OSCILLATION OF THIRD-ORDER DIFFERENCE EQUATIONS

S.H. SAKER
Recommended by Carlos Rocha

Abstract

In this paper we will study the oscillatory properties of third order difference equations. By means of the Reccati transformation techniques we will establish some sufficient conditions which are sufficient for all solutions to be oscillatory or tend to zero.

1 - Introduction

In recent years, the oscillation theory and the asymptotic behavior of difference equations and their applications have been and still are receiving intensive attention. In fact, in the last few years several monographs and hundreds of research papers have been written, see for example the monographs [1, 2, 4]. Compared to the second order difference equations, the study of third order difference equations has received considerably less attention in the literature, even though such equations arise in the study of Economics, Mathematical Biology, and other areas of mathematics where discrete models are used (see for example [3]). Some recent results on third order difference equations can be found in [5-10].

In this paper we shall consider the third order difference equation

$$
\begin{equation*}
\Delta^{3} V_{n}+P_{n} V_{n+1}=0, \quad n \geq n_{0} \tag{1.1}
\end{equation*}
$$

where $P_{n}>0$ for $n \geq n_{0}$ and Δ denotes the forward difference operator $\Delta V_{n}=$ $V_{n+1}-V_{n}$ for any sequence $\left\{V_{n}\right\}$ of real numbers.

[^0]By a solution of (1.1) we mean a nontrivial real sequence $\left\{V_{n}\right\}$ that is defined for $n \geqslant n_{0}$ and satisfies equation (1.1) for $\mathrm{n} \geq n_{0}$. A solution $\left\{\mathrm{V}_{n}\right\}$ of (1.1) is said to be oscillatory, if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

A number of dynamical behavior of solutions of difference equations are possible; here we will only be concerned with conditions which are sufficient for all solutions of (1.1) to be oscillatory or tend to zero as $n \rightarrow \infty$.

2 - Main results

In this section, by using the Reccati transformation techniques we establish some new conditions which are sufficient for all solutions of (1.1) to be oscillatory or tend to zero as $n \rightarrow \infty$.

Theorem 2.1. Assume that

$$
\begin{equation*}
\sum_{l=n_{3}}^{\infty}\left[\sum_{t=n_{3}}^{l-1} \sum_{s=n_{2}}^{t-1} P_{s}\right]=\infty \tag{2.1}
\end{equation*}
$$

and there exists a positive sequence $\left\{\rho_{n}\right\}_{n=n_{0}}^{\infty}$ such that,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{l=n_{2}}^{n}\left[\rho_{l} P_{l}-\frac{\left(\Delta \rho_{l}\right)^{2}}{4 \rho_{l}\left(l-n_{1}\right)}\right]=\infty, \quad \text { for } n_{2}>n_{1} \tag{2.2}
\end{equation*}
$$

Then every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.
Proof: Let $\left\{V_{n}\right\}$ be a nonoscillatory solution of (1.1). Without loss of generality we may assume that $V_{n}>0$ for $n \geqslant n_{1}$ where $n_{1} \geq n_{0}$ is chosen so large. From (1.1) we have $\Delta^{3} V_{n} \leq 0$ for $n \geqslant n_{1}$. Then $\left\{V_{n}\right\},\left\{\Delta V_{n}\right\}$ and $\left\{\Delta^{2} V_{n}\right\}$ are monotone and eventually of one sign. We claim $\Delta^{2} V_{n}>0$. Suppose to the contrary that $\Delta^{2} V_{n} \leq 0$ for $n \geqslant n_{2}$ for $n_{2} \geqslant n_{1}$. Since $\Delta^{2} V_{n}$ is nonincreasing there exists a negative constant C and $n_{3} \geqslant n_{2}$ such that $\Delta^{2} V_{n} \leq C$ for $n \geqslant n_{3}$. Summing from n_{3} to $n-1$, we obtain

$$
\Delta V_{n} \leq \Delta V_{n_{3}}+C\left(n-1-n_{3}\right)
$$

Letting $\mathrm{n} \rightarrow \infty$, then $\Delta V_{n} \rightarrow-\infty$. Thus, there is an integer $n_{4} \geqslant n_{3}$ such that for $n \geqslant n_{4}, \Delta V_{n} \leq \Delta V_{n_{4}}<0$. Summing from n_{4} to $n-1$ we obtain

$$
V_{n}-V_{n_{4}} \leq C\left(n-1-n_{4}\right)
$$

this implies that $V_{n} \rightarrow-\infty$ as $\mathrm{n} \rightarrow \infty$ which is a contradiction with the fact that V_{n} is positive. Then $\Delta^{2} V_{n}>0$. Therefore, there are only the following two cases for $n \geqslant n_{1}$ sufficiently large:
(I) $V_{n}>0, \Delta V_{n}>0, \Delta^{2} V_{n}>0$.
(II) $V_{n}>0, \Delta V_{n}<0, \Delta^{2} V_{n}>0$.

First we consider the Case (I): Define w_{n} by the Reccati substitution

$$
\begin{equation*}
w_{n}=\rho_{n} \frac{\Delta^{2} V_{n}}{V_{n+1}}, \quad n \geqslant n_{1} \tag{2.3}
\end{equation*}
$$

we have $w_{n}>0$ and

$$
\Delta w_{n}=\Delta^{2} V_{n+1} \Delta\left[\frac{\rho_{n}}{V_{n+1}}\right]+\frac{\rho_{n} \Delta^{3} V_{n}}{V_{n+1}}
$$

this and (1.1), imply that

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} P_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n} \Delta^{2} V_{n} \Delta\left(V_{n+1}\right)}{V_{n+1} V_{n+2}} \tag{2.4}
\end{equation*}
$$

From the Case (I) we have $V_{n+2} \geq V_{n+1}$, then from (2.4) we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} P_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n} \Delta^{2} V_{n+1} \Delta\left(V_{n+1}\right)}{V_{n+2}^{2}} \tag{2.5}
\end{equation*}
$$

Also From the Case (I) and Eq.(1.1) we have

$$
\begin{equation*}
\Delta V_{n}=\Delta V_{n_{1}}+\sum_{s=n_{1}}^{n-1} \Delta^{2} V_{s} \geqslant\left(n-1-n_{1}\right) \Delta^{2} V_{n}, \quad n \geqslant n_{1}+1 \tag{2.6}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\Delta V_{n+1} \geqslant\left(n-n_{1}\right) \Delta^{2} V_{n+1}, \quad n \geqslant n_{2}=n_{1}+1 \tag{2.7}
\end{equation*}
$$

Substituting from (2.7) in (2.8), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} P_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n}\left(n-n_{1}\right)\left(\Delta^{2} V_{n+1}\right)^{2}}{V_{n+2}^{2}} \tag{2.8}
\end{equation*}
$$

From (2.3) and (2.8) we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} P_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n}\left(n-n_{1}\right)}{\rho_{n+1}^{2}} w_{n+1}^{2} \tag{2.9}
\end{equation*}
$$

By completing the square we have

$$
\begin{aligned}
\Delta w_{n} & \leq-\rho_{n} P_{n}+\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}\left(n-n_{1}\right)}-\left[\frac{\sqrt{\rho_{n}\left(n-n_{1}\right)}}{\rho_{n+1}} w_{n+1}-\frac{\Delta \rho_{n}}{2 \sqrt{\rho_{n}\left(n-n_{1}\right)}}\right]^{2} \\
& <-\left[\rho_{n} P_{n}-\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\right] .
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
\Delta w_{n}<-\left[\rho_{n} P_{n}-\frac{\left(\Delta \rho_{n}\right)^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\right] . \tag{2.10}
\end{equation*}
$$

Summing (3.11) from n_{2} to n, we obtain

$$
-w_{n_{2}}<w_{n+1}-w_{n_{2}}<-\sum_{l=n_{2}}^{n}\left[\rho_{l} P_{l}-\frac{\left(\Delta \rho_{l}\right)^{2}}{4 \rho_{l}\left(l-n_{1}\right)}\right],
$$

which yields

$$
\begin{equation*}
\sum_{l=n_{2}}^{n}\left[\rho_{l} P_{l}-\frac{\left(\Delta \rho_{l}\right)^{2}}{4 \rho_{l}\left(l-n_{1}\right)}\right]<c_{1} \tag{2.11}
\end{equation*}
$$

for all large n, and this is contrary to (2.2). Next we assume that the Case (II) holds. Since $\left\{V_{n}\right\}$ is positive and decreasing it follows that $\lim _{n \rightarrow \infty} V_{n}=b \geqslant 0$. Now we claim that $b=0$. If not then $V_{n} \rightarrow b>0$ as $\mathrm{n} \rightarrow \infty$, and hence there exists $\mathrm{n}_{2} \geq n_{1}$ such that $V_{n+1} \geq b$. Therefore from (1.1) we have

$$
\begin{equation*}
\Delta^{3} V_{n}+P_{n} b \leq 0, \quad n \geq n_{2} \tag{2.12}
\end{equation*}
$$

Define the sequence $u_{n}=\Delta^{2} V_{n}$ for $\mathrm{n} \geq n_{2}$. Then we have

$$
\Delta u_{n} \leq-P_{n} b
$$

Summing the last inequality from n_{2} to $n-1$, we have

$$
\begin{equation*}
u_{n} \leq u_{n_{2}}-b \sum_{s=n_{2}}^{n-1} P_{s} \tag{2.13}
\end{equation*}
$$

From (2.2), by choosing $\rho_{n}=1$ we have $\sum_{n=n_{0}}^{\infty} P_{n}=\infty$, and then from (2.13) it is possible to choose an integer n_{3} sufficiently large such that for all $n \geq n_{3}$

$$
u_{n} \leq-\frac{b}{2} \sum_{s=n_{2}}^{n-1} P_{s}
$$

and hence

$$
\Delta^{2} V_{n} \leq-\frac{b}{2} \sum_{s=n_{2}}^{n-1} P_{s}
$$

Summing the last inequality from n_{3} to $n-1$ we obtain

$$
\Delta V_{n} \leq \Delta V_{n_{3}}-\frac{b}{2} \sum_{t=n_{3}}^{n-1}\left(\sum_{s=n_{2}}^{t-1} P_{s}\right)
$$

Since $\Delta V_{n}<0$ for $n \geqslant n_{0}$, the last inequality implies that

$$
\Delta V_{n} \leq-\frac{b}{2} \sum_{t=n_{3}}^{n-1}\left(\sum_{s=n_{2}}^{t-1} P_{s}\right)
$$

Summing from n_{3} to $n-1$ we have

$$
V_{n} \leq V_{n_{3}}-\frac{b}{2} \sum_{l=n_{3}}^{n-1}\left[\sum_{t=n_{3}}^{l-1} \sum_{s=n_{2}}^{t-1} P_{s}\right]
$$

Condition (2.1) implies that $V_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ which is a contradiction with the fact that V_{n} is positive. Then $b=0$ and this completes the proof.

Remark 2.1. From Theorem 2.1, we can obtain different conditions for oscillation of all solutions of (1.1) by different choices of $\left\{\rho_{n}\right\}$. Let $\rho_{n}=n^{\lambda}$, $n \geq n_{0}$ and $\lambda \geq 1$ is a constant. Hence we have the following results. \square

Corollary 2.1. Assume that all the assumptions of Theorem 2.1 hold, except that the condition (2.2) is replaced by

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n}\left[s^{\lambda} P_{s}-\frac{\left((s+1)^{\lambda}-s^{\lambda}\right)^{2}}{4 s^{\lambda}\left(s-n_{1}\right)}\right]=\infty, \quad \text { for } \quad n_{2}>n_{1}
$$

Then, every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.
Theorem 2.2. Assume that (2.1) holds. Let $\left\{\rho_{n}\right\}_{n=n_{0}}^{\infty}$ be a positive sequence. Furthermore, we assume that there exists a double sequence $\left\{H_{m, n}: m \geq n \geq 0\right\}$ such that
(i) $H_{m, m}=0$ for $m \geq 0$,
(ii) $H_{m, n}>0$ for $m>n \geq 0$,
(iii) $\Delta_{2} H_{m, n}=H_{m, n+1}-H_{m, n} \leq 0$ for $m \geq n \geq 0$.

If

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{2}}} \sum_{n=n_{2}}^{m-1}\left[H_{m, n} \rho_{n} P_{n}-\frac{\left(\rho_{n+1}\right)^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\left(h_{m, n}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{H_{m, n}}\right)^{2}\right]=\infty . \tag{2.14}
\end{equation*}
$$

for $n_{2}>n_{1}$, where

$$
h_{m, n}=-\frac{\Delta_{2} H_{m, n}}{\sqrt{H_{m, n}}}, \quad m>n \geq 0
$$

Then, every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.

Proof: Proceeding as in Theorem 2.1, we assume that Eq.(1.1) has a nonoscillatory solution, say $V_{n}>0$ for all $n \geq n_{1}$. From the proof of Theorem 2.1 there are two possible cases. First, we consider the case Case (I). Defining again $\left\{w_{n}\right\}$ by (2.3), then from Theorem 2.1, we have $w_{n}>0$ and (2.9) holds. From (2.9) we have for $n \geq n_{2}$

$$
\begin{equation*}
\rho_{n} P_{n} \leq-\Delta w_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\bar{\rho}_{n}}{\left(\rho_{n+1}\right)^{2}} w_{n+1}^{2} \tag{2.15}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
\sum_{n=n_{2}}^{m-1} H_{m, n} \rho_{n} P_{n} \leq & -\sum_{n=n_{2}}^{m-1} H_{m, n} \Delta w_{n}+\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1} \\
& -\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\bar{\rho}_{n}}{\left(\rho_{n+1}\right)^{2}} w_{n+1}^{2} \tag{2.16}
\end{align*}
$$

which yields after summing by parts

$$
\begin{aligned}
\sum_{n=n_{2}}^{m-1} H_{m, n} \rho_{n} P_{n} \leq & H_{m, n_{2}} w_{n_{2}}+\sum_{n=n_{2}}^{m-1} w_{n+1} \Delta_{2} H_{m, n} \\
& +\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\bar{\rho}_{n}}{\left(\rho_{n+1}\right)^{2}} w_{n+1}^{2}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \sum_{n=n_{2}}^{m-1} H_{m, n} \rho_{n} P_{n}= \\
& = \\
& \quad H_{m, n_{2}} w_{n_{2}}-\sum_{n=n_{2}}^{m-1} h_{m, n} \sqrt{H_{m, n}} w_{n+1}+\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1} \\
& \\
& \quad-\sum_{n=n_{2}}^{m-1} H_{m, n} \frac{\bar{\rho}_{n}}{\left(\rho_{n+1}\right)^{2}} w_{n+1}^{2} \\
& = \\
& \quad H_{m, n_{2}} w_{n_{2}} \\
& \\
& \quad-\sum_{n=n_{2}}^{m-1}\left[\frac{\sqrt{H_{m, n} \bar{\rho}_{n}}}{\rho_{n+1}} w_{n+1}+\frac{\rho_{n+1}}{2 \sqrt{H_{m, n} \bar{\rho}_{n}}}\left(h_{m, n} \sqrt{H_{m, n}}-\frac{\Delta \rho_{n}}{\rho_{n+1}} H_{m, n}\right)\right]^{2} \\
& \quad \\
& \quad+\frac{1}{4} \sum_{n=n_{2}}^{m-1} \frac{\left(\rho_{n+1}\right)^{2}}{\bar{\rho}_{n}}\left(h_{m, n}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{H_{m, n}}\right)^{2}
\end{aligned}
$$

Then,

$$
\sum_{n=n_{2}}^{m-1}\left[H_{m, n} \rho_{n} P_{n}-\frac{\left(\rho_{n+1}\right)^{2}}{4 \rho_{n}}\left(h_{m, n}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{H_{m, n}}\right)^{2}\right]<H_{m, n_{2}} w_{n_{2}}
$$

which implies that
$\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, n_{2}}} \sum_{n=n_{2}}^{m-1}\left[H_{m, n} \rho_{n} P_{n}-\frac{\left(\rho_{n+1}\right)^{2}}{4 \bar{\rho}_{n}}\left(h_{m, n}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{H_{m, n}}\right)^{2}\right]<w_{n_{2}}<\infty$,
which contradicts (2.14). If the Case (II) holds we are then back to the proof of the second case of Theorem 2.1 to prove that $\lim _{n \rightarrow \infty} V_{n}=0$. The proof is complete.

Remark 2.2. By choosing the sequence $\left\{H_{m, n}\right\}$ in appropriate ways, we can derive several oscillation criteria for (1.1). For instance, let us consider the double sequence $\left\{H_{m, n}\right\}$ defined by

$$
H_{m, n}=(m-n)^{\lambda}, \quad \lambda \geq 1, \quad m \geq n \geq 0
$$

or

$$
H_{m, n}=\left(\log \frac{m+1}{n+1}\right)^{\lambda}, \quad \lambda \geq 1, \quad m \geq n \geq 0
$$

or

$$
H_{m, n}=(m-n)^{(\lambda)}, \quad \lambda>2, \quad m \geq n \geq 0 .
$$

where $(m-n)^{(\lambda)}=(m-n)(m-n+1) \cdots(m-n+\lambda-1)$ and

$$
\Delta_{2}(m-n)^{(\lambda)}=(m-n-1)^{(\lambda)}-(m-n)^{(\lambda)}=-\lambda(m-n)^{(\lambda-1)} .
$$

Then $H_{m, m}=0$ for $m \geq 0$ and $H_{m, n}>0$ and $\Delta_{2} H_{m, n} \leq 0$ for $m>n \geq 0$. Hence we have the following results.

Corollary 2.2. Assume that all the assumptions of Theorem 2.2 hold, except that the condition (2.14) is replaced by
$\lim _{m \rightarrow \infty} \sup \frac{1}{m^{\lambda}} \sum_{n=n_{2}}^{m-1}\left[(m-n)^{\lambda} \rho_{n} P_{n}-\frac{\rho_{n+1}^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\left(\lambda(m-n)^{\frac{\lambda-2}{2}}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{(m-n)^{\lambda}}\right)^{2}\right]=\infty$.
Then, every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.
Corollary 2.3. Assume that all the assumptions of Theorem 2.2 hold, except that the condition (2.14) is replaced by

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \sup \frac{1}{(\log (m+1))^{\lambda}} \sum_{n=n_{2}}^{m-1}\left[\left(\log \frac{m+1}{n+1}\right)^{\lambda} \rho_{n} P_{n}-\right. \\
& \left.\quad-\frac{\rho_{n+1}^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\left(\frac{\lambda}{n+1}\left(\log \frac{m+1}{n+1}\right)^{\frac{\lambda-2}{2}}-\frac{\Delta \rho_{n}}{\rho_{n+1}} \sqrt{\left(\log \frac{m+1}{n+1}\right)^{\lambda}}\right)^{2}\right]=\infty .
\end{aligned}
$$

Then, every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.
Corollary 2.4. Assume that all the assumptions of Theorem 2.2 hold, except that the condition (2.14) is replaced by

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{m^{(\lambda)}} \sum_{n=n_{2}}^{m-1}(m-n)^{(\lambda)}\left[\rho_{n} P_{n}-\frac{\rho_{n+1}^{2}}{4 \rho_{n}\left(n-n_{1}\right)}\left(\frac{\lambda}{m-n+\lambda-1}-\frac{\Delta \rho_{n}}{\rho_{n+1}}\right)^{2}\right]=\infty .
$$

Then, every solution $\left\{V_{n}\right\}$ of Eq.(1.1) oscillates or $\lim _{n \rightarrow \infty} V_{n}=0$.

Remark 2.3. Our results can be extended to nonlinear difference equations of the form

$$
\Delta^{3} V_{n}+P_{n} f\left(V_{n+1}\right)=0, \quad n \geq n_{0} .
$$

where $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous such that $u f(u)>0$ for $u \neq 0$ and $f(u) / u \geqslant K>0$ except that the term P_{n} is replaced by $K P_{n}$. \square

ACKNOWLEDGEMENT - The author would like to thank the referee for his (her) helpful comments.

REFERENCES

[1] Agarwal, R.P. - Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Revised and Expanded, Marcel Dekker, New York, 2000.
[2] Agarwal, R.P. and Wong, P.J.Y. - Advanced Topics in Difference Equations, Kluwer Academic Publishers, Drodrecht, 1997.
[3] Artzroumi, M. - Generalized stable population theory, J. Math. Biology, 21 (1985), 363-381.
[4] Kelley, W.G. and Peterson, A.C. - Difference Equations; An Introduction with Applications, New York, Academic Press, 1991.
[5] Popenda, J. and Schmeidel, E. - Nonoscillatory solutions of third order difference equations, Port. Math., 49 (1992), 233-239.
[6] Smith, B. - Oscillatory and asymptotic behavior in certain third order difference equations, Rocky Mountain J. Math., 17 (1987), 597-606.
[7] Smith, B. - Linear third-order difference equations: Oscillatory and asymptotic behavior, Rocky Mountain J. Math., 22 (1992), 1559-1564.
[8] Smith, B. - Oscillation and nonoscillation theorems for third order quasi adjoint difference equation, Port. Math., 45 (1988), 229-234.
[9] Smith, B. and Taylor, J.W.E. - Asymptotic behavior of solutions of third order difference equations, Port. Math., 44 (1987), 115-117.
[10] Smith, B. and Taylor, J.W.E. - Nonlinear third order difference equation: Oscillatory and asymptotic behavior, Tamakang J. Math., 19 (1988), 91-95.

[^1]
[^0]: Received: January 12, 2003; Revised: March 10, 2003.

[^1]: S.H. Saker,

 Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516 - EGYPT

 E-mail: shsaker@mum.mans.edu.eg

