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Introduction

The Markov property is a standard probabilistic notion since its formalization
at the beginning of the 20th century. It was presented for the first time in a
time-symmetric way by Doob [19] in 1953, see (1.1). This remarkable point of
view, which is often replaced by its time-asymmetric counterpart, was developed
further by numerous authors, see the references in the monograph by Chung and
Walsh [9] and also Wentzell [53].

Two decades after Markov, Bernstein [3] introduced in the particular frame-
work of diffusion processes the more general notion of reciprocal process1 which
is also time-symmetric, by its very definition. During his talk at the Interna-
tional Congress in Zürich, he qualified the dynamics of reciprocal processes as
stochastiquement parfaite2. Bernstein’s motivation for introducing these time-
symmetric notion of random process is rooted into an outstandingly insightful
article by Schrödinger [45] entitled “Über die Umkehrung der Naturgesetze” pub-
lished in 1931, allowing a clear analogy with quantum dynamics, see Section 3.

The particular case of Gaussian reciprocal processes was extensively treated
by Jamison [26]. This was also undertaken by Chay [7] who named these pro-
cesses “quasi-Markov random fields” since they are random fields defined on a
compact time interval. See further comments and references at the beginning
of Section 2 and Subsection 2.4. Later, in the excellent seminal paper [27] en-
titled “Reciprocal processes”, Jamison provided a rigorous definition of these
processes and derived their main properties in an abstract setting. This led to
many studies in specific contexts, such as diffusion processes [49, 50, 16, 48],
Lévy processes [40] or pure jump processes [14, 13].

This review paper revisits [27] and provides some new results. We present a
unifying measure-theoretical approach to reciprocal processes. Unlike Jamison,
who worked with finite-dimensional distributions using the concept of reciprocal

1This terminology is due to Bernstein. They are also sometimes called Bernstein processes.
2Stochastically perfect.
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transition probability function, we look at Markov and reciprocal processes as
path measures, i.e. measures on the path space.

Theorem 2.14 illustrates our perspective. Its statement gives a characteriza-
tion of the reciprocal measures which are dominated by a given Markov measure
in terms of time-symmetric versions of Doob’s h-transforms. We also illustrate
our abstract results with several examples and counter-examples.

A possible extension

We focus onto probability path measures. As a consequence, in the present paper
we drop the word probability: any path probability measure, Markov probability
measure or reciprocal probability measure is simply called a path measure, a
Markov measure or a reciprocal measure.

Our results can easily be extended to σ-finite path measures, e.g. processes
admitting an unbounded measure as their initial law. For further detail about
this generalized framework, see [33].

Outline of the paper

Section 1 is devoted to the structure of Markov measures and to their time-
symmetries. Reciprocal measures are introduced at Section 2 and their relation-
ship with Markov measures is investigated. At Section 3, we sketch the tight
connection between reciprocal classes and some specific entropy minimization
problems. So doing, we step back to Schrödinger’s way of looking at some sta-
tistical physics problems with a time-symmetric viewpoint.

Notation

We consider the set Ω = D([0, 1],X ) ⊂ X [0,1] of càdlàg paths defined on the
finite time interval [0, 1] with state space X , which is assumed to be Polish and
equipped with its Borel σ-algebra. As usual Ω is endowed with the canonical
filtration A generated by the canonical process X = (Xt)t∈[0,1]:

Xt(ω) := ωt, ω = (ωs)s∈[0,1] ∈ Ω, t ∈ [0, 1].

For any subset S ⊂ [0, 1] and for any measure P on Ω one denotes

• XS = (Xs)s∈S the canonical process restricted to S,
• AS = σ(Xs; s ∈ S) the σ-algebra of the events observed during S,
• PS = (XS)#P the restriction of P to ΩS := XS(Ω).

We have denoted f#m := m ◦ f−1 the image of the measure m with respect to
the measurable mapping f .

For S = [s, u] ⊂ [0, 1] we use the particular notations:

• X[s,u] := (Xt; s ≤ t ≤ u)
• A[s,u] := σ(X[s,u]), the σ-algebra generated by the events that occurred
between time s and time u
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• As := σ(Xs), the σ-algebra generated by the events that occur at time s
• Ps := (Xs)#P is the projection of P at time s
• Psu := (Xs, Xu)#P is the marginal law of P at times s and u simultane-
ously (P01 is therefore the endpoint marginal law of the process)
• P[s,u] := (X[s,u])#P is the projection of P on the time interval [s, u]

The measure
P ∗ = (X∗)#P

is the law under P of the càdlàg transform X∗ : Ω → Ω of the time reversed
canonical process defined by X∗

t := limh→0,h≥0X(1−t+h) for any 0 < t < 1. To
avoid technical troubles with the endpoint positions, as far as X∗ is at stake, it
is assumed for simplicity that

P (X0 = X0+) = P (X1 = X1−) = 1. (0.1)

1. Time-symmetry of Markov measures

We present structural properties of both Markov probability measures and their
bridges. Emphasis is put on their time-symmetry which has already been studied
in specific frameworks, see for instance [9].

1.1. Definition and basic properties

Let us begin with the symmetric definition of the Markov property.

Definition 1.1 (Markov measure). A probability measure P on Ω is said to be
Markov if for any t ∈ [0, 1] and for any events A ∈ A[0,t], B ∈ A[t,1]

P (A ∩B | Xt) = P (A | Xt)P (B | Xt), P -a.e. (1.1)

This means that, knowing the present state Xt, the future and past informa-
tions A[t,1] and A[0,t], are P -independent.

In Theorem 1.2 below, we recall equivalent descriptions of the Markov prop-
erty. In particular, the standard identity (2) states that a Markov process forgets
its past history.

Theorem 1.2. Let P be a probability measure on Ω. Then the following are
equivalent:

(1) The measure P is Markov.

(1*) The time-reversed measure P ∗ is Markov (assuming (0.1)).
(2) For all 0 ≤ t ≤ 1 and all sets B ∈ A[t,1],

P (B | X[0,t]) = P (B | Xt), P -a.e.

(2*) For all 0 ≤ t ≤ 1 and all sets A ∈ A[0,t],

P (A | X[t,1]) = P (A | Xt), P -a.e.
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(3) For all 0 ≤ s ≤ u ≤ 1 and all sets A ∈ A[0,s], C ∈ A[u,1]

P (A ∩ C | X[s,u]) = P (A | Xs)P (C | Xu), P -a.e.

Proof. Let us prove (3)⇒ (1)⇒ (2)⇒ (3).

• Proof of (3)⇒ (1). It is clear by taking s = u.
• Proof of (2) ⇒ (3). For all sets A ∈ A[0,s] and C ∈ A[u,1] and all sets

B ∈ A[s,u], the equality

P (A ∩B ∩ C) = E[1BP (A ∩ C | X[s,u])]

holds. On the other hand,

P (A ∩B ∩C) = E[P (A ∩B ∩ C | X[0,u])]

= E[1A1BP (C | X[0,u])]

= E[1A1BP (C | X[s,u])]

= E[1BP (A | X[s,u])P (C | X[s,u])]

where property (2) is used in the third equality. Therefore

P (A ∩ C | X[s,u]) = P (A | X[s,u])P (C | X[s,u]).

• Proof of (1) ⇒ (2). It is based on standard properties of conditional in-
dependence. Nevertheless, for the sake of completeness, we sketch it. Let us
show that if (1.1) is satisfied then P forgets its past history. Let A ∈ A[0,t] and
B ∈ A[t,1] be some events.

E[1AP (B | X[0,t])] = P (A ∩B) = E(P (A ∩B | Xt)) = E[P (A | Xt)P (B | Xt)].

On the other hand,

E[1AP (B | Xt)] = E[P (A | Xt)P (B | Xt)].

One obtains for any set A ∈ A[0,t], E[1AP (B | X[0,t])] = E[1AP (B | Xt)], which
implies that P (B | X[0,t]) = P (B | Xt). This completes the proof of (1)⇒ (2),
together with the proof of (1)⇔ (2)⇔ (3).

Eventually the symmetry of the formulation of (3) leads to the equivalence
between (2) and (1∗). Assertion (2∗) is equivalent to (2) by usual symmetry of
conditional independence.

The first proof of (1)⇔ (2) appears in the monograph by Doob [19, Eqs (6.8)
& (6.8’)]. Then, Dynkin [21] and Chung [8, Thm. 9.2.4] took it over. Meyer
already remarked in [35] that the Markov property is invariant under time re-
versal. Let us cite him: Soit (Xt) un processus de Markov; les tribus σ(X[t,1])
et σ(X[0,t]) jouant des rôles symétriques dans la définition de l’indépendance
conditionnelle (1.1), le processus (Xt) reste markovien lorsqu’on “renverse le
sens du temps”.
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The proof of (1)⇔ (1∗) does not require any assumption about the regularity
of the sample paths. It is not important that Ω is a set of càdlàg paths. Therefore,
if Ω is replaced by the set X [0,1] of all paths, this identity holds with P ∗ =
(X∗)#P and X∗

t := X1−t, 0 ≤ t ≤ 1, without assuming (0.1).

Identity (2), called left-sided Markov property, is often used as the definition
of the Markov property. It may create the inaccurate delusion (frequent in the
context of statistical physics) that the Markov property is time-asymmetric.

Since each Markov process can be defined via its forward and backward tran-
sition probability kernels, we recall how to construct them in a symmetric way.

Definitions 1.3. Let P be a Markov measure.

1. The forward transition probability kernel associated with P is the family
of conditional measures (p(s, x; t, ·); 0 ≤ s ≤ t ≤ 1, x ∈ X ) defined for any
0 ≤ s ≤ t ≤ 1, and Ps-almost all x, by

p(s, x; t, dy) = P (Xt ∈ dy | Xs = x).

2. The backward transition probability kernel associated with P is the family
of conditional measures (p∗(s, ·; t, y); 0 ≤ s ≤ t ≤ 1, y ∈ X ) defined for any
0 ≤ s ≤ t ≤ 1, and Pt-almost all y, by

p∗(s, dx; t, y) := P (Xs ∈ dx | Xt = y).

Since these kernels satisfy the celebrated Chapman-Kolmogorov relations

∀0 ≤ s ≤ t ≤ u ≤ 1,

p(s, x;u, ·) =
∫

X

p(s, x; t, dy)p(t, y;u, ·) for Ps-a.a. x (1.2)

p∗(s, ·;u, z) =
∫

X

p∗(s, ·; t, y)p∗(t, dy;u, z) for Pu-a.a. z, (1.3)

one can construct the measure P in the following way.

Proposition 1.4. The Markov measure P is uniquely determined by one time
marginal Pu at some time u ∈ [0, 1], its forward transition probability kernels
starting from time u, (p(s, x; t, ·);u ≤ s ≤ t ≤ 1, x ∈ X ) and the backward
transition probability kernels since time u, (p∗(s, ·; t, y); 0 ≤ s ≤ t ≤ u, y ∈ X ).

Indeed, for any 0 ≤ s1 ≤ · · · ≤ sk ≤ u ≤ t1 ≤ · · · ≤ tl ≤ 1 and k, l ≥ 1, the
finite dimensional projection of P are given by

Ps1,...,sk,u,t1,...,tl = p∗s1;s2 ⊗ · · · ⊗ p∗sk;u ⊗ Pu ⊗ pu;t1 ⊗ · · · ⊗ ptl−1;tl .

where we used the following intuitive notation

Pu ⊗ pu;t(dx, dy) := Pu(dx)p(u, x; t, dy).
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1.2. Path measures dominated by a Markov measure

We consider the problem of knowing whether a path measure which is dominated
by a reference Markov measure inherits its Markov property. The following result
states a criterion in terms of the multiplicative structure of the Radon-Nikodym
derivative on the path space. This question was posed in the general background
of continuous time Markov fields in the 1970’ and solved by Dang Ngoc and Yor
in [18, Prop. 4.3(b)]. Some abstract variant of this result also appeared in [51,
Thm. 3.6]. In the simpler framework of processes indexed by a discrete time, we
refer the reader to Georgii’s extended monograph [25, Ch. 10, 11].

Theorem 1.5. Let R be a reference Markov measure and let P ≪ R, a proba-
bility measure dominated by R. Then the following statements are equivalent.

(1) The measure P is Markov.
(2) For any time t ∈ [0, 1], the Radon-Nikodym derivative of P with respect to

R factorizes in the following way:

dP

dR
= αt βt, R-a.e. (1.4)

where αt and βt are respectively nonnegative A[0,t]-measurable and A[t,1]-
measurable functions.

Proof. For an alternate proof, see [18, Prop. 4.3].

• Proof of (2)⇒ (1). Take two events, A ∈ A[0,t] and B ∈ A[t,1]. In terms of
Definition 1.1, we have to show that

P (A ∩B | Xt) = P (A | Xt)P (B | Xt), P -a.e. (1.5)

To this aim, note that although the product αtβt is R-integrable, it is not clear
why αt or βt should be separately integrable. To prove this required integrabil-
ity, one may use the following lemma of integration theory which assures the
R(· | Xt)-integrability of the functions αt and βt, P -a.e.

Lemma 1.6. Assume that statement (2) of the above theorem holds true. Then,
the functions αt and βt are R(· | Xt)-integrable P -a.e. and

{
0<ER(αtβt |Xt)=ER(αt |Xt)ER(βt |Xt), P -a.e.
0≤ER(αtβt |Xt)=1{ER(αt |Xt)ER(βt |Xt)<+∞}ER(αt |Xt)ER(βt |Xt), R-a.e.

Proof. See [33, § 3].

Lemma 1.6 leads to

P (A∩B | Xt) =
ER(αtβt 1A1B | Xt)

ER(αtβt | Xt)
=
ER(αt 1A | Xt)

ER(αt | Xt)

ER(βt 1B | Xt)

ER(βt | Xt)
, P -a.e.
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Choosing A = Ω or B = Ω in this formula, we obtain

P (B | Xt) = ER(βt 1B | Xt)/ER(βt | Xt),

P (A | Xt) = ER(αt 1A | Xt)/ER(αt | Xt).

This completes the proof of (1.5).

• Proof of (1) ⇒ (2). Take a Markov measure P with derivative Z with
respect to R : dP = Z dR. We denote by

Zt := ER(Z | X[0,t]), Z
∗
t := ER(Z | X[t,1]) and

ζt(z) := ER(Z | Xt = z) =
dPt

dRt
(z).

Remark that the last equality implies that ζt(Xt) > 0, P -a.e.,

ζt(Xt) = ER(Zt | Xt) = ER(Z
∗
t | Xt), R-a.e. (1.6)

and that ζt(Xt) is R-integrable.
Fix three bounded nonnegative functions f, g, h that are respectively A[0,t],

At and A[t,1] measurable. One obtains

EP (fgh)
(i)
= EP [EP (f | Xt) g EP (h | Xt)]

(ii)
= EP

[
ER(fZt | Xt)

ER(Zt | Xt)
g
ER(hZ

∗
t | Xt)

ER(Z∗
t | Xt)

]

(iii)
= EP

[
g
ER(fhZtZ

∗
t | Xt)

ζt(Xt)2

]

(iv)
= EP [gEP̃ (fh | Xt)]

where we successively used in (i): the Markov property of P , in (iii): identity
(1.6) and the Markov property of R and in (iv), we introduce the measure

P̃ := 1{ζt(Xt)>0}
ZtZ

∗
t

ζt(Xt)
R. (1.7)

From all these identities one deduces that

P (· | Xt) = P̃ (· | Xt), P -a.e. (1.8)

Define {
αt = 1{ζt(Xt)>0} Zt/ζt(Xt)
βt = Z∗

t .

Therefore (1.7) becomes

P̃ = αtβtR (1.9)

and
ER(αt | Xt) = 1{ζt(Xt)>0} and ER(βt | Xt) = ζt(Xt).
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In order to identify P with P̃ , since (1.8) is satisfied, it is enough to show that
their marginals at time t are the same. Let us prove it.

P̃t(dz) = ER (αtβt | Xt = z) Rt(dz)

(i)
= ER (αt | Xt = z)ER (βt | Xt = z) Rt(dz)

= ζt(z)Rt(dz) = Pt(dz)

where the Markov property of R is used at (i). This fact, together with (1.8),

implies the equality P = P̃ . Eventually, since Zt is A[0,t]-measurable and Z∗
t is

A[t,1]-measurable, αt and βt are respectively A[0,t] and A[t,1]-measurable func-
tions.

Example 1.7. In the extreme case where αt is A0-measurable (that is αt =
f0(X0)) and βt is A1-measurable (that is βt = g1(X1)), one obtains from the
above theorem that any measure P of the form

P = f0(X0)g1(X1)R (1.10)

is Markov. This was remarked in [18, Thm. 4.1] (Eq. (1) applied to a = 0 and
b = 1).

In Theorem 2.14 we will see that, under some restrictions on R, the measures
of the form (1.10) are the only ones which are Markov in the class of all measures
of the form P = h(X0, X1)R.

1.3. A fundamental example: Bridges of a Markov measure

Since we are interested in a time-symmetric description of path measures, it is
reasonable to disintegrate them along their endpoint (initial and final) values.
Any probability measure P on Ω is a mixture of measures pinned at both times
t = 0 and t = 1, i.e. a mixture of its own bridges:

P =

∫

X 2

P (· | X0 = x,X1 = y)P01(dxdy). (1.11)

Since X 2 is Polish, this disintegration is meaningful. Note however that the
bridge P (· | X0, X1) is a priori only defined P -a.s.

To simplify the presentation of our results, we will consider path measures
P whose bridges can be constructed for all x, y ∈ X as a regular version of the
family of conditional laws (P (· | X0 = x,X1 = y), x, y ∈ X ) and denote them
by (P xy)x,y∈X . See for instance [29, Ch. 6] for a precise definition of a regular
conditional distribution.

Remark that it is not easy to construct such an everywhere-defined version
in a general non-Markov setting but this is done in several relevant situations:
When P is a Lévy process – see [29] and [40, Prop. 3.1], a right process – see
[22], or a Feller process – see [6].

We recall the important property that pinning preserves the Markov property.
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Proposition 1.8. Let P be a Markov measure whose bridges are defined every-
where. Then, for any x, y ∈ X , the bridge P xy is also Markov.

Proof. Let P be a Markov measure, t be a time in [0, 1], A ∈ A[0,t] and B ∈ A[t,1]

be two events. We have

P (A ∩B | X0, Xt, X1) = P (A | X0, Xt)P (B | X0, Xt, X1), P -a.e. (1.12)

Indeed,

P (A ∩B | X0, Xt, X1) = E[P (A ∩B | X0, X[t,1]) | X0, Xt, X1]

= E[1BP (A | X0, X[t,1]) | X0, Xt, X1]

= E[1BP (A | X0, Xt) | X0, Xt, X1]

= P (A | X0, Xt)P (B | X0, Xt, X1).

Moreover, by Theorem 1.2-(2*), P (A | X0, Xt) = P (A | X0, Xt, X1). Therefore

PX0,X1(A ∩B | Xt) = PX0,X1(A | Xt)P
X0,X1(B | Xt), P -a.e.

which characterizes the Markov property of every bridge P xy via (1.1).

In the rest of the section, we will work in the following framework.

Assumptions (A). There exists a reference Markov measure R satisfying the
following requirements.

(A1) R admits a family of bridges which can be defined everywhere
(A2) The transition probability kernels of R admit a density, denoted by r,

with respect to some σ-finite positive measure m on X : For all 0 ≤ s < t ≤ 1,

r(s, x; t, y) :=
dr(s, x; t, ·)

dm
(y) for Rs ⊗m-a.e. (x, y)

and r∗(s, x; t, y) :=
dr∗(s, ·; t, y)

dm
(x) for m⊗ Rt-a.e. (x, y).

Therefore R0(dx) =
∫
r∗(0, x; 1, y)R1(dy)m(dx) =: r0(x)m(dx) and similarly

R1(dy) =: r1(y)m(dy). This leads to

R01(dxdy) = r0(x)m(dx)r(0, x; 1, y)m(dy) = r1(y)m(dy)r∗(0, x; 1, y)m(dx),

in such a way that the function c defined for almost every x and y by

c(x, y) := r0(x)r(0, x; 1, y) = r1(y)r
∗(0, x; 1, y) (1.13)

is the density of the joint marginal R01(dxdy) with respect to m⊗m.

Remark that (A2) is not always satisfied. For instance, let us consider a
Poisson process R with a random initial law that admits a density on R. At any
time s, its marginal law also admits a density. But the support of the measure
r(s, x; t, dy) is discrete and equal to x + N. Therefore there does not exist any
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measure m such that for a.e. x, r(s, x; t, dy) ≪ m(dy). We will see at Example
1.12(ii) how to circumvent this obstacle.

Let us recall the general structural relation between the path measure R and
its bridges. In general, the bridges are not globally absolutely continuous with
respect to R, but they are locally absolutely continuous with respect to R in
restriction to time interval [s, t] ⊂ (0, 1) away from the terminal times 0 and 1.

Theorem 1.9. Consider a Markov measure R satisfying Assumptions (A). For
all 0 < s ≤ t < 1 and all x, y ∈ X , the bridge (Rxy)[s,t] of R restricted to A[s,t]

is dominated by R[s,t]. Its density is given by

(Rxy)[s,t] =
r∗(0, x; s,Xs) r(t,Xt; 1, y)

c(x, y)
R[s,t], (1.14)

where the function c is defined by (1.13).

Proof. Let us show that

c(x, y) = 0⇒ r∗(0, x; s, z)r(t, z′; 1, y) = 0, ∀(z, z′), Rst-a.e. (1.15)

On the one hand,
R01(dxdy) = c(x, y)m(dx)m(dy)

and on the other hand, following Proposition 1.4,

R01(dxdy) =

∫

X 2

R0,s,t,1(dx, dz, dz
′, dy)

=

∫

X 2

r∗(0, dx; s, z)Rs(dz)r(s, z; t, dz
′)r(t, z′; 1, dy)

=

∫

X 2

r∗(0, x; s, z)r(s, z; t, z′)r(t, z′; 1, y)Rs(dz)m(dz′)m(dx)m(dy).

Then

c(x, y) =

∫

X 2

r∗(0, x; s, z)r(s, z; t, z′)r(t, z′; 1, y)Rs(dz)m(dz′)

and (1.15) holds. This allows us not to bother about dividing by zero.
For Rst-a.e. (z, z

′), the measure r∗(0, dx; s, z)r(t, z′; 1, dy) is dominated by
R01(dxdy) and it satisfies

r∗(0, dx; s, z)r(t, z′; 1, dy) =
r∗(0, x; s, z)r(t, z′; 1, y)

c(x, y)
R01(dxdy). (1.16)

Take two bounded measurable functions f, g and an event B ∈ A[s,t]. Thus,

ER[f(X0) 1B g(X1)]

= ER

[
1B ER(f(X0) | X[s,t]) ER(g(X1) | X[s,t])

]

= ER [1B ER(f(X0) | Xs) ER(g(X1) | Xt)]



248 C. Léonard et al.

= ER

[
1B

∫

X

f(x) r∗(0, dx; s,Xs)

∫

X

g(y) r(t,Xt; 1, dy)

]

= ER

[
1B

∫

X 2

f(x)g(y)r∗(0, dx; s,Xs)r(t,Xt; 1, dy)

]

X
= ER

[
1B

∫

X 2

f(x)
r∗(0, x; s,Xs)r(t,Xt; 1, y)

c(x, y)
g(y)R01(dxdy)

]

=

∫

X 2

f(x)ER

[
1B

r∗(0, x; s,Xs) r(t,Xt; 1, y)

c(x, y)

]
g(y)R01(dxdy),

where we used (1.16) at the marked equality. This proves (1.14).

Corollary 1.10 (Decomposition of a bridge). Introducing fs(z) := r∗(0, x; s, z)
and gt(z

′) =: c(x, y)−1r(t, z′; 1, y), (1.14) becomes

(Rxy)[s,t] = fs(Xs) gt(Xt)R[s,t]. (1.17)

In particular, at each time t ∈ (0, 1), the one dimensional marginal of the bridge
Rxy is dominated by the marginal Rt of the Markov measure R. It satisfies

Rxy
t = ft(Xt) gt(Xt)Rt.

One interprets (1.17) as a generalization of (1.10) on the time interval [s, t]:
the density of the bridge decomposes into a product of functions of the process
at boundary times s and t. This ensures its Markov property.

Naturally, both forward and backward dynamics of the bridge are directly
related to the dynamics of the reference process with free boundary conditions.

Proposition 1.11. Let R be a Markov measure.

(1) For any time 0 < t < 1 and for any (x, y), the bridge Rxy of R, restricted
to A[0,t] is given by

(Rxy)[0,t] =
r(t,Xt; 1, y)

r(0, x; 1, y)
R[0,t](· | X0 = x). (1.18)

(2) Analogously, for any time 0 < s < 1 and for any (x, y), the bridge Rxy of
R restricted to A[s,1] is given by

(Rxy)[s,1] =
r∗(0, x; s,Xs)

r∗(0, x; 1, y)
R[s,1](· | X1 = y). (1.19)

(3) The forward and backward transition probability kernels of Rxy satisfy for
all 0 ≤ s < t ≤ 1 and Rst-a.e. (z, z

′),

rxy(s, z; t, dz′) = 1{r(s,z;1,y)>0}
r(s, z; t, z′)r(t, z′; 1, y)

r(s, z; 1, y)
m(dz′)

rxy∗ (s, dz; t, z′) = 1{r∗(0,x;t,z′)>0}
r∗(0, x; s, z)r∗(s, z; t, z′)

r∗(0, x; t, z′)
m(dz)

with the conventions r(1, z; 1, y) = 1{z=y} and r∗(0, x; 0, z) = 1{z=x}.



Reciprocal processes 249

Proof. • Proof of (1). Define P x̃y := r(t,Xt;1,y)
r(0,x;1,y) R[0,t](· | X0 = x) and take a bounded

nonnegative map f and an event B ∈ A[0,t]. Then,

ER

(
P x̃X1(B)f(X1) | X0 = x

)
=

∫

X

r(0, x; 1, y)P x̃y(B)f(y)m(dy)

=

∫

X

ER[1B r(t,Xt; 1, y)f(y) | X0 = x]m(dy)

= ER[1B

∫

X

r(t,Xt; 1, dy)f(y)m(dy) | X0 = x]

= ER[1B ER(f(X1) | Xt) | X0 = x]

= ER[1B ER(f(X1) | X[0,t]) | X0 = x]

= ER[1B f(X1) | X0 = x]

= ER[R
xX1(B) f(X1) | X0 = x]

which proves (1.18).
• Proof of (2). It is analogous to (1).
• Proof of (3). It is a direct corollary of (1) and (2).

Examples 1.12. Let us provide examples of several kinds of bridges.

(i) The first example is standard. Let R = W be a Wiener measure on the set
of real-valued continuous paths on [0, 1], with fixed initial condition x ∈ R.
Assumption (A1) is satisfied since Brownian bridges can be constructed
for any x, y ∈ R (as Paul Lévy already proposed). Assumption (A2) is
satisfied with m(dx) = dx. Then the forward and backward transition
probability densities are given, for any s ≤ t, x, y ∈ R, by:

r(s, z; t, y) =
1√

2π(t− s)
e−

(y−z)2

2(t−s) ,

r∗(s, z; t, y) =
r(0, x; s, z)r(s, z; t, y)

r(0, x; t, y)
.

Therefore, due to (1.18), the Brownian bridge restricted to A[0,t] satisfies

(Wx,y)[0,t] =
1√
1− te

−

(
(y−Xt)

2

2(1−t)
− (y−x)2

2

)

W[0,t]

(ii) Let P be the law of a Poisson process with values in the set of càdlàg step
functions with positive unit jumps. Poisson bridges can be constructed for
all x, y ∈ R such that y − x ∈ N.
Now suppose that X0 under P is random, real-valued and admits a den-
sity: P0(dx) = r0(x)dx on R. As already remarked, such a process does
not satisfy Assumption (A2). However its dynamics is space- (and time-)
homogeneous:

r(s, x; t, dy) = δx ∗ r(0, 0; t− s, dy)
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and the transition kernel r(0, 0;u, dy) admits a Poissonian density r with
respect to the counting measure m on N:

r(0, 0;u, dy) = r(u, y)m(dy) where r(u, n) = e−u un/n!.

Therefore the proof of (1.18) can be generalized to this case, since one
exhibits the density of the bridge, on the time interval [0, t], of the Poisson
process between 0 and n with respect to the standard Poisson process
starting in 0. Then, the density on the time interval [0, t] of the Poisson
process pinned at x and y with respect to the Poisson process starting
from x satisfies for P0-a.e. x and y ∈ x+ N,

(Pxy)[0,t] =
r(1 − t, y −Xt)

r(1, y − x) P[0,t](· | X0 = x)

= et(1− t)y−Xt
(y − x)!
(y −Xt)!

P[0,t](· | X0 = x).

(iii) Let C be the law of a Cauchy process on Ω. A regular version of Cauchy
bridges can be constructed for all x, y ∈ R, see [6]. The forward transition
density r(s, x; t, y) is given, for each x, y ∈ R, by the Cauchy law with
parameter t− s:

r(s, x; t, y) =
t− s

π((t − s)2 + (y − x)2)

and for C0-almost all x,

(Cxy)[0,t] = (1 − t) 1 + (y − x)2
(1− t)2 + (y −Xt)2

C[0,t](· | X0 = x).

The computation of the density of the bridge on the time interval [s, 1]
follows the same schema, using the backward transition density and the
initial value C0. One could also consider the reversible situation, corre-
sponding to C0(dx) = dx. This reversible measure cannot be normalized
but the present techniques remain valid for σ-finite measures, see [33].

(iv) Several other examples of Lévy bridges can be found in [40].

2. Reciprocal measures

We now enlarge our framework to the class of reciprocal measures. They are not
necessarily Markov but they enjoy a more general time-symmetry which justifies
their relevance in the study of quantum mechanical systems, see [38, 37, 10].
The dynamical properties of reciprocal diffusions were elaborated many years
after their introduction by Bernstein, see [26, 55] and Section 3.1 for further
details.

In fact reciprocal processes can be viewed as one-dimensional Markov random
fields indexed by a compact time interval, here [0, 1], see Eq. (2.2). When the
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time parameter belongs to an unbounded interval, the issues are close to those
that were encountered in the setting of Gibbs measures on the one-dimensional
time space and quasi-invariant measures on the path space. They were exten-
sively studied in the seventies in the context of Euclidean quantum field theory,
see [15, 44, 18] and references therein. A more recent result on existence and
uniqueness of Gibbs measures for suitable potentials relative to Brownian mo-
tion was proved in [39].

2.1. Definition and basic properties

Let us begin with the definition.

Definition 2.1 (Reciprocal measure). A probability measure P on Ω is called
reciprocal if for any times s ≤ u in [0, 1] and for any events A ∈ A[0,s], B ∈
A[s,u], C ∈ A[u,1], see Figure 1,

P (A ∩B ∩ C | Xs, Xu) = P (A ∩C | Xs, Xu)P (B | Xs, Xu) P -a.e. (2.1)

The above property, which was first formalized by Jamison in [27], states that
under P , given the knowledge of the canonical process at both times s and u, the
events “inside” [s, u] and those “outside” (s, u) are conditionally independent.
It is clearly time-symmetric.

Paralleling Theorem 1.2, we present at Theorem 2.2 several characterizations
of the reciprocal property. For the ease of the reader, we sketch its elementary
proof.

Identity (2.2) states that a reciprocal measure is indeed a Markov field in-
dexed by time, seen as a one-dimensional continuous parameter process. It
means that conditioning an event depending on the inside data X[s,u] by the
knowledge of the outside data X[0,s]∪[u,1] amounts to simply conditioning it by
the knowledge of the boundary data (Xs, Xu).

Theorem 2.2. Let P be a probability measure on Ω. Then the following asser-
tions are equivalent:

(1) The measure P is reciprocal.
(1*) The time-reversed measure P ∗ is reciprocal (assuming (0.1)).
(2) For all 0 ≤ s ≤ u ≤ 1 and all sets B ∈ A[s,u],

P (B | X[0,s], X[u,1]) = P (B | Xs, Xu) P -a.e. (2.2)
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(3) For all 0 ≤ v ≤ r ≤ s ≤ u ≤ 1 and all sets A ∈ A[v,r], B ∈ A[s,u], see
Figure 2,

P (A ∩B | X[0,v], X[r,s], X[u,1]) = P (A | Xv, Xr)P (B | Xs, Xu) P -a.e.

Proof. • Proof of (1)⇔ (1∗). Straightforward.
• Proof of (1) ⇒ (2). Let us take B ∈ A[s,u]. P (B | X[0,s], X[u,1]) is the

unique random variable A[0,s] ∨ A[u,1]-measurable such that, for all A ∈ A[0,s]

and C ∈ A[u,1],

P (A ∩B ∩ C) = E[1A1CP (B | X[0,s], X[u,1])].

But, due to (2.1), one has

P (A ∩B ∩ C) = E(P (A ∩B ∩C | Xs, Xu))

= E[P (A ∩ C | Xs, Xu)P (B | Xs, Xu)]

= E[E(1A1CP (B | Xs, Xu) | Xs, Xu)]

= E[1A1CP (B | Xs, Xu)].

This implies (2).
• Proof of (2) ⇒ (1). Let us take 0 ≤ s ≤ u ≤ 1, A ∈ A[0,s],

B ∈ A[s,u], C ∈ A[u,1] and f, g some measurable nonnegative functions. By
definition,

E[1A1B1Cf(Xs)g(Xu)] = E[P (A ∩B ∩ C | Xs, Xu)f(Xs)g(Xu)]

holds. But,

E[1A1B1Cf(Xs)g(Xu)] = E[E(1A1B1Cf(Xs)g(Xu) | X[0,s], X[u,1])]

= E[1A1CP (B | Xs, Xu)f(Xs)g(Xu)]

= E[P (A ∩C | Xs, Xu)P (B | Xs, Xu)f(Xs)g(Xu)].

Therefore

P (A ∩B ∩ C | Xs, Xu) = P (A ∩ C | Xs, Xu)P (B | Xs, Xu).

• Proof of (2)⇒ (3). Take A ∈ A[v,r] and B ∈ A[s,u]. Then

P (A ∩B | X[0,v], X[r,s], X[u,1])

= E
[
P (A ∩B | X[0,v], X[r,1]) | X[0,v], X[r,s], X[u,1]

]
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X
= E

[
P (A | Xv, Xr)1B | X[0,v], X[r,s], X[u,1]

]

= E
[
E
(
P (A | Xv, Xr)1B | X[0,s], X[u,1]

)
| X[0,v], X[r,s], X[u,1]

]

X
= E

[
P (A | Xv, Xr)P (B | Xs, Xu) | X[0,v], X[r,s], X[u,1]

]

= P (A | Xv, Xr)P (B | Xs, Xu)

where we used assumption (2) at the X-marked equalities.
• Proof of (3)⇒ (2). It is enough to take A = Ω and v = t = s.

For a measure, being Markov is stronger than being reciprocal. This was
noticed by Jamison in [26, 27].

Proposition 2.3. Any Markov measure is reciprocal, but the converse is false.

Proof. Take P a Markov measure, 0 ≤ s ≤ u ≤ 1 and A ∈ A[0,s], B ∈ A[s,u] and
C ∈ A[u,1]. The following holds:

P (A ∩B ∩ C) = E[P (A ∩B ∩ C | X[s,u])]

(i)
= E[P (A | Xs)1BP (C | Xu)]

= E[P (A | Xs)P (B | Xs, Xu)P (C | Xu)]

(ii)
= E[P (A | Xs)P (B | Xs, Xu)P (C | X[0,u])]

= E[P (A | Xs)P (B | Xs, Xu)1C ]

(iii)
= E[P (A | X[s,1])P (B | Xs, Xu)1C ]

= E[1AP (B | Xs, Xu)1C ]

Equality (i) is due to Theorem 1.2(3). Use the Markov property to prove (ii)
and (iii). Therefore (2.2) holds.

Examples 2.4 and 2.6-(ii) below provide examples of reciprocal measures
which are not Markov. Other counterexamples will be given in Section 2.7,
where we point out reciprocal processes whose endpoint marginal laws do not
have the required structure which characterizes the Markov property.

Example 2.4 (Reciprocal measures on a loop space). Let us mention the fol-
lowing class of reciprocal – but not Markov – measures. Take a Markov measure
R whose bridges are defined everywhere and m any probability measure on X .
Then

Ploop :=

∫

X

Rxxm(dx)

is a measure that is concentrated on loops, i.e. paths such that X0 = X1 almost
surely, with both initial and final marginal laws equal to m. One can see this
path measure as describing a periodic random process. Due to Proposition 2.7,
Ploop is reciprocal with the mixing measure π(dxdy) = m(dx)δx(dy).

To see that the Markov property breaks down in general, take Rxx to be the
usual Brownian bridge on R between x and x, choosem = (δ−1+δ+1)/2 and pick
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any intermediate time 0 < t < 1. We have Ploop(X1 ≥ 0 | X[0,t]) = 1{X0=+1},
while

Ploop(X1 ≥ 0 | Xt) = Ploop(X0 = +1 | Xt).

In particular when t = 1/2, symmetry considerations lead us to Ploop(X0 =
+1 | X1/2) = 1/2, implying that Ploop(X1 ≥ 0 | X1/2) = 1/2 6= 1{X0=+1} =
Ploop(X1 ≥ 0 | X[0,t]).

We will describe in a short while the typical structure of reciprocal measures.

2.2. Pinning leads back to the Markov property

Proposition 1.8 states the stability of the Markov property by pinning. Sim-
ilarly, Jamison pointed out in [27, Lemma 1.4] the remarkable property that
pinning a reciprocal measure, not only preserves its reciprocal property, but
also transforms it into a Markov one.

Proposition 2.5. Let P be a reciprocal measure. If either X0 or X1 is a.s.
constant, then P is a Markov measure. In particular any bridge P (· | X0, X1),
defined P01-almost surely, is a Markov measure.

Proof. Suppose X1 is P -a.s. constant and take 0 ≤ s ≤ u ≤ 1. For any bounded
measurable function f

EP (f(Xu) | X[0,s]) = EP (f(Xu) | X[0,s], X1) = EP (f(Xu) | Xs, X1)

= EP (f(Xu) | Xs)

which characterises the Markov property of P thanks Theorem 1.2 (2). The case
where X0 is P -a.s. constant is solved by time reversal.

2.3. Mixing properly preserves the reciprocal property

To complement the previous subsection we analyse in which way mixing (pinned)
measures perturbs their reciprocal and/or Markov properties.

Mixing Markov measures sometimes preserves the Markov property, but this
is far from being the rule. Similarly, mixing reciprocal measures sometimes re-
sults in a reciprocal measure, but not always. The following examples illustrate
these assertions. Moreover, we construct in (ii) an example of a reciprocal mea-
sure which is not Markov.

Examples 2.6 (Various mixtures of deterministic paths). Let X = {a,b,c} be
a state space with three elements. We denote by δw, w ∈ Ω, the Dirac measure
at the path w. Any δw is Markov since the path w is deterministic.

(i) One denotes by acb ∈ Ω the following path w:

acb(t) := 1[0,1/3)(t) a+ 1[1/3,2/3)(t) c+ 1[2/3,1](t) b.
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Similar notations are used for paths that only jump at times 1/3 or 2/3.
The path measure

P =
1

4
(δabc + δaba + δcba + δcbc)

is the uniform mixture of deterministic Markov paths and is Markov too.
Indeed P0 = 1

2 (δa + δc) and the nontrivial transition measures which are
given by

P (X1/3 = b | X0 = a) = P (X1/3 = b | X0 = c) = 1

and

P (X2/3 = a | X1/3 = b, X0 = a) = P (X2/3 = a | X1/3 = b, X0 = c)

= P (X2/3 = c | X1/3 = b) = 1/2

entirely specify the dynamics of P .
(ii) The path measure

P =
1

2
(δabc + δcba),

is reciprocal but not Markov. It is reciprocal since each boundary condition
determines the path. Nevertheless we observe that P is not Markov since

P (X1 = a | X0 = a, X1/3 = b) = 0

while
P (X1 = a | X1/3 = b) = 1/2.

(iii) Now, we define paths with four states and three jumps at fixed times
1/4, 1/2 et 3/4, such as

abab(t) := 1[0,1/4)(t) a+ 1[1/4,1/2)(t) b+ 1[1/2,3/4)(t) a+ 1[3/4,1](t) b.

The path measure P := 1
2 (δabab + δcbcb), which is a mixture of reciprocal

paths (they are deterministic) is not reciprocal anymore. Indeed

P (X2/3 = a | X[0,1/3], X[4/5,1]) = 1{X0=a}

while
P (X2/3 = a | X1/3, X4/5) = P (X2/3 = a) = 1/2.

To avoid the pathology (iii) let us now mix only measures Rxy obtained as
bridges of some given reciprocal measure R.

Proposition 2.7. Let R be a reciprocal measure such that the mapping (x, y) ∈
X 2 7→ Rxy is defined everywhere and measurable. Then, for any probability
measure π on X 2, the path measure

P (·) =
∫

X 2

Rxy(·)π(dxdy)

is reciprocal. Moreover, the bridges of P coincide with those of R, P -a.e.
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Proof. Let us show (2.2) under P . Let 0 ≤ s ≤ t ≤ 1, A ∈ A[0,s], B ∈ A[s,u] and
C ∈ A[u,1]. Then,

EP [1AP (B | X[0,s], X[u,1])1C ] = P (A ∩B ∩ C)

=

∫

X 2

Rxy(A ∩B ∩ C)π(dxdy)

X
=

∫

X 2

ERxy [1AR(B | Xs, Xt)1C ]π(dxdy)

= EP [1AR(B | Xs, Xt)1C ]

where the reciprocal property is used at the marked equality. Thus P (B |
X[0,s], X[t,1]) only depends on (Xs, Xt) and

P (B | X[0,s], X[t,1]) = R(B | Xs, Xt), P -a.e.,

which completes the proof.

Let us observe that this result does not contradict Example 2.6(iii). Indeed,
P was expressed as a mixture of its own bridges, but not as a mixture of bridges
of a given reciprocal measure. It happens that there does not exist any reciprocal
measure R such that δabab = Rab and δcbcb = Rcb.

2.4. Reciprocal class associated with a measure

The previous proposition allows to construct classes of reciprocal measures based
on some reference reciprocal measure by varying the way of mixing bridges.
Therefore, we now recall the important concept of reciprocal class which appears
(implicitly) in [27, §3], associated with a Markov reference measure R satisfying
Assumptions (A) at page 246.

Definition 2.8 (Reciprocal class associated with R). Suppose that R is a re-
ciprocal measure such that (x, y) ∈ X 2 7→ Rxy is defined everywhere and mea-
surable. The set of probability measures on Ω defined by

R(R) :=

{
P =

∫

X 2

Rxy(·)π(dxdy);π probability measure on X 2

}
(2.3)

is called the reciprocal class associated with R.

In the case of a discrete state space X , the hypothesis on R becomes unnec-
essary. One should only make sure that the support of the mixing measure π is
included in the support of R01, in such a way that (2.3) makes sense.

In the particular case where R is a Brownian diffusion defined on the space
of continuous paths, the class R(R) can be characterized by two functions of
the drift of R, called reciprocal invariants. This was conjectured by Krener in
[31] and proved by Clark in [11, Theorem1]. See also [47] and [17] for their
role in a second order stochastic differential equation satisfied by the reciprocal
class. Thereafter, Thieullen and the second author derived an integration by
parts formula on the path space that is expressed in terms of the reciprocal
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invariants of the Brownian diffusion R and that fully characterises the associated
reciprocal class. See [42] for one-dimensional diffusion processes and [43] for the
multidimensional case.

When R is a counting process (i.e. X = N), Murr provides a description of
a reciprocal invariant associated with R(R), as well as a characterisation of the
reciprocal class through a duality formula, see [36, 14]. An extension of this work
for compound Poisson processes is done in [12], and to more general processes
on graphs in [13].

For a recent review on stochastic analysis methods to characterize reciprocal
classes, see [41].

2.5. Time reversal and reciprocal classes

We already saw in Theorem 2.2 that a path measure is reciprocal if and only if its
time-reversed is reciprocal too. We now precise what is the image of a reciprocal
class by time reversal. We give the proof, even if it looks rather natural.

Proposition 2.9. Let R be a reciprocal measure as in Definition 2.8. Then

P ∈ R(R) ⇐⇒ P ∗ ∈ R(R∗).

We first prove the following auxiliary lemma.

Lemma 2.10. Let P be a probability measure on Ω.

(a) Consider the diagram Ω
Φ→ Φ(Ω)

θ→ Y where the mentioned sets and
mappings are measurable. Then, for any bounded measurable function f :
Φ(Ω)→ R, we have

EΦ#P (f |θ) = α(θ)

with α(y) := EP (f(Φ)|θ(Φ) = y).

(b) Consider the diagram Y θ← Ω
Φ→ Ω where the mentioned sets and mappings

are measurable. Suppose that Φ is one-to-one with measurable inverse Φ−1.
Then,

Φ#

[
P (· | θ = y)

]
=

[
Φ#P

]
(· | θ ◦ Φ−1 = y), y ∈ Y.

Proof. • Proof of (a). For any bounded measurable function u : Y → R,

EΦ#P

[
EΦ#P (f |θ)u(θ)

]
= EΦ#P (fu(θ)) = EP

[
f(Φ)u(θ(Φ))

]

= EP

[
EP (f(Φ)|θ(Φ))u(θ(Φ))

]
= EΦ#P (α(θ)u(θ))

• Proof of (b). We add a bounded measurable function u to the diagram:

Y θ← Ω
Φ→ Ω

u→ R and compute, for y ∈ Y,
EΦ#P (·|θ=y)(u) = EP

[
u(Φ)|θ = y

]

= EP

[
u(Φ)|θ ◦ Φ−1 ◦ Φ = y

] (i)
= EΦ#P (u|θ ◦ Φ−1 = y)

where equality (i) is a consequence of the above result (a).
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Proof of Proposition 2.9. In particular Lemma 2.10-(b) implies that

(Rxy)∗ = (R∗)yx, for R01-a.e.x, y ∈ X . (2.4)

Let P ∈ R(R), then P (·) =
∫
X 2 R

xy(·)P01(dxdy). We now compute the
integral of a function u under P ∗:

EP∗ [u(X)] = EP [u(X
∗)] =

∫

X 2

E(Rxy)∗(u)P01(dxdy)

(2.4)
=

∫

X 2

E(R∗)yx(u)P01(dxdy) =

∫

X 2

E(R∗)xy (u) (P ∗)01(dxdy).

This means that P ∗(·) =
∫
X 2(R

∗)xy(·) (P ∗)01(dxdy), completing the proof of
Proposition 2.9.

2.6. Reciprocal subclass of dominated measures

To make precise our structural analysis of reciprocal measures, we introduce a
slightly smaller family of measures than the reciprocal class. This subclass only
contains measures which are dominated by the reference measure R.

Definition 2.11. Suppose that R is a reciprocal measure as in Definition 2.8.
We define the following set of probability measures on Ω:

Rac(R) :=

{
P : P =

∫

X 2

Rxy π(dxdy); π ∈ Proba(X 2), π ≪ R01

}
⊂ R(R).

(2.5)

Remarks 2.12 (about this definition).

(a) Due to Proposition 2.7, we notice that any element of Rac(R) is reciprocal.
(b) We write P ≺ R when P disintegrates as in (2.5). Note that the relation ≺

is transitive. But it is not symmetric; this lack of symmetry arises when the
marginal laws at time 0 and 1 are not equivalent in the sense of measure
theory. Therefore Rac(R) is not an equivalence class. If one wants to define
a genuine equivalence relation ∼ between measures on Ω one should assume
that marginal laws at time 0 and 1 are equivalent. Then P ∼ R if and only
if P ≺ R and R ≺ P .

As noticed in [18] Proposition 3.5, elements ofRac(R) have a simple structure.

Theorem 2.13. Each measure P in Rac(R) is absolutely continuous with re-
spect to R and satisfies

P =
dπ

dR01
(X0, X1)R.

Conversely, if P is a path measure defined by

P = h(X0, X1)R (2.6)

for some nonnegative measurable function h on X 2, then P ∈ Rac(R) and more
precisely, P is a π-mixture of bridges of R with π(dxdy) := h(x, y)R01(dxdy).
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Proof. Let P ∈ Rac(R) and f any nonnegative bounded function. Due to Defi-
nition (2.5),

EP (f) =

∫

X 2

ER(f | X0 = x,X1 = y)
dπ

dR01
(x, y)R01(dxdy)

= ER

(
f

dπ

dR01
(X0, X1)

)
,

which proves the first assertion. For the second assertion, note that

P (·) =
∫

X 2

P xy(·)π(dxdy) =
∫

X 2

h(x, y)Rxy(·)R01(dxdy).

This completes the proof of the theorem.

The specific structure of P which appears in (2.6) can be regarded as a time-
symmetric version of the h-transform introduced by Doob in [20]:

P (· | X0 = x) =
h(x,X1)

cx
R(· | X0 = x) for R0-a.e.x ∈ X

and, in a symmetric way,

P (· | X1 = y) =
h(X0, y)

Cy
R(· | X1 = y) for R1-a.e. y ∈ X .

2.7. Markov measures of a reciprocal class

Since the Markov property is more restrictive than the reciprocal property,
it is interesting to describe the subset of Rac(R) composed by the Markov
measures. In other words, one is looking for the specific mixtures of measures
which preserve Markov property.

If a measure in Rac(R) admits a density with respect to R which is decom-
posable into a product as in (1.10), then it is Markov. Indeed this property is
(almost) characteristic as will be stated below in Theorem 2.14. The first (par-
tial) version of Theorem 2.14 can be found in [27, Thm. 3.1] when R admits
a strictly positive transition density: P ∈ R(R) if and only if there exist two
measures ν0 and ν1 on X such that

P01(dxdy) = r(0, x; 1, y)ν0(dx)ν1(dy).

Jamison [28, p. 324] commented on this structure as that of an “h-path process
in the sense of Doob”. In the general framework of Markov field this result was
proved in [18, Thm. 4.1].

Our statement emphasizes the role of condition (2.8) which, up to our knowl-
edge, comes out for the first time.

Theorem 2.14. Let R and P be two probability measures on Ω and suppose
that R is Markov. Consider the following assertions:
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(1) The measure P belongs to Rac(R) and is Markov.
(2) There exist two measurable nonnegative functions f0 and g1 such that

dP

dR
= f0(X0)g1(X1), R-a.e. (2.7)

Then, (2) implies assertion (1).
If we suppose moreover that there exists 0 < t0 < 1 and a measurable subset

Xo ⊂ X such that Rt0(Xo) > 0 and for all z ∈ Xo,

R01(·)≪ Rt0z
01 (·) := R((X0, X1) ∈ ·|Xt0 = z), (2.8)

then (1) and (2) are equivalent.

Proof. • Proof of (2)⇒ (1). It is contained in Example 1.7. Note that Hypothesis
(2.8) is not necessary.
• Proof of (1) ⇒ (2). Since P is Markov, Theorem 1.5 applied with t = t0

leads to
dP

dR
= α(X[0,t0])β(X[t0,1]) R-a.e. (2.9)

with α and β two measurable nonnegative functions. But, since P belongs to the
reciprocal family of R, following Theorem 2.13, its Radon-Nikodym derivative
is

dP

dR
= h(X0, X1)

for some measurable nonnegative function h on X 2. This implies that

α(X[0,t0])β(X[t0,1]) = h(X0, X1), R-a.e.

which in turns implies that the functions α and β have the form

α(X[0,t0]) = a(X0, Xt0) and β(X[t0,1]) = b(Xt0 , X1), R-a.e.

with a and b two measurable nonnegative functions on X 2. It follows that

a(x, z)b(z, y) = h(x, y) ∀(x, z, y) ∈ N c ⊂ X 3,

where the set N ⊂ X 3 is R0,t0,1-negligible. Now, with the notation

Nz := {(x, y); (x, z, y) ∈ N} ⊂ X 2,

we obtain

0 = R0,t0,1(N ) =

∫

X

Rt0z
01 (Nz)Rt0(dz)

which implies that Rt0z
01 (Nz) = 0 for Rt0-a.e. z ∈ X0. Due to condition (2.8), one

deduces that there exists zo ∈ Xo such that R01(Nzo) = 0. Taking f0 = a(·, zo)
and g1 = b(zo, ·), we see that

h(x, y) = f0(x)g1(y), R01(dxdy)-a.e.,

which proves that dP/dR has the form expressed in (2.7).
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Remarks 2.15.

(a) Since R is Markov, condition (2.8) is equivalent to

∀z ∈ Xo, R01(·)≪ R(X0 ∈ ·|Xt0 = z)⊗R(X1 ∈ ·|Xt0 = z).

(b) Without any additional condition on R, both assertions of the above theo-
rem fail to be equivalent. We provide a counter-example by constructing a
measure R which does not satisfy condition (2.8) and a Markov measure P
whose density with respect to R is not of the form (2.7).
Let R be the Markov measure with state space X = {a, b}, initial law
R0 = (δa + δb)/2 and infinitesimal generator

(
0 0
λ −λ

)
for some λ > 0. The

support of R is concentrated on two types of paths: the paths that are
identically equal to a or b, and the other ones that start from b with one
jump onto a after an exponential waiting time in (0, 1) with law E(λ). We
see that R does not satisfy (2.8). Indeed, for all t ∈ (0, 1),

(a) Rta
01(b, b) = 0, but R01(b, b) =

e−λ

2 > 0. Thus, R01 6≪ Rta
01.

(b) Rtb
01(a, a) = 0, but R01(a, a) =

1
2 > 0. Thus, R01 6≪ Rtb

01 .

Consider the Markov measure P which gives half mass to the deterministic
constant paths equal to a or b. It is dominated by R with density:

dP

dR
=





1, if X ≡ a

eλ, if X ≡ b

0, if X0 6= X1.

This density dP/dR does not have the product form (2.7), since the system





f(a)g(a) = 1
f(b)g(b) = eλ

f(b)g(a) = 0

admits no solution. Remark that the functions α and β defined in (2.9)
could be chosen as follows: α(X) = β(X) = 1 if X ≡ a, α(X) = 1 if X ≡ b,
β(X) = eλ if X ≡ b and α(X) = β(X) = 0 otherwise.

3. Reciprocal measures are solutions of entropy minimizing
problems

We conclude this survey paper going back to the problem that was originally
addressed by Schrödinger in [45] and developed in [46]. It was the starting point
of the theory of time-reversed Markov [30] and reciprocal diffusion processes.
A modern formulation of Schrödinger’s problem is stated below at (Sdyn).

Motivated by a probabilistic solution of this problem, Bernstein [3] introduced
the notion of reciprocal process. It is likely that Bernstein wasn’t aware of the
fact that (Sdyn)’s solution is not only reciprocal, but also Markov as was clearly
demonstrated four decades later by Jamison in [28].
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The new ingredient of this section is the relative entropy, or Kullback-Leibler
divergence, introduced in [32]. The relative entropy of a measure p with respect
to another measure r on a measurable space Y is given by

H(p|r) :=
∫

Y

log

(
dp

dr

)
dp ∈ [0,+∞]

when p is dominated by r, and +∞ otherwise.

3.1. Schrödinger’s problem

This problem is of a statistical physics nature.

Dynamical and static formulations of Schrödinger’s problem

Let us sketch some results which are presented in detail in the review paper [34]
(see also [1] and the references therein too). The modern dynamical formu-
lation of Schrödinger’s problem is as follows. Take a reference measure R on
Ω = D([0, 1],X ) and fix two probability measures µ0, µ1 on X (the marginal
constraints). The aim is to minimize P 7→ H(P |R) where P varies in the set
of all path measures such that P0 = µ0 and P1 = µ1. A concise statement of
Schrödinger’s dynamical problem is

H(P |R)→ min; P ∈ Proba(Ω) : P0 = µ0, P1 = µ1 (Sdyn)

Projecting via (X0, X1) this variational problem onto the set X 2 of endpoint
configurations, one obtains the following associated static formulation: minimize
π 7→ H(π|R01), where π is subject to vary in the set of all probability measures
on X 2 with prescribed marginals π0(dx) := π(dx × X ) = µ0 and π(dy) :=
π(X × dy) = µ1. A concise statement of Schrödinger’s static problem is

H(π|R01)→ min; π ∈ Proba(X 2) : π0 = µ0, π1 = µ1 (S)

Let us recall the uniqueness result [34, Prop. 2.3] which was proved by Föllmer
[23] in the special case of a Brownian diffusion with drift.

Proposition 3.1. The dynamical and static Schrödinger problems each admit
at most one solution P̂ and π̂. If P̂ denotes the solution of (Sdyn), then π̂ = P̂01

is the solution of (S). Conversely, if π̂ solves (S), then the solution of (Sdyn) is

P̂ (·) =
∫

X 2

Rxy(·) π̂(dxdy) ∈ Rac(R). (3.1)

Sketch of the proof. As strictly convex minimization problems, (Sdyn) and (S)
admit at most one solution. Using the disintegration formula

H(P |R) = H(P01|R01) +

∫

X 2

H(P xy|Rxy)P01(dxdy),
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one obtains H(P01|R01) ≤ H(P |R) with equality (when H(P |R) < +∞) if
and only if P xy = Rxy for P01-almost all (x, y) ∈ X 2, which corresponds to

P ∈ Rac(R). Thus, P̂ is the solution of (Sdyn) if and only if it disintegrates
as (3.1).

The solution of (Sdyn) is Markov.

We present an existence (and uniqueness) result for (Sdyn) and (S) which is
proved in [34].

Theorem 3.2. Let R be a reference Markov measure with identical3 marginal
laws at time 0 and 1, denoted by m. Suppose that R satisfies the following
assumptions:

(i) there exists 0 < t0 < 1 and a measurable set Xo ⊂ X such that Rt0(Xo) > 0
and

R01 ≪ R
(
(X0, X1) ∈ ·|Xt0 = z

)
, ∀z ∈ Xo.

(ii) there exists a nonnegative measurable function A on X such that

R01(dxdy) ≥ e−A(x)−A(y)m(dx)m(dy).

Suppose also that the constraints µ0 and µ1 satisfy

H(µ0|m) +H(µ1|m) < +∞ and

∫

X

Adµ0 +

∫

X

Adµ1 < +∞.

Then (S) admits a unique solution π̂. It satisfies

π̂(dxdy) = f0(x)g1(y)R01(dxdy)

for some m-measurable nonnegative functions f0, g1 : X → [0,∞) which solve
the so-called Schrödinger system:

{
f0(x)ER[g1(X1) | X0 = x] = dµ0/dm(x), for m-a.e. x
g1(y)ER[f0(X0) | X1 = y] = dµ1/dm(y), for m-a.e. y.

(3.2)

Moreover, (Sdyn) admits the unique solution

P̂ = f0(X0)g1(X1)R. (3.3)

It inherits the Markov property from R.

Remark 3.3. In the Schrödinger system, ER[f0(X0) | X1] and ER[g1(X1) | X0]
are well defined even if f0(X0) and g1(X1) are notR-integrable. In fact, f0 and g1
are measurable and nonnegative; therefore, only positive integration is needed,
see [33].

Generalizing Proposition 3.1, we obtain without additional effort the follow-
ing result.

Corollary 3.4. Let R be any reciprocal measure. The solution P̂ of the varia-
tional problem (Sdyn), if it exists, belongs to the reciprocal family Rac(R).

3This restriction is done for simplifying the statements. We mostly have in mind a station-
ary reference measure R.
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A connection between Schrödinger’s problem and PDEs

We give a PDE interpretation of the time-marginal flow (P̂t)0≤t≤1 of the solution

P̂ of (Sdyn), with the aim of clarifying its dynamical content. Let us come back
to Example 1.12(i), where X = R, m(dx) = dx, R denotes the (unbounded4)
reversible Wiener measure and r(s, x; t, y) is its Gaussian kernel. Let us call
ρ0(x) =

dµ0

dx (x) and ρ1(y) =
dµ1

dy (y). Then the system (3.2) reduces to

{
f0(x)

∫
r(0, x; 1, y)g1(y) dy = ρ0(x)

g1(y)
∫
f0(x)r(0, x; 1, y) dx = ρ1(y).

(3.4)

Schrödinger addressed the problem of the existence and uniqueness of solutions
(f0, g1) of this nonlinear system, given r and the probabilistic boundary data
ρ0 and ρ1. For f0 and g1 strictly positive, and r considerably more general
than the Gaussian kernel, introducing an entropy minimizing problem close
to (S), Beurling [4] answered positively to this question. This was extended
later by several authors, see [24, 34] for instance, taking advantage of the tight
connection between (3.4) and (S).

Let us denote by f(t, z) the solution of the parabolic initial value problem

{
(−∂t + ∂2zz/2)f = 0, 0 < t ≤ 1
f(0, ·) = f0, t = 0

(3.5)

and by g(t, z) the solution of the adjoint final value problem

{
(∂t + ∂2zz/2)g = 0, 0 ≤ t < 1
g(1, ·) = g1, t = 1

(3.6)

Remark that f(t, z) = ER(f0(X0) | Xt = z) and g(t, z) = ER(g1(X1) | Xt = z).
Thanks to the Markov property of R, Theorem 1.2-(3) entails that for all 0 ≤
t ≤ 1,

P̂t(dz) = f(t, z)g(t, z) dz.

This relation is analogous to Born’s formula:

ρt(dz) = ψt(z)ψt(z) dz

where ρ is the probability of presence of the quantum particle and ψ is the wave
function. Indeed, as remarked in 1928 by the astrophysicist Eddington (this is
quoted in [46]), the relation between Schrödinger’s equation and its complex
conjugate can be interpreted as time reversal. Therefore, ψt and ψt can be
interpreted as two wave functions carrying respectively information from past
and future. Indeed, they solve the standard quantum Schrödinger equation with
respect to both directions of time. Switching to the classical statistical physics
problem (Sdyn), one sees that the functions ft and gt share similar properties,

4See [33] for the technical modifications that are necessary to handle the case of an un-
bounded reference measure.
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replacing the complex-valued Schrödinger equations in both directions of time
by the heat equations (3.5) and (3.6). This striking analogy was Schrödinger’s
main motivation for introducing (Sdyn). See [46] and also [10] and [34, § 6,7] for
further detail.

Regarded as an element of L2(R, dz) the solutions of (3.5) and (3.6) are
analytic in the domain Re(t) > 0, continuous for Re(t) ≥ 0 and their values
on the imaginary axis respectively solve the (quantum mechanical) Schrödinger
equation and its complex conjugate. It is in this way that the Markov measure
P̂ is a quantum-like measure. The multiplicative structure of the density dP̂t/dz
appears as a stochastic analytic version of the complex conjugation of quantum
functionals. When the Markov generator associated with R is not self-adjoint,
the same idea holds. For (much) more on this PDE connection, see [52]. This
quantum mechanical connection is the starting point of a stochastic deformation
of classical mechanics [54].

3.2. A modification of Schrödinger’s problem

Having in mind these considerations about Schrödinger’s problem, it appears
that the notion of reciprocal measure was a technical intermediate step on the
way to the solution of (Sdyn). Indeed, Theorem 3.2 insures that P̂ is Markov,
which is more specific than being reciprocal, and its proof doesn’t rely on the
reciprocal property. Nevertheless, there exist instances of non-Markov reciprocal
measures that are interesting in their own right. Let us give a short presentation
of two problems relating entropy minimization and reciprocal measures which
are not Markov.

Reciprocal measures and entropy minimization

Consider the following modification of Schrödinger’s problem

H(P |R)→ min; P ∈ Proba(Ω) : P01 = π (Sπ)

where R is Markov and π ∈ Proba(X 2) is given. Mimicking the sketch of proof
of Proposition 3.1, it is easy to show that (Sπ) admits a solution if and only if
H(π|R01) <∞ and that, when this occurs, this solution is unique and is equal to

Rπ(·) :=
∫

X 2

Rxy(·)π(dxdy).

When π(dxdy) = f0(x)g1(y)R01(dxdy) with (f0, g1) solution of the Schrödinger
system (3.2), then (Sπ) = (Sdyn). By (2.5), we see that Rπ belongs to the
reciprocal family Rac(R) of R. More precisely, when π describes Proba(X 2),
defining

RH(R) :=
{
P : P solution of (Sπ) with π ∈ Proba(X 2)

}
,

we see that

RH(R) =
{
Rπ; π ∈ Proba(X 2) : H(π|R01) <∞

}
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which is a little smaller than Rac(R) for which π is only required to satisfy
π ≪ R01. Notice that

RH(R) ⊂ Rac(R) ⊂ R(R)

where these three classes are convex subsets of Proba(Ω).

Loop measures

Example 2.4 exhibits a reciprocal loop measure Ploop =
∫
X Rxxm(dx) which

is not Markov in general. Denoting πm(dxdy) = m(dx)δx(dy), we see that
Ploop = Rπm .

Remark that in the important case where R is the reversible Brownian mo-
tion5, then πm 6≪ R01 because R01(X0 = X1) = 0 and πm(X0 = X1) = 1.
Consequently, (Sπm) has no solution. The endpoint constraint π = πm of (Sπ)
is degenerate in the same way as (µ0, µ1) = (δx, δy) is a degenerate constraint
of (Sdyn). Indeed, both πm and δ(x,y) verify H(πm|R01), H(δ(x,y)|R01) <∞ and
can be approximated by finite entropy constraints.

Stochastic representation of incompressible hydrodynamical flows

Consider the following entropy minimization problem

H(P |R)→ min; P ∈ Proba(Ω) : Pt = m, ∀0 ≤ t ≤ 1, P01 = π (3.7)

which consists of minimizing the relative entropy H(P |R) of the path measure
P with respect to the Markov measure R subject to the constraints that the
time marginal flow (Pt)0≤t≤1 is constantly equal to a given m ∈ Proba(X )
and that the endpoint marginal P01 is equal to a given π ∈ Proba(X 2). This
problem is a natural stochastization of Arnold’s approach to the Euler equation
for incompressible fluids [2] which is connected to the Navier-Stokes equation.
The justification of this assertion is part of a work in progress by two of the
authors. The incompressibility constraints is Pt = m, ∀0 ≤ t ≤ 1 when m
is the volume measure on the manifold X . The constraint P01 = π is Brenier’s
relaxation [5] of Arnold’s final diffeomorphism. It can be proved using the results
of the present paper that for a generic endpoint constraint π, the minimizer
of (3.7) (whenever it exists) is reciprocal but not Markov.
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41–71. MR1764785

[17] Cruzeiro, A. and Zambrini, J.-C. (1991). Malliavin calculus and Eu-
clidean quantum mechanics, I. J. Funct. Anal. 96, 1, 62–95. MR1093507

http://www.ams.org/mathscinet-getitem?mr=1391719
http://www.ams.org/mathscinet-getitem?mr=0202082
http://www.ams.org/mathscinet-getitem?mr=0125424
http://www.ams.org/mathscinet-getitem?mr=0969419
http://www.ams.org/mathscinet-getitem?mr=2789508
http://www.ams.org/mathscinet-getitem?mr=0303589
http://www.ams.org/mathscinet-getitem?mr=0229268
http://www.ams.org/mathscinet-getitem?mr=2152573
http://www.ams.org/mathscinet-getitem?mr=1999000
http://www.ams.org/mathscinet-getitem?mr=1108416
http://opus.kobv.de/ubp/volltexte/2014/7077/pdf/premath06.pdf
http://opus.kobv.de/ubp/volltexte/2014/7077/pdf/premath06.pdf
http://arxiv.org/abs/1408.1332
http://www.ams.org/mathscinet-getitem?mr=0496165
http://www.ams.org/mathscinet-getitem?mr=1764785
http://www.ams.org/mathscinet-getitem?mr=1093507
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de Probabilités de Saint-Flour XV-XVII-1985-87. Lecture Notes in Mathe-
matics, Vol. 1362. Springer, Berlin. MR0983373
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A Series of Lectures. Birkhaüser. Preprint, arXiv:1212.4186.

[55] Zambrini, J.-C. (1986). Variational processes and stochastic version of
mechanics. Journal of Mathematical Physics 27, 2307–2330. MR0854761

http://www.ams.org/mathscinet-getitem?mr=1733145
http://www.ams.org/mathscinet-getitem?mr=2086016
http://www.ams.org/mathscinet-getitem?mr=1906440
http://www.ams.org/mathscinet-getitem?mr=2165339
http://www.ams.org/mathscinet-getitem?mr=0447517
http://www.ams.org/mathscinet-getitem?mr=1508000
http://www.ams.org/mathscinet-getitem?mr=1240725
http://www.ams.org/mathscinet-getitem?mr=1880345
http://www.ams.org/mathscinet-getitem?mr=1472821
http://www.ams.org/mathscinet-getitem?mr=1440139
http://www.ams.org/mathscinet-getitem?mr=0799429
http://arxiv.org/abs/1212.4186
http://www.ams.org/mathscinet-getitem?mr=0854761

	Introduction
	Time-symmetry of Markov measures
	Definition and basic properties 
	Path measures dominated by a Markov measure
	A fundamental example: Bridges of a Markov measure

	Reciprocal measures
	Definition and basic properties
	Pinning leads back to the Markov property
	Mixing properly preserves the reciprocal property
	Reciprocal class associated with a measure
	Time reversal and reciprocal classes
	Reciprocal subclass of dominated measures
	Markov measures of a reciprocal class

	Reciprocal measures are solutions of entropy minimizing problems
	Schrödinger's problem
	A modification of Schrödinger's problem

	Acknowledgements
	References

