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Abstract: A new functional approach is devised to establish an equivalence between

the null-controllability of a given initial state and a certain individual observability prop-

erty involving a momentum depending on the state. For instance if one considers the

abstract second order control problem y′′ +Ay = Bh(t) in time T by means of a control

function h ∈ L2(0, T,H) with B ∈ L(H), B =B∗≥ 0, a necessary and sufficient condi-

tion for null-controllability of a given state [y0, y1] ∈ D(A1/2)×H is that the image of

[y0, y1] under the symplectic map lies in the dual space of the completion of the energy

space with respect to a certain semi-norm. A similar property is derived for a general

class of first order systems including the transport equation and Schrödinger equations.

When A has compact resolvant the necessary and sufficient condition can be formu-

lated by some conditions on the Fourier components of the initial state in a basis of

“eigenstates” related to diagonalization of the quadratic form measuring the observabil-

ity degree of the system under B.

The theory of exact controllability of infinite dimensional conservative systems

has experienced an important breakthrough in 1986 with the introduction of the

Hilbert uniqueness method by J.L. Lions [17, 18]. For instance if we consider the

wave equation

(0.1) utt −∆u = 0 in R×Ω , u = 0 on R×∂Ω
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where Ω is a bounded smooth domain of RN and the corresponding controlled

problem

(0.2) ytt −∆y = χω h(t, x) in (0, T )×Ω , y = 0 on (0, T )×∂Ω

in time T by means of an L2 control confined in an open subset ω ⊂ Ω, the HUM

method establishes an equivalence between the null-controllability of a given ini-

tial state [y(0), y′(0)] := [y0, y1] under (0.2) and the observability property

(0.3) ∀[φ0, φ1] ∈ V×H ,
∣

∣

∣(y0, φ1)H − (φ0, y1)H

∣

∣

∣ ≤ C

{
∫

Q
φ2(t, x) dx dt

}
1

2

where Q=(0, T )×Ω, H=L2(Ω), V=H1
0 (Ω), C is any finite positive constant and

φ(t, x) ∈ C(R, V ) ∩ C1(R, H) denotes the solution of (0.1) such that φ(0) = φ0

and φ′(0) = φ1. At least this result can be proved by the standard HUM method

when the uniqueness property holds true, in the sense that solutions of (0.1)

are characterized by their trace on (0, T )×ω. Indeed, in this case, (0.3) exactly

means that the image of [y0, y1] under the symplectic map lies in the dual space

of the completion of the energy space with respect to the norm of that trace in

L2((0, T )×ω). However when uniqueness fails, (0.3) still looks like a very reason-

able characterization of null-controllable states, and this result was established

in [11] by using a special eigenfunction expansion. This new result itself was

still unsatisfactory since one feels that (0.3) could very well give the right condi-

tions in a much more general context, independently of any boundedness of the

domain and for quite arbitrary operators. The proof of this natural conjecture

is the first object of this paper. Actually a similar property shall be first de-

rived for a general class of first order systems including the transport equation

and Schrödinger equations. Then we shall consider the general second order case.

In addition to that, we shall establish a simple and general property enlighting the

relationship between the first part of this paper and the results of [11]. This will

lead us to the notion of “eigenstates”, generally useful for second order problems

and leading also to explicit formulas in some specific first-order problems.

The plan of this paper is as follows: in Sections 1 and 2 we characterize

controllable states respectively for first and second order systems, in Sections 3

and 4 we develop the applications of eigenstates in both cases. Sections 5 and 6

are respectively devoted to point control of general second order problems and

boundary control of the wave equation.
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1 – The abstract Schrödinger equation

In this section we consider the first order evolution equation

(1.1) ϕ′ + Cϕ = 0 , t ∈ R

where C is a skew-adjoint operator on a real Hilbert space H and the correspond-

ing controlled problem

(1.2) y′ + Cy = Bh(t) in (0, T )

in time T by means of a control function h ∈ L2(0, T,H) with

(1.3) B ∈ L(H) , B = B∗ ≥ 0 .

Theorem 1.1. For any y0∈H, the two following conditions are equivalent:

i) There exists h ∈ L2(0, T ;H) such that the mild solution y of (1.2) such

that y(0) = y0 satisfies y(T ) = 0.

ii) There exists a finite positive constant C such that

(1.4) ∀ϕ0 ∈ H , |(y0, ϕ0)H | ≤ C

{
∫ T

0
|Bϕ(t)|2H dt

}
1

2

where ϕ(t) ∈ C(R, H) denotes the unique mild solution ϕ of (1.1) such

that ϕ(0) = ϕ0.

Proof: We proceed in 5 steps

Step 1. Let ϕ and y be a pair of strong solutions of (1.1) and (1.2), respec-

tively. We have

d

dt

(

y(t), ϕ(t)
)

=
(

y′(t), ϕ(t)
)

+
(

y(t), ϕ′(t)
)

=
(

−Cy(t) +Bh(t), ϕ(t)
)

+
(

y(t),−Cϕ(t)
)

=
(

Bh(t), ϕ(t)
)

.

By integrating on (0, T ) we find

(1.5)
(

y(T ), ϕ(T )
)

−
(

y(0), ϕ(0)
)

=

∫ T

0

(

Bh(t), ϕ(t)
)

dt .
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By density, this identity is valid for mild solutions as well. Since B is bounded,

self-adjoint and B ≥ 0,

∫ T

0

(

Bh(t), ϕ(t)
)

dt =

∫ T

0

(

h(t), Bϕ(t)
)

dt

finally if there exists h ∈ L2(0, T ;H) such that the mild solution y of (1.2) with

y(0) = y0 satisfies y(T ) = 0, we find as a consequence of (1.5)

−
(

y(0), ϕ(0)
)

=

∫ T

0

(

h(t), Bϕ(t)
)

dt

and by the Cauchy–Schwartz inequality we obtain (1.4). Therefore i) implies ii).

Step 2. If B ≥ α > 0 we have for any mild solution ϕ of (1.1)

∫ T

0

(

Bϕ(t), Bϕ(t)
)

dt ≥ α2
∫ T

0

(

ϕ(t), ϕ(t)
)

dt = α2 T |ϕ(0)|2

and in particular (1.4) is fulfilled. The proof of ii)⇒ i) in this special case is the

object of

Lemma 1.2. Assuming

(1.6) ∃ α > 0, B ≥ α

for each y0 ∈ H, there exists ϕ0 ∈ H such that the mild solution y of (1.2) with

h = ϕ ∈ L2(0, T ;H) and y(0) = y0 satisfies y(T ) = 0.

Proof: We construct a bounded linear operator A on H in the following

way: for any z ∈ H we consider first the solution ϕ of (1.1) such that ϕ(0) = z.

Then we consider the unique mild solution y of

y′ + Cy = Bϕ(t) in (0, T ), y(T ) = 0 ,

and finally we set

A(z) = −y(0) .

By formula (1.5) we find

(

A(z), z
)

= −
(

y(0), ϕ(0)
)

=

∫ T

0

(

Bϕ(t), ϕ(t)
)

dt ≥ α

∫ T

0
|ϕ(t)|2 dt = αT |z|2 .
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Hence A is coercive on H, and this implies A(H) = H. Given any y0 ∈ H, there

exists z ∈ H such that A(z) = −y0. This gives exactly the expected conclusion.

Step 3. We now use a standard penalty method. For each ε > 0 we set

βε := B2 + ε I .

As a consequence of Lemma 1.2 there exists a ϕ0,ε∈H such that the mild solu-

tion yε of (1.2) with Bh replaced by βεϕε ∈ L2(0, T ;H) and yε(0) = y0 satisfies

y(T ) = 0. By (1.5) we find

−
(

y(0), ϕε(0)
)

=

∫ T

0

(

βεϕε(t), ϕε(t)
)

dt

≤ C

{
∫ T

0

(

B2ϕε(t), ϕε(t)
)

dt

}
1

2

≤ C

{
∫ T

0

(

βεϕε(t), ϕε(t)
)

dt

}
1

2

.

In particular

(1.7) ε

∫ T

0
|ϕε(t)|2 dt +

∫ T

0

(

Bϕε(t), Bϕε(t)
)

dt =

∫ T

0

(

βεϕε(t), ϕε(t)
)

dt ≤ C2 .

Step 4. Convergence of bε = βεϕε = εϕε+B
2ϕε along a subsequence. From

(1.7) it is clear that

(1.8)
√
εϕε and Bϕε are bounded in L2(0, T ;H) .

Along a subsequence, we may assume

(1.9) Bϕε ⇀ h weakly in L2(0, T ;H) .

Then clearly

(1.10) bε = βεϕε = εϕε +B2ϕε ⇀ Bh weakly in L2(0, T ;H) .

Step 5. Conclusion. By passing to the limit, it is clear that the solution y

of (1.2) with y(0) = y0 and h as in step 4 satisfies y(T ) = 0. The proof of

Theorem 1.1 is now complete.
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2 – The abstract wave equation

In this section, we consider a real Hilbert space H and a positive self-adjoint

operator A with dense domainD(A) =W . We also consider the space V = D(A
1

2 )

and its dual space V ′. The equations (1.1) and (1.2) are replaced by the second

order equation

(2.1) ϕ′′ +Aϕ = 0 , t ∈ R

and the corresponding controlled problem

(2.2) y′′ +Ay = Bh(t) in (0, T )

in time T by means of a control function h ∈ L2(0, T,H) with

(2.3) B ∈ L(H) , B = B∗ ≥ 0 .

In this section we shall represent a pair of functions by [f, g] rather than (f, g)

to avoid confusion with scalar products. On the other hand the symbol (f, g)

will represent indifferently either the H-inner product of f ∈ H and g ∈ H or

the duality product (f, g)V,V ′ when f ∈ V and g ∈ V ′, these two products being

equal when f ∈ V and g ∈ H.

Theorem 2.1. For any [y0, y1] ∈ V×H, the two following conditions are

equivalent

i) There exists h ∈ L2(0, T ;H) such that the mild solution y of (2.2) such

that y(0) = y0 and y′(0) = y1 satisfies y(T ) = y′(T ) = 0.

ii) There exists a finite positive constant C such that

(2.4) ∀[ϕ0, ϕ1] ∈ V×H ,
∣

∣

∣(y0, ϕ1)− (y1, ϕ0)
∣

∣

∣ ≤ C

{
∫ T

0
|Bϕ(t)|2 dt

}
1

2

where ϕ(t) ∈ C(R, V )∩C1(R, H) denotes the unique mild solution of (2.1)

such that ϕ(0) = ϕ0 and ϕ′(0) = ϕ1.

Proof: It parallels exactly the proof of theorem 1.1.

Step 1. Let ϕ and y be a pair of strong solutions of (2.1) and (2.2), respec-

tively. We have

d

dt

(

y′(t), ϕ(t)
)

=
(

y′′(t), ϕ(t)
)

+
(

y′(t), ϕ′(t)
)

=
(

−Ay(t) +Bh(t), ϕ(t)
)

+
(

y′(t), ϕ′(t)
)

.
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On the other hand

d

dt

(

y(t), ϕ′(t)
)

=
(

y(t), ϕ′′(t)
)

+
(

y′(t), ϕ′(t)
)

=
(

y(t),−Aϕ(t)
)

+
(

y′(t), ϕ′(t)
)

.

By substracting these two identities we find

d

dt

[(

y′(t), ϕ(t)
)

−
(

y(t), ϕ′(t)
)]

=
(

Bh(t), ϕ(t)
)

.

By integrating on (0, T) we get

(2.5)
[(

y′(t), ϕ(t)
)

−
(

y(t), ϕ′(t)
)]T

0
=

∫ T

0

(

Bh(t), ϕ(t)
)

dt .

By density, this identity is valid for mild solutions as well. Since B is bounded,

self-adjoint and B ≥ 0,

∫ T

0

(

Bh(t), ϕ(t)
)

dt =

∫ T

0

(

h(t), Bϕ(t)
)

dt .

Finally if there exists h ∈ L2(0, T ) such that the mild solution y of (2.2) with

[y(0), y′(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0, we find as a consequence of (2.5)

(

y0, ϕ′(0)
)

−
(

y1, ϕ(0)
)

=

∫ T

0

(

h(t), Bϕ(t)
)

dt

and by the Cauchy–Schwartz inequality we obtain (2.4). Therefore i) implies ii).

Step 2. Here the analog of Lemma 1.2, although slightly more difficult, is

basically well-known. Indeed we have

Lemma 2.2. Assuming

(2.6) ∃ α > 0, B ≥ α

for each [y0, y1] ∈ V×H, there exists [ϕ0, ϕ1] ∈ H×V ′ such that the mild solution

y of (2.2) with h = ϕ ∈ L2(0, T ;H) (the solution of (2.1) with initial data [ϕ0, ϕ1])

and [y(0), y′(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0.

Proof: We construct a bounded linear operator A on H×V ′ in the following

way: for any [ϕ0, ϕ1] ∈ H×V ′ we consider first the solution ϕ of (2.1) initial data

[ϕ0, ϕ1]. Then we consider the unique mild solution y of

y′′ +Ay = Bϕ(t) in (0, T ), y(T ) = y′(T ) = 0
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and finally we set

A
(

[ϕ0, ϕ1]
)

=
[

−y′(0), Ay(0)
]

.

By formula (2.5) we find

〈

A([ϕ0, ϕ1]), [ϕ0, ϕ1]
〉

H×V ′
= (y(0), ϕ′(0))− (y′(0), ϕ(0))

=

∫ T

0
(Bϕ(t), ϕ(t)) dt ≥ α

∫ T

0
|ϕ(t)|2 dt .

On the other hand it is known (cf. e.g. [5, 10]) that for any T > 0

∫ T

0
|ϕ(t)|2dt ≥ c(T )

{

|ϕ(0)|2 + |ϕ′(0)|2V ′

}

= c(T )
{

|ϕ0|2 + |ϕ1|2V ′

}

with c(T ) > 0. Hence A is coercive on H×V ′, and this implies A(H×V ′) =
H×V ′. Then the conclusion is obvious.

Step 3. We now use the penalty method. For each ε > 0 we set

βε := B2 + εI .

As a consequence of Lemma 2.2 there exists a pair [ϕ0,ε, ϕ1,ε] ∈ H×V ′ such

that the mild solution yε of (2.2) with Bh replaced by βεϕε ∈ L2(0, T ;H) and

[yε(0), y
′
ε(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0. By (2.5) we find

(y(0), ϕ′ε(0))− (y′(0), ϕε(0)) =

∫ T

0
(βεϕε(t), ϕε(t)) dt

≤ C

{
∫ T

0
(B2ϕε(t), ϕε(t)) dt

}
1

2

≤ C

{
∫ T

0
(βεϕε(t), ϕε(t)) dt

}
1

2

.

In particular

(2.7) ε

∫ T

0
|ϕε(t)|2 dt+

∫ T

0
(Bϕε(t), Bϕε(t)) dt =

∫ T

0
(βεϕε(t), ϕε(t)) dt ≤ C2 .

Step 4. Convergence of bε= βεϕε = εϕε+B2ϕε along a subsequence. From

(2.7) it is clear that

(2.8)
√
εϕε and Bϕε are bounded in L2(0, T ;H) .
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Along a subsequence, we may assume

(2.9) Bϕε ⇀ h weakly in L2(0, T ;H) .

Then clearly

(2.10) bε = βεϕε = εϕε +B2ϕε ⇀ Bh weakly in L2(0, T ;H) .

Step 5. Conclusion. By passing to the limit, it is clear that the solution y

of (2.2) with [y(0), y′(0)] = [y0, y1] and h as in step 4 satisfies y(T ) = y′(T ) = 0.

The proof of Theorem 2.1 is now complete.

3 – Eigenstates in the first order case. Examples

In our previous work [11] we noticed that in the case of the abstract equation

(2.1) and if A−1 is compact, the quadratic form:

Φ(ϕ0, ϕ1) =

∫ T

0
|Bϕ(t)|2 dt

where ϕ(t) ∈ C(R, V ) ∩ C1(R, H) denotes the unique mild solution of (2.2) such

that ϕ(0) = ϕ0 and ϕ′(0) = ϕ1 is diagonalizable on V×H and if [ϕ0, ϕ1] is an

eigenvector of Φ, the state J([ϕ0, ϕ1]) = [ϕ1,−Aϕ0] is null-controlable with con-

trol proportional to Bϕ(t). A similar property holds for general first order sys-

tems, although generally there is no compactness. More precisely let (H,B,C)

be as in theorem 1.1, and let us denote by G(t) the isometry group generated by

(−C) (or equivalently, equation (1.1)). We have the following simple result

Theorem 3.1. Let ϕ ∈ H be such that for some λ > 0

(3.1)

∫ T

0
G(−t)B2G(t)ϕ dt = λϕ .

Then the solution y of

(3.2) y′ + Cy = − 1

λ
B2(G(t)ϕ) in (0, T ), y(0) = ϕ

satisfies y(T ) = 0.
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Proof: We have, by Duhamel’s formula

y(T ) = G(T )ϕ− 1

λ

∫ T

0
G(T − t) [B2G(t)ϕ] dt

= G(T )

[

ϕ− 1

λ

∫ T

0
G(−t)B2G(t)ϕ dt

]

= 0 .

Remark. In the first order case, the operator
∫ T

0
G(−t)B2G(t)ϕ dt

is not compact except if B is compact, in which case controllabilty will only

happen for data in a dense subset of H. Therefore eigenstates will only appear

in special situations. We now consider two examples of application of the results

of Sections 1 and 3.

Example 3.2. The periodic transport equation. Let

Ω = (0, 2π) , ω = (ω1, ω2) ⊂ Ω .

We consider the problem

(3.3) yt + yx = χω h , y(t, 0) = y(t, 2π) .

As a consequence of Theorem 1.1, a given state y0∈L2(Ω)=H is null-controllable

at t = T if, and only if

(3.4)

∃C ∈ R+ , ∀ϕ ∈ L2(Ω) ,
∣

∣

∣

∣

∫

Ω
y0(x)ϕ(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0

∫

ω
ϕ̃2(x− t) dx dt

}
1

2

where ϕ̃ is the 2π-periodic extension of ϕ on R.

1) First we notice that if T + |ω| < 2π, the set of null-controllable states is

not dense in H. More precisely if y0 ∈ L2(Ω) = H is null-controllable at t = T ,

we must have
∫

Ω
y0(x)ϕ(x) dx = 0

for all ϕ ∈ H such that ϕ̃ = 0 a.e. on (ω1− T, ω2). To interpret this necessary

condition we distinguish two cases

Case 1. T < ω1. In this case J = (ω1 − T, ω2) ⊂ Ω and the other

2mπ-translates of J do not intersect Ω. The necessary condition reduces to

y0 = 0 a.e. on JC= (0, ω1− T ] ∪ [ω2, 2π) .
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Case 2. T ≥ω1. In this case J=(ω1−T, ω2) and J+2π=(ω1−T+2π, ω2+2π)

are the only 2mπ-translates of J which intersect Ω. The necessary condition

becomes

y0 = 0 a.e. on [ω2, ω1−T+2π] .

Actually the set of null-controllable states is rather complicated when T+|ω|<2π.

For instance if we consider the special case

T = π , ω =

(

π,
3π

2

)

which is a subcase of case 2, the necessary condition is

supp(y0) ⊂
[

0,
3π

2

]

.

It is, however, easy to see that for instance χ(0, 3π
2
) is not controllable. In order

to prove this, we first notice that by looking at the graphs

∫ T

0

∫

ω
ϕ̃2(x− t) dx dt =

∫ 3π
2

0
ρ(u)ϕ2(u) du

where

ρ(u) = u on

(

0,
π

2

)

, ρ(u) =
π

2
on

(

π

2
, π

)

, ρ(u) =
3π

2
−u on

(

π,
3π

2

)

.

Now we choose

∀ε ∈ (0, 1) , ϕε(x) =
χ(ε,π)(x)

x
.

We obtain as ε→ 0

(χ(0, 3π
2
), ϕε) ≥

∫ π
2

ε

du

u
∼ Log

1

ε

while also
∫ 3π

2

0
ρ(u)ϕε

2(u) du ≤ C +

∫ π
2

ε

du

u
∼ Log

1

ε

and therefore
{
∫ 3π

2

0
ρ(u)ϕε

2(u) du

}
1

2 ≤
√

C + Log
1

ε
.

In particular, letting ε→ 0 we can see that (3.4) is not fulfilled.
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On the other hand, it is easy to see that the condition

∃ f ∈ L2(0, 2π) , y0(x) = χ(0, 3π
2
)

√

x
(3π

2
− x

)

f(x)

is sufficient in order for y0 to be null-controllable in ω at T = π. In particular

the condition

∃ ε > 0 , |y0(x)| ≤ C χ(0, 3π
2
)

[

x
(3π

2
− x

)

]ε

is sufficient.

2) If T+|ω| > 2π, the set of null-controllable states is equal to H. Indeed

in this case

∃C ∈ R+ , ∀ϕ ∈ L2(Ω) , |ϕ|H ≤ C

{
∫ T

0

∫

ω
ϕ̃2(x− t) dx dt

}
1

2

.

Especially interesting is the case

T = 2π .

Indeed then by periodicity we have

∀ϕ ∈ L2(Ω) ,
∫ 2π

0

∫

ω
ϕ̃2(x− t) dx dt =

∫

ω

∫ 2π

0
ϕ̃2(x− t) dt dx = |ω| |ϕ|2H

and this means that any y0 ∈ L2(Ω) = H is an eigenstate with eigenvalue |ω|.
Applying Theorem 3.1 we obtain that any y0 ∈ L2(Ω) = H is null-controllable in

ω with control

(3.5) − 1

|ω| χω(x) ỹ
0(x− t) .

Of course a direct calculation confirms this result. Indeed if y is the solution of

yt + yx = − 1

|ω| χω(x) ỹ
0(x− t) , y(t, 0) = y(t, 2π), y(0, .) = y0

we have by Duhamel’s formula

y(2π, x) = ỹ0(x− 2π) +

∫ 2π

0
− 1

|ω| χ̃ω
(

x− [2π − t]
)

ỹ0
(

x− t− [2π − t]
)

dt ,

ỹ0(x)− 1

|ω|

∫ 2π

0
χ̃ω(x+ t) ỹ0(x) dt = y0(x)− 1

|ω| y
0(x)

∫ 2π

0
χ̃ω(x+ t) dt = 0
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since by periodicity

∀x ∈ (0, 2π) ,

∫ 2π

0
χ̃ω(x+ t) dt =

∫ 2π

0
χ̃ω(t) dt = |ω| .

Example 3.3. A one dimensional Schrödinger equation. Let

Ω = (0, π) , ω = (ω1, ω2) ⊂ Ω .

We consider the problem

(3.6) yt + i yxx = χω h , y(t, 0) = y(t, π) = 0 .

As a consequence of Theorem 1.1, a given state y0 ∈ L2(Ω,C) = H is null-controllable

at t = T if, and only if

(3.7)

∃C ∈ R+ , ∀ϕ0 ∈ L2(Ω,C) ,

∣

∣

∣

∣

∫

Ω
y0(x)ϕ0(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0

∫

ω
|ϕ|2(t, x) dx dt

}
1

2

where ϕ is the mild solution of

(3.8) ϕt + iϕxx = 0 , ϕ(t, 0) = ϕ(t, 2π) = 0, ϕ(0, .) = ϕ0 .

Here actually ϕ is given by

(3.9) ϕ(t, x) =
∞
∑

m=1

cm e
−im2t sinmx

with

ϕ0(x) =
∞
∑

m=1

cm sinmx

or in other terms

cm =
2

π

∫ π

0
ϕ0(x) sinmx dx .

Then a standard application of a variant to Ingham’s Lemma (cf. e.g. [4, 6, 10])

shows that
∫ T

0

∫

ω
|ϕ|2(t, x) dx dt ≥ c(T, ω)

∫

Ω
|ϕ|2(0, x) dx

with c(T, ω) > 0. In particular (3.7) is satisfied for any y0 ∈ L2(Ω) = H, which

means that here any state is null-controllable in arbitrarily small time.

Especially interesting is the case

T = 2π .
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Indeed then by periodicity we have

∀ϕ0 ∈ L2(Ω) ,
∫ 2π

0

∫

ω
|ϕ|2(t, x) dx dt =

∫

ω

∫ 2π

0
|ϕ|2(t, x) dt dx

=

∫

ω

∫ 2π

0

∣

∣

∣

∣

∞
∑

m=1

cm e
−im2t sinmx

∣

∣

∣

∣

2

dt dx

= 2π
∞
∑

m=1

|cm|2
∫

ω
sin2mxdx

= 4
∞
∑

m=1

δm|(ϕ0, ψm)|2

with

ψm(x) :=

√

2

π
sinmx , δm =

∫

ω
sin2mxdx

and this implies that for any m > 0, sinmx is an eigenstate with eigenvalue

γm = 4

∫

ω
sin2mxdx .

Applying Theorem 3.1 we obtain that any y0 ∈ L2(Ω) = H is null-controllable in

ω at time T = 2π with control

(3.10) −χω(x)
∞
∑

m=1

cm

γm
e−im

2t sinmx .

Of course a direct calculation confirms this result. Indeed let us compute

∫ 2π

0
G(−t) [χω G(t) sinmx] dt

where G(t) is the isometry group generated by (3.8). We have

G(t) sinmx = e−im
2t sinmx .

Then we expand

χω(x) sinmx = a sinmx +
∑

p6=m

cp sin px .

Multiplying by sinmx and integrating over Ω yields

a

∫

Ω
sin2mxdx =

∫

ω
sin2mxdx
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hence
π

2
a =

∫

ω
sin2mxdx .

On the other hand

G(−t) [χω G(t) sinmx] = e−im
2tG(−t)χω sinmx

= a sinmx +
∑

p6=m

cp e
i(p2−m2)t sin px

and now by periodicity we find

∫ 2π

0
G(−t) [χω G(t) sinmx] dt = 2π a sinmx

= 4 sinmx

∫

ω
sin2mxdx .

Then the conclusion follows easily for eigenstates by Duhamel’s formula and

finally by linearity and continuity in the general case.

4 – The second order case. Some examples

Let (H,A, V,B) be as in theorem 2.1. We have the following result

Theorem 4.1. Let [ϕ0, ϕ1] ∈ D(A)×V be such that for some λ > 0

(4.1) ∀[ψ0, ψ1] ∈ V×H ,

∫ T

0
(Bϕ(t), Bψ(t)) dt = λ

[

(Aϕ0, ψ0) + (ϕ1, ψ1)
]

where ϕ and ψ are the solutions of (2.1) with respective initial data [ϕ0, ϕ1] and

[ψ0, ψ1]. Then the solution y of

y′′ +Ay =
1

λ
B2ϕ(t) in (0, T ), y(0) = ϕ1, y′(0) = −Aϕ0

satisfies y(T ) = y′(T ) = 0.

Proof: Let [ψ0, ψ1] be any state in V×H and ψ the solution of (2.1) with

initial data [ψ0, ψ1]. By formula (2.5) we find

[

(y′(t), ψ(t))− (y(t), ψ′(t))
]T

0
=

1

λ

∫ T

0
(B2ϕ(t), ψ(t)) dt

=
[

(Aϕ0, ψ0) + (ϕ1, ψ1)
]
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hence

(y′(T ), ψ(T ))− (y(T ), ψ′(T )) = (y1+Aϕ0, ψ0)− (y0−ϕ1, ψ1) = 0 .

Since the abstract wave equation generates an isometry group on V×H, the pair

[ψ(T ), ψ′(T )] is arbitrary in V×H, hence [ψ(T ),−ψ′(T )] fills a dense subset of

H×H. We conclude that y(T ) = y′(T ) = 0.

We now turn to the generalization of a result established in [11] in the special

case H = L2(Ω) and Bϕ = χωϕ, ω ⊂ Ω. We assume

A−1 is compact : H −→ H

or equivalently

the inclusion map : V −→ H is compact .

We set

H := V×H
and we define L ∈ L(H) by the formula:

(4.2)
〈

L[ϕ0, ϕ1], [ψ0, ψ1]
〉

H
=

∫ T

0
(Bϕ(t), Bψ(t)) dt

∀[ϕ0, ϕ1] ∈ H, ∀[ψ0, ψ1] ∈ H, where ϕ andψ are the solutions of (2.1) with

respective initial data [ϕ0, ϕ1] and [ψ0, ψ1]. It is clear by definition that L is self-

adjoint and ≥ 0 on H. If we introduce the duality map F : H −→ H′ = V ′×H
we have

Proposition 4.2. L : H −→ H is compact and more precisely we have

(4.3) L = F−1
∫ T

0
S∗(t)B2S(t) dt

where S(t) : H −→ H is the compact operator defined by

∀[ϕ0, ϕ1] ∈ H , S(t)[ϕ0, ϕ1] = ϕ(t)

and S∗(t) : H −→ H′ is the adjoint of S(t).

Proof: We have
∫ T

0
(Bϕ(t), Bψ(t)) dt =

∫ T

0

(

B2S(t)[ϕ0, ϕ1], S(t)[ψ0, ψ1]
)

dt

=

∫ T

0

〈

S∗(t)B2S(t)[ϕ0, ϕ1], [ψ0, ψ1]
〉

H′,H
dt

=

∫ T

0

〈

F−1S∗(t)B2S(t)[ϕ0, ϕ1], [ψ0, ψ1]
〉

H,H
dt .
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Then (4.3) follows at once. Moreover since S(t) ∈ L(H, V ) it follows easily that
∫ T
0 S

∗(t)B2S(t) dt is compact: H −→ H′.

The following result is a natural generalization of Theorem 1.3 from [11].

Let us denote by N the kernel of L and let Φn = [ϕ0n, ϕ
1
n] be an orthonormal

Hilbert basis of N⊥ in H := V×H made of eigenvectors associated to the non-

increasing sequence λn of eigenvalues of L repeated according to multiplicity.

Then we have

Theorem 4.3. In order for [y0, y1] ∈ H to be null-controllable under (2.2)

at time T it is necessary and sufficient that the following set of two conditions is

satisfied

(4.4) ∀[φ0, φ1] ∈ N , (y0, φ1) = (y1, φ0)

(4.5)
∞
∑

n=1

{

(y0, ϕ1n)− (y1, ϕ0n)
}2

λn
<∞ .

When these conditions are fulfilled, an exact control driving [y0, y1] to [0, 0] is

given by the explicit formula

(4.6) B
∞
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn
B ϕn(t) .

Proof: We procced in 3 steps

Step 1. In order to show that controllabilty implies (4.4), we establish

N =

{

[φ0, φ1] ∈ H,
∫ T

0
(Bφ(t), Bφ(t)) dt = 0

}

=

{

[φ0, φ1] ∈ H, Bφ(t)) ≡ 0 on (0, T )

}

.

Indeed if [φ0, φ1] ∈ N ,we have in particular

0 =
〈

L[φ0, φ1], [φ0, φ1]
〉

H
=

∫ T

0
(Bφ(t), Bφ(t)) dt

and this is equivalent to Bφ(t)) ≡ 0 on (0, T ). Conversely this last statement

implies

〈

L[φ0, φ1], [ψ0, ψ1]
〉

H
=

∫ T

0
(Bφ(t), Bψ(t)) dt = 0 , ∀[ψ0, ψ1] ∈ H
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hence L[φ0, φ1] = 0 and therefore [φ0, φ1] ∈ N .

Step 2. We introduce

an = (y0, ϕ1n)− (y1, ϕ0n) , ψN =
N
∑

1

an
ϕn

λn
,

ψ0N =
N
∑

1

an
ϕ0n
λn

, ψ1N =
N
∑

1

an
ϕ1n
λn

.

We have

(4.7) (y0, ψ1N )− (y1, ψ0N ) =
N
∑

1

an
(y0, ϕ1n)− (y1, ϕ0n)

λn
=

N
∑

1

a2n
λn

.

Also, by using the property of the eigenvectors Φn = [ϕ0n, ϕ
1
n] and introducing

ΨN = [ψ0N , ψ
1
N ] =

N
∑

1

an
Φn

λn

we obtain successively

∫ T

0
|BψN (t)|2 dt =

∫ T

0

(

B
N
∑

1

an
ϕn

λn
(t), BψN (t)

)

dt

=
N
∑

1

an

λn

∫ T

0
(Bϕn(t), BψN (t)) dt =

N
∑

1

an

λn
λn〈Φn,ΨN 〉H(4.8)

=
N
∑

1

an

〈

Φn,
N
∑

1

an
Φn

λn

〉

H
=

N
∑

1

a2n
λn

as a consequence of orthonormality. ByTheorem2.1 we have, assuming [y0,y1]∈H
to be null-controllable under (2.2) at time T

(y0, ψ1N )− (y1, ψ0N ) ≤ C

{
∫ T

0
|BψN (t)|2 dt

}
1

2

and by (4.7)–(4.8) this is equivalent to

N
∑

1

a2n
λn

≤ C

{ N
∑

1

a2n
λn

}
1

2

or finally

∀N ≥ 1 ,
N
∑

1

a2n
λn
≤ C2 .
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Step 3. We construct a sequence of approximated controls under condition

(4.4). First of all we introduce the symplectic map J defined by

(4.9) ∀[ϕ0, ϕ1] ∈ V×H , J([ϕ0, ϕ1]) = [ϕ1,−Aϕ0] .

Since the sequence Φn= [ϕ0n, ϕ
1
n] is an orthonormal Hilbert basis of N⊥ in H :=

V×H, it follows that JΦn = [ϕ1n,−Aϕ0n] is an orthonormal Hilbert basis of the

orthogonal of J(N ) in JH := H×V ′ for the corresponding inner product which

is in fact the usual one. Now we have

∀[y0, y1] ∈ H, ∀[φ0, φ1] ∈ H ,
〈

[y0, y1], J [φ0, φ1]
〉

JH
= (y0, φ1) + 〈y1,−Aφ0〉V ′

= (y0, φ1)− (y1, φ0)

and therefore (4.4) is equivalent to orthogonality of [y0, y1] to J(N ) in JH.

Moreover if [y0, y1] satisfies (4.4), the Fourier components of [y0, y1] in the basis

JΦn = [ϕ1n,−Aϕ0n] of the orthogonal of J(N ) in JH are precisely the coefficients

an = (y0, ϕ1n)− (y1, ϕ0n) .

Therefore the state

[y0N , y
1
N ] =

N
∑

1

an JΦn

is an approximation of [y0, y1] in J(H). As a consequence of Theorem 4.1, for

each N the solution yN of

y′′N +AyN = B2 ψN (t) , yN (0) = y0N , y′N (0) = y1N

satisfies yN (T ) = y′N (T ) = 0.

Step 4. Convergence of the approximated controls. Keeping the notation of

steps 3 and 4, we have for 1 ≤ P ≤ N

∫ T

0
|BψN (t)−BψP (t)|2 dt =

∫ T

0

(

B
N
∑

P

an
ϕn

λn
(t), BψN (t)−BψP (t)

)

dt

=
N
∑

P

an

λn

∫ T

0

(

Bϕn(t), BψN (t)−BψP (t)
)

dt

=
N
∑

P

an

λn
λn

〈

Φn,ΨN−ΨP

〉

H

=
N
∑

P

an

〈

Φn,
N
∑

P

an
Φn

λn

〉

H
=

N
∑

P

a2n
λn
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as a consequence of orthonormality. Therefore {BψN}N≥1 is a Cauchy sequence

in L2(0, T ;H). Setting

h := lim
N→∞

BψN

since yN (T ) = y′N (T ) = 0 it follows immediately that

lim
N→∞

yN = y

in C([0, T ], V ) ∩ C1([0, T ], H) ∩ L2([0, T ], V ′). In particular y(0)= y0, y′(0)= y1

and

y′′ +Ay = Bh(t) , y(T ) = y′(T ) = 0 .

Formula (4.6) is satisfied in the sense

∞
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn
Bϕn(t) = lim

N→∞

N
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn
Bϕn(t)

in the strong topology of L2(0, T ;H).

Remark 4.4. In contrast with the first order case where diagonalization

of the basic quadratic form was generally impossible due to non-compactness, in

bounded domains Theorem 4.3 will be always applicable.

We conclude this section by some typical examples borrowed from [11].

Example 4.5. Let

Ω = (0, π) , ω = (ω1, ω2) ⊂ Ω .

We consider the problem

(4.10) ytt − yxx = χωh , y(t, 0) = y(t, π) = 0 .

As a consequence of Theorem 2.1, a given state [y0, y1] ∈ H1
0 (Ω)×L2(Ω) is null-

controllable at t = T if, and only if there exists C ∈ R+ such that

∀[ϕ0, ϕ1] ∈ H1
0 (Ω)×L2(Ω) ,

∣

∣

∣

∣

∫

Ω
y0(x)ϕ1(x) dx −

∫

Ω
y1(x)ϕ0(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0

∫

ω
|ϕ|2(t, x) dx dt

}
1

2

where ϕ is the mild solution of

ϕtt − ϕxx = 0 , ϕ(t, 0) = ϕ(t, π) = 0 , ϕ(0, .) = ϕ0 , ϕt(0, .) = ϕ1 .
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Here ϕ is given by

ϕ(t, x) =
∞
∑

m=1

[

cm cosmt+ dm sinmt
]

sinmx

with

ϕ0(x) =
∞
∑

m=1

cm sinmx , ϕ1(x) =
∞
∑

m=1

dm sinmx

or in other terms

cm =
2

π

∫ π

0
ϕ0(x) sinmx dx , dm =

2

π

∫ π

0
ϕ1(x) sinmx dx .

If T is small, by the finite propagation property of the wave equation, there is in

general an infinite-dimensional space of non-controllable states. For instance if

ω1 > 0 , ω2 < π and T < inf{ω1, π − ω2} ,

it is easily seen that
∣

∣

∣

∣

∫

Ω
y0(x)ϕ1(x) dx −

∫

Ω
y1(x)ϕ0(x) dx

∣

∣

∣

∣

= 0

for all [ϕ0, ϕ1] ∈ H1
0 (Ω)×L2(Ω) with

ϕ0 = ϕ1 ≡ 0, a.e. on [ω1− T, ω2 + T ] .

In particular this implies

supp y0 ∪ supp y1 ⊂ [ω1− T, ω2 + T ] .

Especially interesting is the case

T = 2π .

Indeed then by periodicity we have

∀[ϕ0, ϕ1] ∈ H1
0 (Ω)×L2(Ω) ,

∫ 2π

0

∫

ω
ϕ2(t, x) dx dt =

∫

ω

∫ 2π

0
ϕ2(t, x) dt dx

=

∫

ω

∫ 2π

0

{ ∞
∑

m=1

[

cm cosmt+ dm sinmt
]

sinmx

}2

dt dx

= π
∞
∑

m=1

(c2m + d2m)

∫

ω
sin2mxdx
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and this implies that for any m > 0, [sinmx, 0] and [0, sinmx] are two eigenstates

with eigenvalue

λm =
2

m2

∫

ω
sin2mxdx .

Applying Theorem 4.3, after some calculations taking account of the normaliza-

tion in V×H we obtain that any [y0, y1] ∈ H1
0 (Ω)×L2(Ω) is null-controllable in

ω at time T = 2π with control

h(t, x) = χω(x)
∞
∑

m=1

my0m sinmt− y1m cosmt

2
∫

ω sin
2mxdx

sinmx

with

y0m =
2

π

∫ π

0
y0(x) sinmxdx , y1m =

2

π

∫ π

0
y1(x) sinmxdx .

Example 4.6. Let

Ω = (0, π) , ω = (ω1, ω2) ⊂ Ω .

We consider the problem

(4.11) ytt + yxxxx = χωh , y(t, 0) = y(t, π) = yxx(t, 0) = yxx(t, π) = 0 .

As a consequence of Theorem 2.1, a given state [y0, y1] ∈ H2 ∩H1
0 (Ω)×L2(Ω) is

null-controllable at t = T if, and only if there exists C ∈ R+ such that

∀[ϕ0, ϕ1] ∈ H2 ∩H1
0 (Ω)×L2(Ω) ,

∣

∣

∣

∣

∫

Ω
y0(x)ϕ1(x) dx −

∫

Ω
y1(x)ϕ0(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0

∫

ω
ϕ2(t, x) dx dt

}
1

2

where ϕ is the mild solution of

ϕtt + ϕxxxx = 0 , ϕ(t, 0) = ϕ(t, π) = ϕxx(t, 0) = ϕxx(t, π) = 0

such that

ϕ(0, .) = ϕ0 , ϕt(0, .) = ϕ1 .

Here ϕ is given by

ϕ(t, x) =
∞
∑

m=1

[

cm cosm2t+ dm sinm2t
]

sinmx

with

ϕ0(x) =
∞
∑

m=1

cm sinmx , ϕ1(x) =
∞
∑

m=1

dm sinmx
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or in other terms

cm =
2

π

∫ π

0
ϕ0(x) sinmxdx , dm =

2

π

∫ π

0
ϕ1(x) sinmxdx .

As in the Schrödinger case, a variant to Ingham’s Lemma shows that any state

is null-controllable in arbitrarily small time. Here Theorem 2.1 is useless.

Especially interesting is the case

T = 2π .

Indeed then by periodicity we have

∀[ϕ0, ϕ1] ∈ H2 ∩H1
0 (Ω)×L2(Ω) ,

∫ 2π

0

∫

ω
ϕ2(t, x) dx dt =

∫

ω

∫ 2π

0
ϕ2(t, x) dt dx

=

∫

ω

∫ 2π

0

{ ∞
∑

m=1

[

cm cosm2t+ dm sinm2t
]

sinmx

}2

dt dx

= π
∞
∑

m=1

(c2m + d2m)

∫

ω
sin2mxdx

and this implies that for any m > 0, [sinmx, 0] and [0, sinmx] are two eigenstates

with eigenvalue

γm =
2

m4

∫

ω
sin2mxdx .

Here we obtain that any [y0, y1] ∈ H2 ∩ H1
0 (Ω)×L2(Ω) is null-controllable in ω

at time T = 2π with control

h(t, x) = χω(x)
∞
∑

m=1

m2 y0m sinmt− y1m cosmt

2
∫

ω sin
2mxdx

sinmx

with

y0m =
2

π

∫ π

0
y0(x) sinmxdx , y1m =

2

π

∫ π

0
y1(x) sinmxdx .

5 – A natural framework for pointwise control

In this section, we consider a real Hilbert space H and a positive self-adjoint

operator A with dense domain D(A)=W . We also consider the space V=D(A
1

2 )

and its dual space V ′. We consider the following control problem

(5.1) y′′ +Ay = h(t) γ in (0, T )



422 A. HARAUX

in time T by means of a control function h ∈ L2(0, T ) with

(5.2) γ ∈ L(V,R) = V ′ .

In this section we shall represent a pair of functions by [f, g] rather than (f, g)

to avoid confusion with scalar products. On the other hand the symbol (f, g)

will represent the H-inner product of f ∈ H and g ∈ H and the duality product

(f, g)V ′,V when f ∈ V ′ and g ∈ V will be denoted by 〈f, g〉.

Theorem 5.1. For any [y0, y1] ∈ V×H, the two following conditions are

equivalent

i) There exists h ∈ L2(0, T ) such that the mild solution y of (5.1) such that

y(0) = y0 and y′(0) = y1 satisfies y(T ) = y′(T ) = 0.

ii) There exists a finite positive constant C such that

(5.3) ∀[ϕ0, ϕ1] ∈ V×H , |(y0, ϕ1)− (y1, ϕ0)| ≤ C

{
∫ T

0
|〈γ, ϕ(t)〉|2 dt

}
1

2

where ϕ(t) ∈ C(R, V ) ∩ C1(R, H) denotes the unique mild solution of (2.1) such

that ϕ(0) = ϕ0 and ϕ′(0) = ϕ1.

Proof: It parallels exactly the proof of theorem 2.1.

Step 1. Considering first the case were γ ∈ V , let ϕ and y be a pair of strong

solutions of (5.1) and (2.1), respectively, by a calculation similar to step 1 of

Theorem 2.1 we get

[

(y′(t), ϕ(t))− (y(t), ϕ′(t))
]T

0
=

∫ T

0
h(t) 〈γ, ϕ(t)〉 dt .

By density, this identity is valid for mild solutions as well in the general case

γ ∈ V ′. Therefore if there exists h ∈ L2(0, T ) such that the mild solution y of

(5.1) with [y(0), y′(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0, we find

(y0, ϕ′(0))− (y1, ϕ(0)) =

∫ T

0
h(t)〈γ, ϕ(t)〉 dt

and by the Cauchy–Schwartz inequality we obtain (5.3). Therefore i) implies ii).

Step 2. For each ε > 0 we construct a bounded linear operator

Mε ∈ L(V×H,V ′×H)
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in the following way: for any [ϕ0, ϕ1] ∈ V×H := H we consider first the solution

ϕ of (2.1) with initial data [ϕ0, ϕ1]. Then we consider the unique mild solution y

of

(5.4) y′′ +Ay = 〈γ, ϕ(t)〉 γ + εAϕ(t) in (0, T ), y(T ) = y′(T ) = 0

and finally we set

Mε([ϕ
0, ϕ1]) = [−y′(0), y(0)] .

We find

〈

Mε([ϕ
0, ϕ1]), [ϕ0, ϕ1])

〉

H′,H
= (y(0), ϕ′(0))− 〈y′(0), ϕ(0)〉

=

∫ T

0
〈γ, ϕ(t)〉2 dt +

∫ T

0
|A 1

2ϕ(t)|2 dt .

On the other hand it is known (cf. e.g. [10]) that for any T > 0

∫ T

0
|A 1

2ϕ(t)|2 dt ≥ c(T )
{

|A 1

2ϕ(0)|2 + |ϕ′(0)|2
}

= c(T )
{

|ϕ0|2V + |ϕ1|2
}

with c(T ) > 0. Hence Mε is coercive: V×H → V ′×H, and this implies

Mε(V×H) = V ′×H.

Step 3. For each ε > 0 we set

βε(z) := 〈γ, z〉 γ + εA z .

As a consequence of step 2 there exists a pair [ϕ0,ε, ϕ1,ε] ∈ V×H such that

the mild solution yε of (5.1) with h(t)γ replaced by βεϕε ∈ L2(0, T ;V ′) and

[yε(0), y
′
ε(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0. By (5.4) we find

(y(0), ϕ′ε(0))− (y′(0), ϕε(0)) =

∫ T

0
(βεϕε(t), ϕε(t)) dt

≤ C

{
∫ T

0
〈γ, ϕε(t)〉2 dt

}
1

2

≤ C

{
∫ T

0
(βεϕε(t), ϕε(t)) dt

}
1

2

.

In particular

ε

∫ T

0
|A 1

2ϕε(t)|2 dt +
∫ T

0
〈γ, ϕε(t)〉2 dt =

∫ T

0
(βεϕε(t), ϕε(t)) dt ≤ C2 .
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Step 4. Convergence of bε = βεϕε along a subsequence. From step 3 it is

clear that √
εϕε is bounded in L2(0, T ;V ′)

and

hε(t) = 〈γ, ϕε(t)〉 is bounded in L2(0, T ) .

Along a subsequence, we may assume

hε ⇀ h weakly in L2(0, T ) .

Then clearly

bε = βεϕε ⇀ h(t)γ weakly in L2(0, T ;V ′) .

Step 5. Conclusion. By passing to the limit, it is clear that the solution y

of (5.1) with [y(0), y′(0)] = [y0, y1] and h as in step 4 satisfies y(T ) = y′(T ) = 0.

The proof of Theorem 5.1 is now complete.

In the sequel we use a generalization of Theorem 4.1. Let (H,A, V ) be as in

theorem 2.1 and let B ∈ L(V, V ′) be such that B = B∗ and

(5.5) ∀v ∈ V , 〈Bv, v〉 ≥ 0 .

We have the following result

Theorem 5.2. Let [ϕ0, ϕ1] ∈ V×H be such that for some λ > 0

(5.6) ∀[ψ0, ψ1] ∈ V×H ,

∫ T

0
〈Bϕ(t), ψ(t)〉 dt = λ

[

〈Aϕ0, ψ0〉+ (ϕ1, ψ1)
]

where ϕ and ψ are the solutions of (2.1) with respective initial data [ϕ0, ϕ1] and

[ψ0, ψ1]. Then the solution y of

y′′ +Ay =
1

λ
Bϕ(t) in (0, T ), y(0) = ϕ1, y′(0) = −Aϕ0

satisfies y(T ) = y′(T ) = 0.

Proof: Essentially identical to that of Theorem 4.1.

We now turn to special case

(5.7) B(v) := 〈γ, v〉 γ .
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We set

H := V×H
and we define L ∈ L(H) by the formula:

(5.8)
〈

L[ϕ0, ϕ1], [ψ0, ψ1]
〉

H
=

∫ T

0
〈Bϕ(t), ψ(t)〉 dt

∀[ϕ0, ϕ1] ∈ H, ∀[ψ0, ψ1] ∈ H, where ϕ and ψ are the solutions of (2.1) with respec-

tive initial data [ϕ0, ϕ1] and [ψ0, ψ1]. It is clear by definition that L is self-adjoint

and ≥ 0 on H. If we introduce the duality map F : H −→ H′ = V ′×H we have

Proposition 5.3. L : H −→ H is compact and more precisely we have

(5.9) L = F−1
∫ T

0
S∗(t)BS(t) dt

where S(t) : H −→ V is the bounded operator defined by

∀[ϕ0, ϕ1] ∈ H , S(t)[ϕ0, ϕ1] = ϕ(t)

and S∗(t) : V ′ −→ H′ is the adjoint of S(t).

Proof: Formula (5.9) is immediate to check along the lines of proof of (4.3).

However to prove that
∫ T
0 S∗(t)BS(t) dt is compact: H −→ H′ we need a specific

argument. Here compactness does not follow from an hypothesis on the imbed-

ding V −→ H but is a consequence of the special structure of B. As a preliminary

step, we establish

Lemma 5.4. For any γ ∈ V ′ we have

(5.10) S∗(t) γ ∈ C([0, T ];H′) .

Proof: Since the mappings γ → S∗(t) γ are uniformly equicontinuous:

V ′→ H′, it is sufficient to prove (5.10) when for instance γ ∈ V . In this case

setting

z = γ +Aγ ∈ V ′

we have

∀t ∈ [0, T ], ∀θ ∈ [0, T ] ,
∥

∥

∥S∗(t)γ − S∗(θ)γ
∥

∥

∥

H′
= sup

‖Φ‖H≤1

∣

∣

∣

〈

γ, S(t)Φ− S(θ)Φ
〉

V ′,V

∣

∣

∣

= sup
‖Φ‖H≤1

∣

∣

∣

〈

z, S(t)JΦ− S(θ)JΦ
〉

V ′,V

∣

∣

∣
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where J : H = V×H → D(A 3
2)×D(A) ⊂ D(A)×V is defined by

∀Φ = [ϕ0, ϕ1] ∈ H , JΦ =
[

(I +A)−1ϕ0, (I +A)−1ϕ1
]

.

In particular we have

‖S(t)JΦ− S(θ)JΦ‖V ≤ C |t− θ| ‖Φ‖H
and therefore

∀t ∈ [0, T ], ∀θ ∈ [0, T ] , ‖S∗(t)γ − S∗(θ)γ‖H′ ≤ C ‖z‖V ′ |t− θ|

concluding the proof of Lemma 5.4.

Proof of Proposition 5.3 (continued): We have for all t ∈ [0, T ],

∀Φ = [ϕ0, ϕ1] ∈ H , S∗(t)BS(t) Φ = 〈γ,S(t)Φ〉 S∗(t) γ .

By Lemma 5.4, for t ∈ [0, T ], S∗(t)γ remains in a fixed compact subset of V ′.

On the other hand for t ∈ [0, T ] and Φ = [ϕ0, ϕ1] ∈ H in the unit ball of H,

〈γ,S(t)Φ〉 remains in a bounded interval of R. Therefore S∗(t)BS(t)Φ remains

in a fixed compact subset of V ′ and so does the integral
∫ T
0 S∗(t)BS(t)Φ dt. The

conclusion follows easily.

The following result is a natural generalization of Theorem 3.3 from [11].

Let us denote by N the kernel of L and let Φn = [ϕ0n, ϕ
1
n] be an orthonormal

Hilbert basis of N⊥ in H := V×H made of eigenvectors associated to the non-

increasing sequence λn of eigenvalues of L repeated according to multiplicity.

Then we have

Theorem 5.5. In order for [y0, y1] ∈ H to be null-controllable under (5.1)

at time T it is necessary and sufficient that the following set of two conditions is

satisfied

(5.11) ∀[φ0, φ1] ∈ N , (y0, φ1) = (y1, φ0) ,

(5.12)
∞
∑

n=1

{

(y0, ϕ1n)− (y1, ϕ0n)
}2

λn
<∞ .

When these conditions are fulfilled, an exact control driving [y0, y1] to [0, 0] is

given by the explicit formula

(5.13) γ
∞
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn
〈γ, ϕn(t)〉 .
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In the special case

H = L2(Ω) , γ = δ(x− x0), x0 ∈ Ω

we obtain the point control problem

(5.14) y′′ +Ay = h(t) δ(x− x0) in (0, T )

in time T by means of a control function h ∈ L2(0, T ). Assuming

(5.15) D(A
1

2 ) ⊂ C(Ω)

with continuous imbedding, we obtain

Corollary 5.6. In order for [y0, y1] ∈ H = D(A
1

2 )×L2(Ω) to be null-control-

lable at x0 at time T under (5.14) it is necessary and sufficient that (5.11) and

(5.12) be satisfied. When these conditions are fulfilled, an exact control driving

[y0, y1] to [0, 0] is given by the explicit formula

(5.16) h(t) =
∞
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn
ϕn(t, x0) .

Example 5.7. Let

Ω = (0, π) , ξ ∈ Ω .

We consider the problem

(5.17) ytt − yxx = h(t) δ(x− ξ) , y(t, 0) = y(t, π) = 0 .

As a consequence of Corollary 5.6, a given state [y0, y1] ∈ H1
0 (Ω)×L2(Ω) is null-

controllable at t = T if, and only if there exists C ∈ R+ such that

∀[ϕ0, ϕ1] ∈ H1
0 (Ω)×L2(Ω) ,

∣

∣

∣

∣

∫

Ω
y0(x)ϕ1(x) dx −

∫

Ω
y1(x)ϕ0(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0
ϕ2(t, ξ) dt

}
1

2

where ϕ is the mild solution of

ϕtt − ϕxx = 0 , ϕ(t, 0) = ϕ(t, π) = 0 , ϕ(0, .) = ϕ0 , ϕt(0, .) = ϕ1 .

Here ϕ is given by

ϕ(t, x) =
∞
∑

m=1

[

cm cosmt+ dm sinmt
]

sinmx
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with

ϕ0(x) =
∞
∑

m=1

cm sinmx , ϕ1(x) =
∞
∑

m=1

dm sinmx

or in other terms

cm =
2

π

∫ π

0
ϕ0(x) sinmxdx , dm =

2

π

∫ π

0
ϕ1(x) sinmxdx .

If T is small, by the finite propagation property of the wave equation,there is in

general an infinite-dimensional space of non-controllable states.

Especially interesting is the case

T = 2π .

Indeed then by periodicity we have

∀[ϕ0, ϕ1] ∈ H1
0 (Ω)×L2(Ω) ,
∫ 2π

0
ϕ2(t, ξ) dt =

∫ 2π

0

{

∞
∑

m=1

[

cm cosmt+ dm sinmt
]

sinmξ

}2

dt

= π
∞
∑

m=1

(c2m + d2m) sin
2mξ

and this implies that for any m > 0, [sinmx, 0] and [0, sinmx] are two eigenstates

with eigenvalue

γm =
2

m2
sin2mξ .

Applying Theorem 5.6, after some calculations we obtain that any [y0, y1] ∈
H1
0 (Ω)×L2(Ω) is null-controllable at ξ int time T = 2π if and only if

∀m ∈ N∗ , sinmξ = 0 =⇒ y0m = y1m = 0

and
∑

sinmξ 6=0

1

sin2mξ

{

m2(y0m)
2 + (y1m)

2
}

< ∞

with

y0m =
2

π

∫ π

0
y0(x) sinmxdx , y1m =

2

π

∫ π

0
y1(x) sinmxdx .

In such a case a control is given explicitely by

h(t) =
∞
∑

m=1

1

2 sinmξ
(my0m sinmt− y1m cosmt) .
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Example 5.8. Let

Ω = (0, π) , ξ ∈ Ω .

We consider the problem

(5.18) ytt+yxxxx = h(t) δ(x−ξ) , y(t, 0) = y(t, π) = yxx(t, 0) = yxx(t, π) = 0 .

As a consequence of Corollary 5.6, a given state [y0, y1] ∈ H1
0 (Ω)×L2(Ω) is null-

controllable under (5.18) at t = T if, and only if there exists C ∈ R+ such that

∀[ϕ0, ϕ1] ∈ H2 ∩H1
0 (Ω)×L2(Ω) ,

∣

∣

∣

∣

∫

Ω
y0(x)ϕ1(x) dx −

∫

Ω
y1(x)ϕ0(x) dx

∣

∣

∣

∣

≤ C

{
∫ T

0
ϕ2(t, ξ) dt

}
1

2

where ϕ is the mild solution of

ϕtt + ϕxxxx = 0 , ϕ(t, 0) = ϕ(t, π) = ϕxx(t, 0) = ϕxx(t, π) = 0

such that

ϕ(0, .) = ϕ0 , ϕt(0, .) = ϕ1 .

Here ϕ is given by

ϕ(t, x) =
∞
∑

m=1

[

cm cosm2t+ dm sinm2t
]

sinmx

with

ϕ0(x) =
∞
∑

m=1

cm sinmx , ϕ1(x) =
∞
∑

m=1

dm sinmx

or in other terms

cm =
2

π

∫ π

0
ϕ0(x) sinmxdx , dm =

2

π

∫ π

0
ϕ1(x) sinmxdx .

Applying Theorem 5.6, after some calculations we obtain that any [y0, y1]∈
H1
0 (Ω)×L2(Ω) is null-controllable at ξ in time T = 2π under (5.18) if and only if

∀m ∈ N∗ , sinmξ = 0 =⇒ y0m = y1m = 0

and
∑

sinmξ 6=0

1

sin2mξ

{

m4(y0m)
2 + (y1m)

2
}

< ∞

with

y0m =
2

π

∫ π

0
y0(x) sinmxdx , y1m =

2

π

∫ π

0
y1(x) sinmxdx .
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In such a case a control is given explicitely by

h(t) =
∞
∑

m=1

1

2 sinmξ
(m2y0m sinmt− y1m cosmt) .

We conclude this section with an example which is available in any domain.

This case has been considered by Graham and Russell in [2]. In the case

H = L2(Ω) , γ = χω

we obtain the point control problem

(5.19) y′′ +Ay = h(t)χω(x) in (0, T )

in time T by means of a control function h ∈ L2(0, T ). We obtain

Corollary 5.9. In order for [y0, y1] ∈ H = D(A
1

2 )×L2(Ω) to be null-control-

lable at time T under (5.19) it is necessary and sufficient that (5.11) and (5.12)

be satisfied. When these conditions are fulfilled, an exact control driving [y0, y1]

to [0, 0] is given by the explicit formula

(5.20) h(t) =
∞
∑

n=1

(y0, ϕ1n)− (y1, ϕ0n)

λn

∫

ω
ϕn(t, x) dx .

6 – Boundary control of the wave equation

In this section, we consider the real Hilbert space H = L2(Ω) where Ω is a

bounded domain of RN and we set V = H1
0 (Ω), V

′= H−1(Ω). We consider the

wave equation

(6.1) ϕtt −∆ϕ = 0 in R×Ω , ϕ = 0 on R×∂Ω

and the boundary control problem

(6.2) ytt −∆y = 0 in (0, T )×Ω , y = Bh(t, σ) on (0, T )×∂Ω

in time T by means of a control function

h ∈ L2(0, T, L2(Γ))
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with

(6.3) B ∈ L(L2(Γ), L2(Γ)) , B = B∗ ≥ 0 .

In this section we shall represent a pair of functions by [f, g] rather than (f, g)

to avoid confusion with scalar products. On the other hand the symbol (f, g)

will represent indifferently either the H-inner product of f ∈ H and g ∈ H or

the duality product (f, g)V,V ′ when f ∈ V and g ∈ V ′, these two products being

equal when f ∈ V and g ∈ H. The main result of this section is the following

Theorem 6.1. For any [y0, y1] ∈ V×H, the two following conditions are

equivalent

i) There exists h ∈ L2(0, T ;L2(Γ)) such that the mild solution y of (6.2)

such that y(0) = y0 and y′(0) = y1 satisfies y(T ) = y′(T ) = 0.

ii) There exists a finite positive constant C such that

(6.4) ∀[ϕ0, ϕ1] ∈ V×H ,
∣

∣

∣(y0, ϕ1)− (y1, ϕ0)
∣

∣

∣ ≤ C

{
∫ T

0

∫

Γ

∣

∣

∣

∣

B
∂ϕ

∂ν
(t, σ)

∣

∣

∣

∣

2

dt dσ

}
1

2

where ϕ(t) ∈ C(R, V ) ∩ C1(R, H) denotes the unique mild solution of (6.1) such

that ϕ(0) = ϕ0 and ϕ′(0) = ϕ1.

Proof: It parallels the proof of theorem 2.1.

Step 1. Let ϕ and y be a pair of strong solutions of (6.1) and (6.2), respec-

tively. We have

d

dt
(y′(t), ϕ(t)) = (y′′(t), ϕ(t)) + (y′(t), ϕ′(t))

= (∆y(t), ϕ(t)) + (y′(t), ϕ′(t)) .

On the other hand

d

dt
(y(t), ϕ′(t)) = (y(t), ϕ′′(t)) + (y′(t), ϕ′(t))

= (y(t),∆ϕ(t)) + (y′(t), ϕ′(t)) .

By substracting these two identities we find

d

dt

[

(y′(t), ϕ(t))− (y(t), ϕ′(t))
]

=

∫

Ω
(ϕ∆y − y∆ϕ) dx =

∫

Γ

(

ϕ
∂y

∂ν
− y ∂ϕ

∂ν

)

dσ .
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By integrating on (0, T) and using ϕ = 0 on R×∂Ω we get

(6.5)
[

(y′(t), ϕ(t))− (y(t), ϕ′(t))
]T

0
= −

∫ T

0

∫

Γ
Bh(t, σ)

∂ϕ

∂ν
(t, σ) dσ dt .

By density and as a consequence of the so-called “hidden regularity property” (cf.

e.g. [16, 19]), this identity is valid for mild solutions as well. Since B is bounded,

self-adjoint and B ≥ 0,

∫ T

0

∫

Γ
Bh(t, σ)

∂ϕ

∂ν
(t, σ) dσ dt =

∫ T

0

∫

Γ
h(t, σ)B

∂ϕ

∂ν
(t, σ) dσ dt .

Finally if there exists h ∈ L2(0, T ;L2(Γ)) such that the mild solution y of (6.2)

with [y(0), y′(0)] = [y0, y1] satisfies y(T ) = y′(T ) = 0, we find as a consequence

of (6.5)

(y0, ϕ′(0))− (y1, ϕ(0)) = −
∫ T

0

∫

Γ
h(t, σ)B

∂ϕ

∂ν
(t, σ) dσ dt

and by the Cauchy–Schwartz inequality we obtain (2.4). Therefore i) implies ii).

Step 2. For each ε > 0 we construct a bounded linear operator

Lε ∈ L(V×H,V ′×H)

in the following way: for any [ϕ0, ϕ1] ∈ V×H := H we consider first the solution

ϕ of (2.1) with initial data [ϕ0, ϕ1]. Then we consider the unique mild solution y

of

ytt −∆y = −ε∆ϕ in (0, T )×Ω , y = −B2∂ϕ
∂ν

on (0, T )×∂Ω ,

y(T ) = y′(T ) = 0

and we set

Lε([ϕ0, ϕ1]) = [−y′(0), y(0)]

We find

〈

Lε([ϕ0, ϕ1]), [ϕ0, ϕ1])
〉

H′,H
= (y(0), ϕ′(0))− 〈y′(0), ϕ(0)〉

=

∫ T

0

∫

Γ
B2

∂ϕ

∂ν
.
∂ϕ

∂ν
(t, σ) dσ dt + ε

∫ T

0
|A 1

2ϕ(t)|2 dt .
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With A = −∆. On the other hand for any T > 0

∫ T

0
|A 1

2ϕ(t)|2 dt ≥ c(T )
{

|A 1

2ϕ(0)|2 + |ϕ′(0)|2
}

= c(T )
{

|ϕ0|2V + |ϕ1|2
}

with c(T ) > 0. Hence Lε is coercive: V×H → V ′×H, and this implies

Lε(V×H) = V ′×H.

Step 3. As a consequence of step 2 there exists a pair [ϕ0,ε, ϕ1,ε] ∈ H×V ′
such that the mild solution yε of

ytt −∆y = −ε∆ϕε in (0, T )×Ω , y = −B2∂ϕε
∂ν

on (0, T )×∂Ω ,

with

[yε(0), y
′
ε(0)] = [y0, y1]

satisfies

y(T ) = y′(T ) = 0 .

We find

(y0, ϕ′ε(0))− (y1, ϕε(0)) =

∫ T

0

∫

Γ

∣

∣

∣

∣

B
∂ϕε

∂ν
(t, σ)

∣

∣

∣

∣

2

dσ dt + ε

∫ T

0
|A 1

2ϕε(t)|2 dt

≤ C

{

∫ T

0

∫

Γ

∣

∣

∣

∣

B
∂ϕε

∂ν
(t, σ)

∣

∣

∣

∣

2

dσ dt

}
1

2

.

In particular

∫ T

0

∫

Γ

∣

∣

∣

∣

B
∂ϕε

∂ν
(t, σ)

∣

∣

∣

∣

2

dσ dt + ε

∫ T

0
|A 1

2ϕε(t)|2 dt ≤ C2 .

Step 4. Convergence along a subsequence. From step 3 it is clear that

√
εϕε is bounded in L2(0, T ;V ′)

and

hε = B
∂ϕε

∂ν
is bounded in L2(0, T ;L2(Γ)) .

Along a subsequence, we may assume

hε ⇀ h weakly in L2(0, T ;L2(Γ)) .
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Then clearly

B2
∂ϕε

∂ν
⇀ Bh weakly in L2(0, T ;L2(Γ)) .

Step 5. Conclusion. By passing to the limit, it is clear that the solution y

of (6.2) with [y(0), y′(0)] = [y0, y1] and h as in step 4 satisfies y(T ) = y′(T ) = 0.

The proof of Theorem 6.1 is now complete.

We now state a variant of Theorem 4.1 devised for the case of boundary

control.

Theorem 6.2. Let [ϕ0, ϕ1] ∈ D(A)×V be such that for some λ > 0

(6.6) ∀[ψ0, ψ1] ∈ D(A)×V ,
∫ T

0

∫

Γ
B∂ϕ
∂ν

.B∂ψ
∂ν

dσ = λ
[

(Aϕ0, Aψ0)+〈Aϕ1, ψ1〉
]

where ϕ and ψ are the solutions of (6.1) with respective initial data [ϕ0, ϕ1] and

[ψ0, ψ1]. Then the solution y of

ytt −∆y = 0 in (0, T )×Ω , y = − 1

λ
B2∂ϕ
∂ν

on (0, T )×∂Ω

(6.7) y(0) = Aϕ1 , y′(0) = −A2ϕ0

satisfies y(T ) = y′(T ) = 0.

Proof: Essentially identical to that of Theorem 4.1. For the details cf. [11],

proposition 2.2.

The following result is a natural generalization of Theorem 2.3 from [11]. First

we define V = D(A)×V and L ∈ L(V) by the formula

∀[ϕ0, ϕ1] ∈ V, ∀[ψ0, ψ1] ∈ V ,
〈

L([ϕ0, ϕ1]); [ψ0, ψ1]
〉

V
=

∫ T

0

∫

Γ
B∂ϕ
∂ν

.B∂ψ
∂ν

dσ .

By the standard trace theorem, L : V → V is compact. Let us denote by N
the kernel of L and let Φn = [ϕ0n, ϕ

1
n] be an orthonormal Hilbert basis of N⊥ in

H := V×H made of eigenvectors associated to the non-increasing sequence λn of

eigenvalues of L repeated according to multiplicity. Then we have

Theorem 6.3. In order for [y0, y1] ∈ H×V ′ to be null-controllable under

(6.2) at time T it is necessary and sufficient that the following set of two conditions

is satisfied

(6.7) ∀[φ0, φ1] ∈ N , (y0, φ1) = 〈y1, φ0〉 ,
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(6.8)
∞
∑

n=1

{

(y0, ϕ1n)− 〈y1, ϕ0n〉
}2

λn
< ∞ .

When these conditions are fulfilled, an exact control driving [y0, y1] to [0, 0]

is given by the explicit formula

(6.9) h(t, σ) = −
∞
∑

n=1

(y0, ϕ1n)− 〈y1, ϕ0n〉
λn

B
∂ϕn

∂ν
.

Proof: Since it is a straightforward generalization of Theorem 2.3 from [11]

and we already gave many similar arguments in this paper, the details are left to

the reader.

We conclude by recalling an example from [11].

Example 6.4. Let

Ω = (0, π) .

We consider the problem

(6.10) ytt − yxx = 0 , y(t, 0) = h(t), y(t, π) = 0 .

For any T ≥ 2π and any [y0, y1] ∈ H×V ′ = L2(Ω)×H−1(Ω) there exists

h ∈ L2(0, T ) such that the solution y of (6.10) with

y(0) = y0 , yt(0) = y1

satisfies y(T ) = yt(T ) = 0.

In the special case

T = 2π

a control h is given explicitely by

h(t) =
1

2

∞
∑

m=1

(

y0m sinmt− 1

m
y1m cosmt

)

with

y0m =
2

π

∫ π

0
y0(x) sinmxdx , y1m =

2

π

〈

y1(x), sinmx
〉

V ′,V
.
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tribués, Tome 1, Collection “Recherches en Mathématiques Appliquées”, sous la
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