let δ > 0. Let c : [0,+∞[→ ]0,+∞[ be a Lipschitz continuous

bounded function such that
∣

∣

∣

∣

c′(t)

c(t)

∣

∣

∣

∣

≤ δ

2
for a.e. t ≥ 0 .

Let f : [0,+∞[×Ω→ R be a continuous function such that f(t, ·) ∈ D(A1/2) for

all t ≥ 0 and
∫ +∞

0

1

c(s)
‖A1/2f(s)‖2 ds < +∞ , sup

t≥0

‖f(t)‖
c(t)

< +∞ .
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Let v be the unique global solution of (3.24) with (v0, v1) ∈ D(A)×D(A1/2).

Then there exists v∞ ∈ D(A) such that

v(t) −→ v∞ in D(A) ,(3.25)

v′(t) −→ 0 in D(A1/2) ,(3.26)

as t→∞. Furthermore, if v∞ 6= 0, then necessarily c(t)→ 0 as t→∞.

Proof of Lemma 3.2:

Step 1. Let us consider the function

H(t) :=
‖A1/2v′(t)‖2

c(t)
+ ‖Av(t)‖2 − 1

δ

∫ t

0

1

c(s)
‖A1/2f(s)‖2 ds .

A simple computation shows that

H ′(t) ≤ −δ
2

‖A1/2v′(t)‖2
c(t)

.(3.27)

By this fact we obtain:

1. for all t ≥ 0:

‖A1/2v′(t)‖2
c(t)

+ ‖Av(t)‖2 + δ

2

∫ t

0

‖A1/2v′(s)‖2
c(s)

ds ≤

≤ ‖A1/2v1‖2
c(0)

+ ‖Av0‖2 +
∫ +∞

0

1

δ c(s)
‖A1/2f(s, ·)‖2 ds =: γ0 .

2. Since the function c(·) is bounded then:

∫ +∞

0
‖A1/2v′(t)‖2 dt < +∞(3.28)

3. The function H is non-increasing, hence there exists:

F∞ := lim
t→∞

‖A1/2v′(t)‖2
c(t)

+ ‖Av(t)‖2 .

If F∞= 0, then (3.25) holds true with v∞= 0. Since the function c is bounded,

then also (3.26) follows from F∞ = 0.

Therefore from now on we assume that F∞ > 0.



18 MARINA GHISI

Step 2. We show that
∫ ∞

0
c(t) ‖Av(t)‖2 dt < +∞ .(3.29)

Indeed, taking the scalar product of the equation with Av and integrating on

[0, T ], it follows that

∫ T

0
c(t) ‖Av(t)‖2 dt = 〈v1, Av0〉+

δ

2
‖A1/2v0‖2 −

∫ T

0
〈A1/2f(t), A1/2u(t)〉 dt

− 〈v′(T ), Av(T )〉 − δ

2
‖A1/2v(T )‖2 +

∫ T

0
‖A1/2v′(t)‖2 dt

≤ 〈v1, Av0〉+
δ

2
‖A1/2v0‖2 +

1

2 δ
‖c‖∞

‖A1/2v′(T )‖2
c(T )

+ ‖c‖∞
∫ T

0

‖A1/2v′(t)‖2
c(t)

dt

+
1

2 a21

∫ T

0
c(t) ‖A1/2u(t)‖2 dt + a21

2

∫ T

0

‖A1/2f(t)‖2
c(t)

dt

≤ 〈v1, Av0〉+
δ

2
‖A1/2v0‖2 +

(

2

δ
‖c‖∞ +

δ a21
2

)

γ0

+
1

2

∫ T

0
c(t) ‖Au(t)‖2 dt .

Hence

∫ T

0
c(t) ‖Av(t)‖2 dt ≤ 2

(

〈v1, Av0〉+
δ

2
‖A1/2v0‖2 +

(

2

δ
‖c‖∞ +

δ a21
2

)

γ0

)

.

Passing to the limit as T →∞, we obtain (3.29).

Step 3. From (3.28) and (3.29) it follows that

∫ ∞

0
c(t)

(‖A1/2v′(t)‖2
c(t)

+ ‖Av(t)‖2
)

dt < +∞ .

Since, for t ≥ T :

‖A1/2v′(t)‖2
c(t)

+ ‖Av(t)‖2 ≥ F∞
2

> 0 ,

then also
∫ ∞

0
c(t) dt < +∞ .(3.30)
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Since c(·) is Lipschitz continuous, it follows that c(t) → 0 as t → ∞. Since

|A1/2v′(t)|2 ≤ c(t) γ0, then (3.26) is proved.

Step 4. We show that (3.25) holds true with the additional assumptions that

(v0, v1) ∈ D(A2)×D(A3/2), f(t, ·) ∈ D(A3/2) for every t and

∫ +∞

0

‖A3/2f(t)‖
c(t)

dt < +∞ , sup
t≥0

‖Af(t)‖
c(t)

< +∞ .(3.31)

To this end, let us introduce the function

Ĥ(t) :=
‖A3/2v′(t)‖2

c(t)
+ ‖A2v(t)‖2 − 1

δ

∫ t

0

1

c(s)
‖A3/2f(s)‖2 ds .

As in Step 1, it is possible to prove that Ĥ is non-increasing, and that for

every t ≥ 0:

‖A2v(t)‖2 ≤ γ̂0 .

Now let us consider the function Ĝ(t) :=
‖Av′(t)‖
c(t)

. We have that:

(Ĝ(t)2)′ ≤ −Ĝ(t)
{

δ Ĝ(t)− 2

(

√

γ̂0 + sup
t≥0

‖Af(t)‖
c(t)

)

}

,

hence, by Lemma 3.1 with g = Ĝ2, it follows that

Ĝ(t) ≤ max

{

Ĝ(0),
2

δ

(

√

γ̂0 + sup
t≥0

‖Af(t)‖
c(t)

)

}

.

By (3.30), this implies that

∫ ∞

0
‖Av′(t)‖ dt < +∞

and therefore Av(t) has a limit as t→∞.

Step 5. We show that (3.25) holds true for every initial data (v0, v1) ∈
D(A)×D(A1/2).

To this end, let us consider a sequence {(v0n, v1n)} ⊆ D(A2)×D(A3/2) con-

verging to (v0, v1) in D(A)×D(A1/2) and fn as in step 4, with:

∫ +∞

0

1

c(t)
‖A1/2(f(t)− fn(t))‖2 dt → 0 as n→ +∞ .
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Let {vn} be the corresponding solutions of (3.24), and let us set wn := v− vn.
Since wn is a solution of (3.24), with f − fn in place of f , we have that

‖A1/2w′n(t)‖2
c(t)

+ ‖Awn(t)‖2 ≤

≤ ‖A1/2(v1,n− v1)‖2
c(0)

+ ‖A(v0,n− v0)‖2 +
1

δ

∫ +∞

0

1

c(t)
‖A1/2(f(t)− fn(t))‖2 dt .

This proves that {Avn} → Av uniformly in [0,+∞[. Since Avn(t) has a limit as

t→∞ for every n ∈ N (see Step 4), then necessarily Av(t) has a limit as t→∞.

This completes the proof of (3.25).

Proof of Theorem 2.4: We use the same notations as in the proof of

Theorem 2.2 case (i) (resp. case (ii)). Let us first remark that u is the solution

of (3.24) with

c(t) = m(‖A1/2u(t)‖2) , (v0, v1) = (u0, u1) , f(t, x) = f(u(t, x)) .

In Step 2 of the proof of Theorem 2.2 case (i) (resp. Step 1 of case (ii)), we

showed that c(t) > 0 for every t ≥ 0 (this proves statement (i)), and

∣

∣

∣

∣

c′(t)

c(t)

∣

∣

∣

∣

≤ δ

2
∀ t ≥ 0 .

Moreover in this step we proved also that ‖A1/2u‖ ≤ r0, hence c(·) is bounded.
Since m is locally Lipschitz continuous, and ‖A1/2u′(t)‖2 ≤ F (t) c(t) ≤ F0 c(t)

(see (3.14) (resp. (3.23))), then it turns out that c(·) is globally Lipschitz contin-

uous. Finally, as in (3.13), (3.15), by step 1 (resp. step 1):

∫ +∞

0

‖A1/2f(u(t))‖2
c(t)

dt ≤ c

∫ +∞

0
c(t) ‖A1/2u(t)‖2 < +∞ ,

‖f(u(t))‖2
c2(t)

≤ c a21 c
2(t) ‖A1/2u(t)‖2

c2(t)
< c0

(

resp.
∫ +∞

0

‖A1/2f(u(t))‖2
c(t)

dt ≤ c

∫ +∞

0
c(t) ‖A1/2u(t)‖2ε1 < +∞ ,

‖f(u(t))‖2
c2(t)

≤ c a21 ‖A1/2u(t)‖2ε1 < c0
)

for some c0 independent on t.
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By Lemma 3.2, there exists u∞∈D(A) such that u→ u∞ in D(A) and u′→ 0

in D(A1/2). Let us assume that u∞ 6= 0, then by the last statement of Lemma3.2

we have that c(t)→ 0 as t→∞, hence

0 = lim
t→∞

m(‖A1/2u(t)‖2) = m(‖A1/2u∞‖2) .

Since ‖A1/2u∞‖2 ≤ r0, it follows that u∞= 0. Furthermore, using the equation

(1.1), u′′→ 0 in H.
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