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ON THE DIOPHANTINE EQUATION Gn(x) = Gm(P (x))
FOR THIRD ORDER LINEAR RECURRING SEQUENCES *

Clemens Fuchs

Recommended by M.B. Nathanson

Abstract: Let K be a field of characteristic 0 and let a, b, c,G0, G1, G2, P ∈ K[x],
degP ≥ 1. Further let the sequence of polynomials (Gn(x))

∞
n=0 be defined by the third

order linear recurring sequence

Gn+3(x) = a(x)Gn+2(x) + b(x)Gn+1(x) + c(x)Gn(x) for n ≥ 0 .

In this paper we give conditions under which the Diophantine equation

Gn(x) = Gm(P (x))

has at most exp(1024) many solutions (n,m) ∈ Z2, n,m ≥ 0. The proof uses a very

recent result on S-unit equations over fields of characteristic 0 due to J.-H. Evertse,

H.P. Schlickewei and W.M. Schmidt (cf. [8]). This paper is a continuation of the joint

work of the author with A. Pethő and R.F. Tichy on this equation in the case of second

order linear recurring sequences (cf. [9]).

1 – Introduction

Let K denote a field of characteristic 0. There is no loss of generality in

assuming that this field is algebraically closed and we will assume this for the rest

of the paper. Let a, b, c,G0, G1, G2 ∈ K[x] and let the sequence of polynomials

(Gn(x))
∞
n=0 be defined by the third order linear recurring sequence

Gn+3(x) = a(x)Gn+2(x) + b(x)Gn+1(x) + c(x)Gn(x) for n ≥ 0 .(1)
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By α1(x), α2(x), α3(x) we denote the roots of the corresponding characteristic

polynomial

T 3 − a(x)T 2 − b(x)T − c(x) .(2)

Setting S = T − 1
3 a(x) the characteristic polynomial becomes

S3 − p(x)S − q(x) ,

where

p(x) =
1

3
a(x)2 + b(x) , q(x) =

2

27
a(x)3 +

1

3
a(x) b(x) + c(x) .

Let

D(x) =

(

q(x)

2

)2

−
(

p(x)

3

)3

=
1

27
a(x)3 c(x)− 1

108
a(x)2 b(x)2 +

1

6
a(x) b(x) c(x) +

1

4
c(x)2 − 1

27
b(x)3 .

Moreover, let

u(x) =
3

√

q(x)

2
+
√

D(x) , v(x) =
3

√

q(x)

2
−
√

D(x) .

Then we have by Cardano’s formulae

α1(x) = u(x) + v(x) +
1

3
a(x) ,(3)

α2(x) = −u(x) + v(x)

2
+ i
√
3

u(x)− v(x)

2
+
1

3
a(x) and(4)

α3(x) = −u(x) + v(x)

2
− i
√
3

u(x)− v(x)

2
+
1

3
a(x) .(5)

We will always assume that the sequence (Gn(x))
∞
n=0 is simple which means

D(x) 6= 0. Then, for n ≥ 0

Gn(x) = g1(x)α1(x)
n + g2(x)α2(x)

n + g3(x)α3(x)
n ,(6)

where

g1(x), g2(x), g3(x) ∈ K(i
√
3)
(

x,
√

D(x), u(x), v(x)
)

.

(Gn(x))
∞
n=0 is called nondegenerate, if no quotient αi(x)/αj(x), 1 ≤ i < j ≤ 3

is equal to a root of unity and degenerate otherwise.
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Many diophantine equations involving the recurrence (Gn(x))
∞
n=0 were studied

previously. For example, let us consider the equation

Gn(x) = s(x) ,(7)

where s(x) ∈ K[x] is given. We denote by N(s(x)) the number of integers n for

which (7) holds. From the Theorem of Skolem–Mahler–Lech [10] it follows that

N(s(x)) is finite for every s(x) provided that the sequence is nondegenerate and

that also α1(x), α2(x), α3(x) are not equal to a root of unity. Evertse, Schlickewei

and Schmidt [8] proved that

N(s(x)) ≤ exp(189)

under the same conditions as before. This is a direct consequence of the Main

Theorem on S-unit equations over fields of characteristic 0 which we will state

later on. We can say even more for the zero multiplicity, i.e. the case s(x) = 0.

Beukers and Schlickewei [2] showed that

N(0) ≤ 61 .(8)

Very recently, Schmidt [13] obtained the remarkable result that for arbitrary

nondegenerate complex recurrence sequences of order q one has N(a) ≤ C(q),

where a ∈ C and C(q) depends only (and in fact triply exponentially) on q.

Recently, Pethő, Tichy and the author used new developments on S-unit

equations over fields of characteristic 0 due to Evertse, Schlickewei and Schmidt

(cf. [8]) to handle the equation Gn(x) = Gm(P (x)) for sequences (Gn(x))
∞
n=0 of

polynomials satisfying a second order linear recurring sequence. Their result was:

Let p, q,G0, G1, P ∈ K[x], degP ≥ 1 and (Gn(x))
∞
n=0 be defined by the second

order linear recurrence

Gn+2(x) = p(x)Gn+1(x) + q(x)Gn(x) , n ≥ 0 .

Assume that the following conditions are satisfied: 2 deg p > deg q ≥ 0 and

degG1 > degG0 + deg p ≥ 0 , or

degG1 < degG0 + deg q − deg p .

Then there are at most exp(1018) pairs of integers (n,m) with n,m ≥ 0 with
n 6= m such that

Gn(x) = Gm(P (x))
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holds. Furthermore, they showed a second result in their paper: Let ∆(x) =

p(x)2 + 4 q(x). Assume that

(1) deg∆ 6= 0,
(2) degP ≥ 2,
(3) gcd(p, q) = 1 and

(4) gcd(2G1−G0 p, ∆) = 1.

Then there are at most exp(1018) pairs of integers (n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.

The motivation for this equation was the following observation which shows

that the problem is non-trivial: Consider the Chebyshev polynomials of the first

kind, which are defined by

Tn(x) = cos(n arccosx) .

It is well known that they satisfy the following second order recurring relation:

T0(x) = 1 , T1(x) = x ,

Tn+2(x) = 2xTn+1(x)− Tn(x) .

It is also well known and in fact easy to prove that

T2n(x) = Tn(2x
2 − 1) .

This example shows that at least some conditions are needed to exclude this case.

It is the aim of this paper to present suitable extensions of the above results

for third order linear recurrences.

2 – General results

Our first main result is a suitable analog of Theorem 1 in [9] for the number

of solutions of

Gn(x) = Gm(P (x))(9)

for third order linear recurring sequence (Gn(x))
∞
n=0.
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Theorem 1. Let a, b, c,G0, G1, G2, P ∈ K[x], degP ≥ 1 and (Gn(x))
∞
n=0

be defined as above. Assume that the following conditions are satisfied:

3 deg a>deg c ≥ 0, 2 deg a>deg b and deg a+ deg c > 2 deg b. Moreover, assume

degG2 > degG1 + deg a ≥ 0 , and

degG1 > degG0 +
1

2
(deg c− deg a) .

Then there are at most exp(1024) pairs of integers (n,m) with n,m ≥ 0 with

n 6= m such that

Gn(x) = Gm(P (x))

holds.

Remark 1. We can also assume that

degG2 < degG1 + deg a , and

degG1 < degG0 +
1

2
(deg c− deg a) .

instead of the conditions concerning the initial polynomials of the recurrence in

the above theorem.

The case a(x) = 0 is excluded by the conditions in Theorem 1. This special

case is handled in the following theorem.

Theorem 2. Let b, c,G0, G1, G2, P ∈ K[x], degP ≥ 1 and (Gn(x))
∞
n=0 be

defined by

Gn+3(x) = b(x)Gn+1(x) + c(x)Gn(x), for n ≥ 0 .

Assume that the following conditions are satisfied: 3 deg b > 2 deg c ≥ 0 and

degG2 > degG1 + 2deg b ≥ 0, and

degG1 > degG0 + 2deg b− deg c .

Then there are at most exp(1024) pairs of integers (n,m) with n,m ≥ 0 with

n 6= m such that

Gn(x) = Gm(P (x))

holds.
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Remark 2. Observe that the conditions in this special case are quite similar

to those for second order linear recurring sequences proved in [9] and mentioned

in the introduction.

It is also possible to replace the conditions concerning the degree by algebraic

conditions.

Theorem 3. Let a, b, c,G0, G1, G2, P ∈ K[x] and (Gn(x))
∞
n=0 be defined

as above. Assume that

(1) degD 6= 0, deg q 6= 0,
(2) degP ≥ 2,
(3) gcd(c,D) = 1, gcd(p, q) = 1,

(4) gcd

(

G2 −
2

3
aG1 −

2

9
a2 G0 − bG0, q

)

= 1,

gcd

(

G2
2 −

4

3
bG2 G0 −

1

3
bG2

1 +
4

9
b2 G2

0, D

)

= 1 and

(5) gcd(a, 27 c2 − 4 b3) > 1.

Then there are at most exp(1024) pairs of integers (n,m) with n,m ≥ 0 such
that

Gn(x) = Gm(P (x))

holds.

Remark 3. The reason for this different kind of assumptions lie in the fact

that the infinite valuation in the rational function field K(x) leads to degree as-

sumptions, whereas by looking at finite valuations one gets divisibility conditions

as in the above theorem.

In this case a(x) = 0 is included in the above theorem. Let us mention it as

a corollary.

Corollary 1. Let b, c,G0, G1, G2, P ∈ K[x] and (Gn(x))
∞
n=0 be defined by

Gn+3(x) = b(x)Gn+1(x) + c(x)Gn(x), for n ≥ 0 .

Assume that

(1) degD 6= 0, deg c 6= 0,
(2) degP > 1,
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(3) gcd(b, c) = 1,

(4) gcd(G2 − bG0, c) = 1, and

gcd

(

G2
2 −

4

3
bG2 G0 −

1

3
bG2

1 +
4

9
b2 G2

0, D

)

= 1,

where D(x) = (c(x)/2)2 − (b(x)/3)3. Then there are at most exp(1024) pairs of

integers (n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.

Again we want to remark that this condition are quite similar to those ob-

tained in the case of second order linear recurring sequences [9].

3 – Auxiliary results

In this section we collect some important theorems which we will need in our

proofs.

Let K be an algebraically closed field of characteristic 0, n ≥ 1 an integer,
α1, ..., αn elements of K

∗= K\{0} and Γ a finitely generated multiplicative sub-
group of K∗. A solution (x1, ..., xn) of the so called weighted unit equation

α1x1 + · · ·+ αnxn = 1 in x1, ..., xn ∈ Γ(10)

is called nondegenerate if

∑

j∈J

αjxj 6= 0 for each non-empty subset J of {1, ..., n}(11)

and degenerate otherwise. It is clear that if Γ is infinite and if (10) has a de-

generate solution then (10) has infinitely many degenerate solutions. For the

nondegenerate solutions we have the following result, which is due to Evertse,

Schlickewei and Schmidt [8]. First, we remark that Γ is called a finite type sub-

group of C∗= C\{0} if it has a free subgroup Γ0 of finite rank such that Γ/Γ0 is

a torsion group; the rank of Γ is then defined as the rank of Γ0. It is sufficient for

us to state their result for finite type subgroups of C∗ (cf. [8] and [7, Theorem2]

for the following version).
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Theorem 4 (Evertse, Schlickewei and Schmidt). Let Γ be a finite type

subgroup of C∗ of rank r and α1, ..., αn ∈ C∗. Then the number of nondegenerate

solutions of the equation

α1x1 + ...+ αnxn = 1 in x1, ..., xn ∈ Γ

is at most

exp
(

(6n)3n (r + 1)
)

.

This theorem is the Main Theorem on S-unit equations over fields with

characteristic 0. It is a generalization of an earlier results due to Evertse and

Győry [5], Evertse [3] and van der Poorten and Schlickewei [11] on the finite-

ness of the number of nondegenerate solutions of (10). For a general survey on

these equations and their applications we refer to Evertse, Győry, Stewart and

Tijdeman [6].

In the special case n = 2 a much better result is known due to Baker [1] and

to Beukers and Schlickewei (cf. [2] and [7, Theorem F]).

Theorem 5 (Beukers and Schlickewei). Let Γ be a finite type subgroup

of C∗ of rank r and a, b ∈ C∗. Then the equation

ax+ by = 1 in x, y ∈ Γ

has at most

216(r+1)

solutions.

This result is comparable to Evertse’s upper bound 3×74s for the case Γ = O∗
S

the ring of S-integers, where S has cardinality s (cf. [4]).

Finally, we need some results from the theory of algebraic function fields,

which can be found for example in the monograph of Stichtenoth [14].

Let K be an algebraically closed field of characteristic 0. Let K be a finite ex-

tension of K(x) where x is transcendental over K. For ξ ∈ K define the valuation

νξ such that for Q ∈ K(x) we have Q(x) = (x− ξ)νξ(Q)A(x)/B(x) where A,B are

polynomials with A(ξ)B(ξ) 6= 0. Further, for Q = A/B with A,B ∈ K[x] we

put degQ := degA − degB; thus ν∞ := − deg is a discrete valuation on K(x).

Each of the valuations νξ, ν∞ can be extended in at most [K : K(x)] ways to a

discrete valuation on K and in this way one obtains all discrete valuations on K.
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A valuation on K is called finite if it extends νξ for some ξ ∈ K and infinite if

it extends ν∞. We choose one of the extensions of ν∞ to L and denote this by

− ord. Thus ord is a function from K to Q having the properties

(a) ord(Q) = degQ for Q ∈ K[x] ,

(b) ord(AB) = ord(A) + ord(B) for A,B ∈ K ,

(c) ord(A+B) ≤ max(ord(A), ord(B)) for A,B ∈ K ,

(d) ord(A+B) = max(ord(A), ord(B)) for A,B ∈ K ,

with ord(A) 6= ord(B) .

4 – Reduction to a system of equations

We start with a sequence of polynomials (Pn(x))
∞
n=0 defined by (1). Then, in

the sequel α1(x), α2(x), α3(x), g1(x), g2(x), g3(x), u(x), v(x), D(x) are always be

given by (3), (4) and (5) (see introduction).

First we remark that in fact Gn(x) ∈ K[x] for all n ∈ N where K is finitely

generated over Q. We may take

K = Q
(

coefficients of a, b, c,G0, G1, G2

)

.

Let us define

F = K

(

x
√

D(x),
√

P (x), u(x), u(P (x)), v(x), v(P (x))

)

.

Clearly, F is a finitely generated extension field of Q. In fact F is an algebraic

function field in one variable over the constant field K. Furthermore, we set

Γ =

〈

α1(x), α2(x), α3(x), α1(P (x)), α2(P (x)), α3(P (x))

〉

(F ∗,·)
,

so Γ is the subgroup of the multiplicative group of F generated by the character-

istic roots of (Gn(x))
∞
n=0 and (Gn(P (x)))

∞
n=0.

It is obvious that Γ can be seen as a finitely generated subgroup of C∗,

because we can embed K∗ into C∗ by sending the transcendental elements which

appear in the coefficients of a, b, c,G0, G1, G2 and the variable x to linearly inde-

pendent transcendental elements of C. Moreover, it is clear that the rank r of Γ

is at most 6.
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First we reduce the solvability of (9) to the solvability of seven types of systems

of exponential equations in n,m.

We consider for n 6= m the equation Gn(x) = Gm(P (x)) and obtain

g1(x)α1(x)
n + g2(x)α2(x)

n + g3(x)α3(x)
n −

− g1(P (x))α1(P (x))
m − g2(P (x))α2(P (x))

m − g3(P (x))α3(P (x))
m = 0 .

This can be rewritten as

g1(x)

g3(P (x))
x1 +

g2(x)

g3(P (x))
x2 +

g3(x)

g3(P (x))
x3 −

g1(P (x))

g3(P (x))
x4 −

g2(P (x))

g3(P (x))
x5 = 1

in x1, ..., x5 ∈ Γ .

According to the theorem of Evertse, Schlickewei and Schmidt (Theorem 4)

we conclude that, if g1(x), g2(x), g3(x) 6= 0 and the following systems have only
finitely many solutions (m,n) ∈ Z2 with n,m ≥ 0 which can be estimated by C

say, then our original equation (9) has only finitely many solutions which can be

bounded by

C + exp(3015 · 7) .
The systems which correspond to the non-trivial vanishing subsums of the above

weighted unit equation are:
{

g1(x)α1(x)
n + g2(x)α2(x)

n + g3(x)α3(x)
n = gk(P (x))αk(P (x))

m

gi(P (x))αi(P (x))
m + gj(P (x))αj(P (x))

m = 0 ,
(12)











gi(x)αi(x)
n + gj(x)αj(x)

n = 0

g1(P (x))α1(P (x))
m + g2(P (x))α2(P (x))

m +
+ g3(P (x))α3(P (x))

m = gk(x)αk(x)
n ,

(13)











gi(x)αi(x)
n = gj(P (x))αj(P (x))

m

gj(x)αj(x)
n + gk(x)αk(x)

n =
= gi(P (x))αi(P (x))

m + gk(P (x))αk(P (x))
m ,

(14)











gi(x)αi(x)
n = gi(P (x))αi(P (x))

m

gj(x)αj(x)
n + gk(x)αk(x)

n =
= gj(P (x))αj(P (x))

m + gk(P (x))αk(P (x))
m ,

(15)

{

g1(x)α1(x)
n + g2(x)α2(x)

n + g3(x)α3(x)
n = 0

g1(P (x))α1(P (x))
m + g2(P (x))α2(P (x))

m + g3(P (x))α3(P (x))
m = 0 ,

(16)
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{

gi(x)αi(x)
n + gj(x)αj(x)

n = gi(P (x))αi(P (x))
m

gj(P (x))αj(P (x))
m + gk(P (x))αk(P (x))

m = gk(x)αk(x)
n ,

(17)

{

gi(x)αi(x)
n + gj(x)αj(x)

n = gk(P (x))αk(P (x))
m

gi(P (x))αi(P (x))
m + gj(P (x))αj(P (x))

m = gk(x)αk(x)
n ,

(18)

where i, j, k are always such that {i, j, k} = {1, 2, 3}. Now we have the following
lemma.

Lemma 1. Let g1(x), g2(x), g3(x), g1(P (x)), g2(P (x)), g3(P (x)) 6= 0 and as-

sume that (Gn(x))
∞
n=0 and (Gn(P (x)))

∞
n=0 are nondegenerate. Then for every

choice of {i, j, k} = {1, 2, 3} we have

(12) and (13) have at most 3 + exp(189 · 4) ,
(16) has at most 3721,

(17) and (18) have at most 264

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Proof: First observe that an equation of the type

h1(x)α(x)
n + h2(x)β(x)

n = 0(19)

with h1, h2, α, β ∈ F ∗ and α(x)/β(x) not equal to a root of unity has at most

one solution in n ∈ Z. In particular, assume that we have two solutions n1, n2.

Then we obtain

−h1(x)

h2(x)
=

(

β(x)

α(x)

)n1

=

(

β(x)

α(x)

)n2

,

which implies that n1= n2.

Let us first look at (12) with some choice of {i, j, k} = {1, 2, 3}. The second
equation is of the above type (19) and therefore it has at most one solutionm ∈ N.
Now the first equation in this system becomes

b1(x)α1(x)
n + b2(x)α2(x)

n + b3(x)α3(x)
n = 1 ,

with

bi(x) =
gi(x)

gk(P (x))αk(P (x))m
, i = 1, 2, 3 ,

which can be seen as a 3-dimensional weighted unit equation over the field F of

characteristic 0 where we search for solutions in the finitely generated subgroup
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which is generated by α1(x), α2(x), α3(x). By our assumptions we have bi(x) 6= 0
for i = 1, 2, 3. Moreover, each of the three non-trivial subsums vanishes for at

most one n ∈ N as this subsums are again of the type (19). By using Theorem 4
again, we can conclude that there are at most

3 + exp(189 · 4)

pairs of solutions (n,m). The second system (13) is completely analogous.

Now for the equations in (16) we can calculate the number of solutions by

using the bound for the zero multiplicity of nondegenerate third order linear

recurring sequences (see introduction). Therefore the first equation has at most

61 solutions in n and the second at most 61 solutions in m. Consequently, there

are at most 61 · 61 = 3721 pairs (n,m) for which (16) holds.
Each of the equations in the system (17) can be seen as a 2-dimensional

weighted unit equations where we are interested in solutions which lie in the group

generated by the three characteristic roots which are involved in the equation.

Therefore by Theorem 5 we can conclude that the first and the second equation

has at most 216·4 solutions. Altogether the systems has at most 216·4 solutions as

claimed in the lemma.

Lemma 2. Let g1(x), g2(x), g3(x), g1(P (x)), g2(P (x)), g3(P (x)) 6= 0 and

assume that (Gn(x))
∞
n=0 and (Gn(P (x)))

∞
n=0 are nondegenerate. Then (13) and

(14) have at most

1 + exp(189 · 7)
solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m respectively, provided that none of

the following systems has a solution:










gi(x)αi(x)
n = gi(P (x))αi(P (x))

m

gj(x)αj(x)
n = gj(P (x))αj(P (x))

m

gk(x)αk(x)
n = gk(P (x))αk(P (x))

m ,

(20)











gi(x)αi(x)
n = gi(P (x))αi(P (x))

m

gj(x)αj(x)
n = gk(P (x))αk(P (x))

m

gk(x)αk(x)
n = gj(P (x))αj(P (x))

m ,

(21)











gi(x)αi(x)
n = gj(P (x))αj(P (x))

m

gj(x)αj(x)
n = gk(P (x))αk(P (x))

m

gk(x)αk(x)
n = gi(P (x))αi(P (x))

m ,

(22)

where i, j, k are such that {i, j, k} = {1, 2, 3}.
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Proof: We handle only the system (13) since (14) is completely analogous.

Let {i, j, k} = {1, 2, 3} be fixed. The second equation in both systems can be
seen as a 3-dimensional weighted unit equation

gj(x)

gk(P (x))
x1 +

gk(x)

gk(P (x))
x2 −

gi(P (x))

gk(P (x))
x3 = 1 in x1, x2, x3 ∈ Γ .

According to Theorem 4 this equation has at most

exp(189 · 7)

solutions in Γ for which no non-trivial subsum vanishes. But the vanishing sub-

sums are






gj(x)αj(x)
n + gk(x)αk(x)

n = 0

gi(P (x))αi(P (x))
m + gk(P (x))αk(P (x))

m = 0

which has at most one pair of solutions (n,m) by the proof of Lemma 1, and

the first and the last system in our assumptions, which are assumed to have no

solutions in (n,m) at all. Therefore we have proved the upper bound for the

number of solutions (n,m)∈Z2 with n,m ≥ 0, n 6=m as claimed in the lemma.

From this discussion we see that it suffices to prove that g1(x), g2(x), g3(x),

g1(P (x)), g2(P (x)), g3(P (x)) 6= 0, that αi(x)/αj(x) and αi(P (x))/αj(P (x)) is

not equal to a root of unity for 1 ≤ i < j ≤ 3 and that the systems (20), (21)
and (22) do not have a solution (n,m) ∈ Z2 with n,m ≥ 0, n 6= m. We will show

this for each of our theorems separately in the following sections.

5 – Proof of Theorem 1

In the next lemma we calculate the order of α1(x), α2(x) and α3(x) respec-

tively in the function field F/K, where F and K are defined as in the previous

section. Then we have:

Lemma 3. Let (Gn(x))
∞
n=0 be a sequence of polynomials defined by (1) and

assume that 3 deg a > deg c, 2 deg a > deg b and deg a+ deg c > 2 deg b. Then

ord(α1) = deg a ,(23)

ord(α2) = ord(α3) =
1

2
(deg c− deg a) < deg a .(24)
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Proof: First of all, observe that we have

deg q = 3deg a and deg p = 2deg a .

Moreover, we have by our assumptions

degD = 3deg a+ deg c .

Therefore, we trivially have

ord(u) = ord(v) = deg a

and the leading coefficients of the Puiseux expansions of u(x) and v(x) at the

absolute value which corresponds to ord are equal to 1/3 times the leading coef-

ficient of a(x). Consequently, we have ord(α1) = deg a. Now it follows from (b)

and from the following equation

u(x)3 − v(x)3 = 2
√

D(x)

that

ord(u3 − v3) =
1

2
(3 deg a+ deg c) .

But using

u(x)3 − v(x)3 =
(

u(x)− v(x)
) (

u(x)2 + u(x) v(x) + v(x)2
)

and the observation that ord(u2 + uv + v2) = 2 deg a, which follows again from

the fact that all the summands have the same leading coefficient in their Puiseux

expansion, we get

ord(u− v) =
1

2
(deg c− deg a) .

We want to remark that we have

α1(x)α2(x)α3(x) = −c(x) .(25)

Now assume that ord(α2) 6= ord(α3). Furthermore, we may assume without loss

of generality that ord(α2) > ord(α3). But then we have using (d)

ord(α2) = ord(α2 − α3) = ord(u− v) =
1

2
(deg c− deg a)

which yields by (25)

ord(α3) =
1

2
(deg c− deg a) = ord(α2) ,
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a contradiction. Therefore we conclude again using (25) that

ord(α2) = ord(α3) =
1

2
(deg c− deg a) .

This means that the proof is finished.

It is clear that

ord(α1 − α3) = ord(α1 − α2) = deg a ,

ord(α2 − α3) = ord

(

2 i
√
3
u− v

2

)

=
1

2
(deg c− deg a) .

To finish our proof, we want to calculate the order of g1(x), g2(x) and g3(x).

From the initial conditions

G0(x) = g1(x) + g2(x) + g3(x) ,

G1(x) = g1(x)α1(x) + g2(x)α2(x) + g3(x)α3(x) ,

G2(x) = g1(x)α1(x)
2 + g2(x)α2(x)

2 + g3(x)α3(x)
2 ,

we get

g1(x)∆(x) = G2(x)
(

α3(x)− α2(x)
)

+ G1(x)
(

α2(x)
2 − α3(x)

2
)

(26)

+ G0(x)α2(x)α3(x)
(

α3(x)− α2(x)
)

,

g2(x)∆(x) = G2(x)
(

α1(x)− α3(x)
)

+ G1(x)
(

α3(x)
2 − α1(x)

2
)

(27)

+ G0(x)α1(x)α3(x)
(

α1(x)− α3(x)
)

,

g3(x)∆(x) = G2(x)
(

α2(x)− α1(x)
)

+ G1(x)
(

α1(x)
2 − α2(x)

2
)

(28)

+ G0(x)α1(x)α2(x)
(

α2(x)− α1(x)
)

,

where

∆(x) = α1(x)α2(x)
(

α2(x)− α1(x)
)

+ α1(x)α3(x)
(

α1(x)− α3(x)
)

+ α2(x)α3(x)
(

α3(x)− α2(x)
)

= −6 i
√
3
√

D(x) .
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In the proof of Lemma 3 we have already seen that a(x)3 c(x) is the dominant

term in D(x). Consequently, we have

ord(∆) =
1

2
(3 deg a+ deg c) .

Therefore, we can conclude

ord(g1) = ord(G2) +
1

2
(deg c− deg a) − 1

2
(3 deg a+ deg c)

= degG2 − 2 deg a ,

ord(g2) = ord(g3) = degG2 + deg a −
1

2
(3 deg a+ deg c)

= degG2 −
1

2
deg a − 1

2
deg c .

Thus, we deduce that g1(x), g2(x), g3(x) and therefore also g1(P (x)),

g2(P (x)), g3(P (x)) are different from zero.

Next we are intended to show that αi(x)/αj(x) is not equal to a root of unity

for 1 ≤ i < j ≤ 3. First observe that

α1(x) = ζ α2(x) or α1(x) = ζ α2(x)

with ζ a root of unity is impossible because of the different order. Namely this

would imply

ord(α1) = ord(α2) or ord(α1) = ord(α3)

respectively, a contradiction. Now assume that we have

α2(x) = ζ α3(x)

with ζ a root of unity. Observe that the leading coefficients in the Puiseux

expansion of α2(x), α3(x) are conjugate complex numbers. This follows from the

fact that

ord(α2) = ord(α3) = ord(u− v)

and u(x)− v(x) is one of the summands in the definition of those characteristic

roots. Thus the only possibilities are ζ = 1 or −1 which both lead to a contra-
diction since

ord(α2 − α3) =
1

2
(deg c− deg a)

and α2(x) + α3(x) = a(x)− α1(x) 6= 0.
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The proof that the sequence (Gn(P (x)))
∞
n=0 is nondegenerate is completely

analogous to the above case since we are only considering the order of the ele-

ments.

It remains to show the unsolvability of (20), (21) and (22). Because of

ord(α2) = ord(α3) and ord(g2) = ord(g3)

it suffices to consider the following two cases:

{

g1(x)α1(x)
n = g1(P (x))α1(P (x))

m

g2(x)α2(x)
n = g2(P (x))α2(P (x))

m ,
(29)















g1(x)α1(x)
n = g2(P (x))α2(P (x))

m

g2(x)α2(x)
n = g1(P (x))α1(P (x))

m

g3(x)α3(x)
n = g3(P (x))α3(P (x))

m .

(30)

Calculating orders we get

degG2 − 2 deg a+ n deg a = (degG2 − 2 deg a) (degP +m deg a degP ) ,
(

degG2 −
deg a

2
− deg c

2

)

(1− degP ) = (m degP − n)
deg c− deg a

2
,

or

(degG2 − 2 deg a) (1− degP ) = (m degP − n) deg a ,

(2 degG2 − deg a− deg c) (1− degP ) = (m degP − n) (deg c− deg a) .

This yields

(m− 1) degP = n− 1 .

Substituting this into the first equation leads to

(degG2 − deg a) (1− degP ) = 0 ,

which implies degP = 1 and therefore n = m or degG2 = deg a and therefore

degG1< 0, in both cases a contradiction.

The second system leads to

degG2 − 2 deg a+ n deg a =

=

(

degG2 −
1

2
deg a− 1

2
deg c

)

degP + m degP
1

2
(deg c− deg a) ,



18 CLEMENS FUCHS

degG2 −
1

2
deg c− 1

2
deg a+ n

1

2
(deg c− deg a) =

=

(

degG2 −
1

2
deg a− 1

2
deg c

)

degP + m degP
1

2
(deg c− deg a) ,

degG2 −
1

2
deg c− 1

2
deg a+ n

1

2
(deg c− deg a) =

= (degG2 − 2 deg a) degP +m deg a degP ,

which yields

0 ≤ 1

2
(3 deg a− deg c) = −m

1

2
(deg a+ deg c) < −m deg b < 0 ,

a contradiction.

So the proof of Theorem 1 is finished. By Lemma 1 and Lemma 2 we get by

counting how often each system can appear, the following bound:

exp
(

3015 · 7
)

+ 2 · 3 ·
[

3 + exp
(

189 · 4
)]

+ 3721 + 9 · 264 + 9 ·
(

1 + exp
(

189 · 7
))

which can be estimated by

exp(1024) .

This was the claim of Theorem 1.

6 – Proof of Theorem 2

First we want to mention that a(x) = 0 means that we have

p(x) = b(x) , q(x) = c(x) and D(x) =
1

4
c(x)2 − 1

27
b3 .

By our assumption that 3 deg b > 2 deg c we get

ord(u) = ord(v) =
1

2
deg b

and the leading coefficients of the relevant Puiseux expansions are equal to i
√
3

and −i
√
3 times the square root of the leading coefficient of b(x). Therefore we

can conclude

ord(u− v) =
1

2
deg b and ord(u+ v) = deg c− deg b .
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Thus we get

ord(α1) = deg c− deg b ,

ord(α2) = ord(α3) =
1

2
deg b ,

ord(α1 − α2) = ord(α1 − α3) =
1

2
deg b ,

ord(α2 − α3) =
1

2
deg b

ord(α1 + α2) = ord(α1 + α3) = deg c− deg b ,

ord(α2 + α3) =
1

2
deg b .

Using (26), (27) and (28) we get from our assumptions concerning the degrees

of the initial polynomials

ord(g1) = degG2 − 2 deg b ,

ord(g2) = ord(g3) = degG2 − 2 deg b .

Therefore we can conclude that g1(x), g2(x), g3(x), g1(P (x)), g2(P (x)), g3(P (x))

are non-zero. The proof that (Gn(x))
∞
n=0 and (Gn(P (x)))

∞
n=0 are nondegenerate

is analogous to the proof of this fact in Theorem 1.

As in the proof of Theorem 1 it suffices to prove the unsolvability of (29) and

(30). By calculating orders we get

degG2 − 2 deg b+ n(deg c− deg b) =
= (degG2 − 2 deg b) degP +m degP (deg c− deg b) ,

degG2 − 2 deg b+ n
deg b

2
= (degG2 − 2 deg b) degP +m degP

deg b

2
.

This yields n = m degP and by substituting this into one of the equations above

we get degP = 1 which implies n = m or degG2 = 2deg b from which we get

degG1< 0, in both cases a contradiction. The second system (29) can be handled

analogously.

By Lemma 1 and 2 the theorem follows and the proof is finished.

7 – Proof of Theorem 3

We start our proof with some useful lemmas.
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Lemma 4. Let A,B, P ∈ K[x]. Then gcd(A,B) = 1 if and only if

gcd(A(P ), B(P )) = 1.

Proof: Let us assume that gcd(A(P ), B(P )) = 1 and that gcd(A,B) > 1.

Then there exists a common root of A(x) and B(x) which we denote by ξ ∈K

(observe that K is algebraically closed). Now let ζ ∈ K be a root of the poly-

nomial P (x)−ξ with coefficients in K. Thus we have A(P (ζ)) = B(P (ζ)) = 0,

contradicting our assumption.

The proof of the converse can be found in [9, Lemma 4].

We will use the same notations as introduced in the proof of Theorem 1.

First of all we have because of degD 6= 0 and gcd(c,D) = 1 that c(x) 6= 0.
Therefore, from

α1(x)α2(x)α3(x) = −c(x) ,

it follows that α1(x), α2(x), α3(x) 6= 0. Next we show that α1(x), α2(x), α3(x)

are nondegenerate. We take ξ ∈ K such that a(ξ) = 27 c(ξ)2 − 4 b(ξ)3 = 0. This
implies that D(ξ) = 0. From this we can conclude

u(ξ) =
3

√

q(ξ)

2
=

√

p(ξ)

2
=

√

b(ξ)

3
and v(ξ) = u(ξ) .

Therefore we have

α1(ξ) = 2

√

b(ξ)

3
.

On the other hand we get

α2(ξ) = α3(ξ) = −
√

b(ξ)

3
,

which implies that α1(x) differs from α2(x) and α3(x) by more than a root of

unity, because b(ξ) 6= 0 by condition (3) in the theorem.
Now assume that we have

α2(x) = ζ α3(x) , ζ ∈ K .

This yields

(1 + ζ) i
√
3

u(x)− v(x)

2
=
1− ζ

2

(

u(x) + v(x)
)

− 1− ζ

3
a(x) .
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As above we derive a contradiction unless ζ = 1. But assuming ζ = 1 yields

2 i
√
3

u(x)− v(x)

2
= 0 ,

contradicting the fact that u(x) = v(x) ⇐⇒ D(x) = 0.

Because of Lemma 4 we can conclude in the same way as above that the same

holds for α1(P (x)), α2(P (x)), α3(P (x)).

Next we want to proof the g1(x), g2(x), g3(x) 6= 0 holds. Observe that they
are given by (26), (27) and (28) respectively.

First observe that for ξ ∈ K we have: ∆(ξ) = 0 ⇐⇒ α2(ξ) = α3(ξ) and

∆(ξ) = 0 =⇒ α1(ξ) 6= α2(ξ), α3(ξ). We will need

g1(x) =
α3(x)− α2(x)

∆(x)

(

G2(x)−G1(x)
[

a(x)− α1(x)
]

+G0(x)α2(x)α3(x)

)

and

G2(x)−G1(x)
[

a(x)− α1(x)
]

+G0(x)α2(x)α3(x) =

= G2(x)− a(x)G1(x) +
a(x)

3
G1(x) +G1(x)

[

u(x) + v(x)
]

+ G0(x)
[

u(x)2 + v(x)2
]

−G0(x)
a(x)

3

[

u(x) + v(x)
]

+ G0(x)
a(x)2

9
−G0(x)u(x) v(x) .

Observe that 3u(x) v(x) = p(x). Let ξ ∈ K with q(ξ) = 0. This implies

u(ξ) =
i√
3

√

p(ξ) and v(ξ) = − i√
3

√

p(ξ)

and therefore u(ξ) + v(ξ) = 0. Because of the above equation and condition (4)

from the theorem we get

g1(ξ) 6= 0 .

To handle g2(x), g3(x) we prove the following lemma which will also enable us

to calculate ν(g2) and ν(g2) where ν extends νξ to F for some ξ ∈ K.

Lemma 5. Let (Gn(x))
∞
n=0 be a sequence of polynomials defined by (1) and

assume that gcd (G2
2 − 4

3 bG2G0 − 1
3 bG2

1 +
4
9 b2 G2

0, D) = 1. Let ξ ∈ K be a

common root of a(x) and D(x) and let ν be an extension of νξ to F . Then

ν(g1∆) = ν(g2∆) = 0.



22 CLEMENS FUCHS

Proof: Since D(ξ) = 0 we have α2(ξ) = α3(ξ) and by equation (27) we have

to show that

ν
(

G2 −G1(a− α2) +G0 α1 α3

)

= 0 .

Observe that it is clear that we have ≥ 0 since the αi(x), i=1, 2, 3 are integral

over K[x] and the integral closure is a ring. Therefore it suffices to show that
(

G2 −G1(a− α2) +G0 α1 α3

)

(ξ) 6= 0 ,

but this follows from our condition: We have

(G2 +G1α2 +G0 α1 α3)(ξ) =

(

G2 −
1

3
G1

√
3 b− 2

3
bG0

)

(ξ) .

Assume this value to be zero. Then
[(

G2 −
2

3
bG0

)2

− 1
3
bG2

1

]

(ξ) = 0 ,

contradicting the assumption in our Lemma.

The same holds for g2(x) and therefore the proof is finished.

We are intended to prove that the systems of equations (20), (21) and (22)

are not solvable. Observe that each of this systems contain at least one equation

of the form

gi(x)αi(x)
n = gk(P (x))αk(P (x))

m(31)

with i, k ∈ {2, 3} not necessarily different. We will show that already this equation
cannot have a solution.

We have degD(P ) = degD degP > degD > 0, as degP > 1 by assumption

(2). Hence D(P (x)) has a zero ξ ∈ K such that

νξ(D(P )) > νξ(D) ≥ 0

which is also a zero of a(P (x)) which means νξ(a(P )) > 0. This implies that

there is a finite valuation ν on F such that by Lemma 5

ν(g1(P )) = ν(g2(P )) = −ν(∆(P )) = −1
2
ν(D(P )) .

Moreover, we can conclude that ν(α2(P )) = ν(α3(P )) = 0, because otherwise

we would get a contradiction to condition (2) of our theorem.

Thus equation (31) implies

ν(gi) + n ν(αi) = ν(gk(P )) ,
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which yields

n ν(αi) = ν(gk(P ))− ν(gi) ≤ −ν(∆(P )) + ν(∆) < 0 ,

hence (31) has no solution in n, if ν(αi) ≥ 0 and at most one, if ν(αi) < 0, which

is impossible since α1(x), α2(x), α3(x) are integral over K[x], as they are zeros

of the monic equation T 3 − a(x)T 2 − b(x)T − c(x) = 0 with coefficients in K[x].

Therefore, we have ν(αi) ≥ 0. Consequently (31) has no solution.
So, we have shown that (20), (21) and (22) have no solutions (n,m) ∈ Z2 with

n,m ≥ 0, n 6= m. It is clear that we get the same bound as in Theorem 1.

REFERENCES

[1] Baker, A. – New Advances in Transcendence Theory, Cambridge Univ. Press,
Cambridge, 1988.

[2] Beukers, F. and Schlickewei, H.P. – The equations x + y = 1 in finitely
generated groups, Acta Arith., 78 (1996), 189–199.

[3] Evertse, J.-H. – On sums of S-units and linear recurrences, Comp. Math., 53
(1984), 225–244.

[4] Evertse, J.-H. – On equations in S-units and the Thue-Mahler equation, Invent.

Math., 75 (1984), 561–584.
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