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Abstract

Accurate measures of the volatility matrix and its inverse play a central
role in risk and portfolio management problems. Due to the accumulation
of errors in the estimation of expected returns and covariance matrix, the
solution to these problems is very sensitive, particularly when the number of
assets (p) exceeds the sample size (T'). Recent research has focused on de-
veloping different methods to estimate high dimensional covariance matrixes
under small sample size. The aim of this paper is to examine and com-
pare the minimum variance optimal portfolio constructed using five different
estimation methods for the covariance matrix: the sample covariance, Risk-
Metrics, factor model, shrinkage and mixed frequency factor model. Using
the Monte Carlo simulation we provide evidence that the mixed frequency
factor model and the factor model provide a high accuracy when there are
portfolios with p closer or larger than 7.

Key words: Covariance matrix, High dimensional data, Penalized least
squares, Portfolio optimization, Shrinkage.

Resumen

Medidas precisas para la matriz de volatilidad y su inversa son herramien-
tas fundamentales en problemas de administracion del riesgo y portafolio.
Debido a la acumulaciéon de errores en la estimacion de los retornos esperados
y la matriz de covarianza la solucién de estos problemas son muy sensibles, en
particular cuando el ntimero de activos (p) excede el tamafnio muestral (7).
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La investigacion reciente se ha centrado en desarrollar diferentes métodos
para estimar matrices de alta dimensién bajo tamanos muestrales pequenos.
El objetivo de este articulo consiste en examinar y comparar el portafolio
6ptimo de minima varianza construido usando cinco diferentes métodos de
estimacion para la matriz de covarianza: la covarianza muestral, el RiskMet-
rics, el modelo de factores, el shrinkage y el modelo de factores de frecuencia
mixta. Usando simulacion Monte Carlo hallamos evidencia de que el mod-
elo de factores de frecuencia mixta y el modelo de factores tienen una alta
precisién cuando existen portafolios con p cercano o mayor que 7.

Palabras clave: matrix de covarianza, datos de alta dimension, minimos
cuadrados penalizados, optimizacion de portafolio, shrinkage.

1. Introduction

It is well known that the volatility and correlation of financial asset returns
are not directly observed and have to be calculated from return data. An accu-
rate measure of the volatility matrix and its inverse is fundamental in empirical
finance with important implications for risk and portfolio management. In fact,
the optimal portfolio allocation requires solving the Markowitz’s mean-variance
quadratic optimization problem, which is based on two inputs: the expected (ex-
cess) return for each stock and the associated covariance matrix. In the case of
portfolio risk assessment, the smallest and highest eigenvalues of the covariance
matrix are referred to as the minimum and maximum risk of the portfolio, respec-
tively. Additionally, the volatility itself has also become an underlying asset of the
derivatives that are actively traded in the financial market of futures and options.

Consequently, many applied problems in finance require a covariance matrix
estimator that is not only invertible, but also well-conditioned. A symmetric
matrix is well-conditioned if the ratio of its maximum and minimum eigenvalues is
not too large. Then it has full-rank and can be inverted. An ill-conditioned matrix
has a very large ratio and is close to being numerically non-invertible. This can be
an issue especially in the case of large-dimensional portfolios. The larger number
of assets p with respect to the sample size T', the more spread out the eigenvalues
obtained from a sample covariance matrix due to the imprecise estimation of this
input (Bickel & Levina 2008).

Therefore, the optimal portfolio problem is very sensitive to errors in the esti-
mates of inputs. This is especially true when the number of stocks under consid-
eration is large compared to the return history in the sample. Traditionally the
literature, the inversion matrix maximizes the effects of errors in the input assump-
tions and, as a result, practical implementation is problematic. In fact, those can
produce the allocation vector that we get based on the empirical data can be very
different from the allocation vector we want based on the theoretical inputs, due
to the accumulation of estimation errors (Fan, Zhang & Yu 2009). Also, Chopra &
Ziemba (1993) showed that small changes in the inputs can produce large changes
in the optimal portfolio allocation. These simple arguments suggest that severe
problems might arise in the high-dimensional Markowitz problem.
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High Dimensional Covariance Matriz Estimation Methods 569

Covariance estimation for high dimensional vectors is a classical difficult prob-
lem, sometimes referred as the “curse of dimensionality”. In recent years, different
parametric and nonparametric methods have been proposed to estimate a high
dimensional covariance matrix under small sample size. The most usual candidate
is the empirical sample covariance matrix. Unfortunately, this matrix contains se-
vere estimation errors. In particular, when solving the high-dimensional Markowitz
problem, one can be underestimating the variance of certain portfolios, that is the
optimal vectors of weights (Chopra & Ziemba 1993).

Other nonparametric methods such as 250-day moving average, RiskMetrics
exponential smoother and exponentially weighted moving average with differ-
ent weighting schemes have long been used and are widely adopted particularly
for market practitioners. More recently, with the availability of high frequency
databases, the technique of realized covariance proposed by Barndorff-Nielsen &
Shephard (2004) has gained popularity, given that high frequency data provides
opportunities for better inference of market behavior.

Parametric methods have been also proposed. Multivariate GARCH models
~MGARCH- were introduced by Bollerslev, R. & Wooldridge (1988) with their
early work on time-varying covariance in large dimensions, developing the diagonal
vech model and later the constant correlation model (Bollerslev 1990). In general,
this family model captures the temporal dependence in the second-order moments
of asset returns. However, they are heavily parameterized and the problem be-
comes computationally unfeasible in a high dimension system, usually for p > 100
(Engle, Shephard & Sheppard 2008).

A useful approach to simplifying the dynamic structure of the multivariate
volatility process is to use a factor model. Fan, Fan & Lv (2008) showed that the
factor model is one of the most frequently used effective ways to achieve dimension-
reduction. Given that financial volatilities move together over time across assets
and markets is reasonable to impose a factor structure (Anderson, Issler & Vahid
2006). The three factor model of Fama & French (1992) is the most widely used
in financial literature. Another approach that has been used to reduce the noise
inherent in covariance matrix estimators is the shrinkage technique by Stein (1956).
Ledoit & Wolf (2003) used this approach to decrease the sensitivity of the high-
dimensional Markowitz-optimal portfolios to input uncertainty.

In this paper we examine and compare the minimum variance optimal portfolios
constructed using five methods of estimating high dimensional covariance matrix:
the sample covariance, RiskMetrics, shrinkage estimator, factor model and mixed
frequency factor model. These approaches are widely used both by practitioners
and academics. We use the global portfolio variance minimization problem with
the gross exposure constraint proposed by Fan et al. (2009) for two reasons: i) to
avoid the effect of estimation error in the mean on portfolio weights and i) the
error accumulation effect from estimation of vast covariance matrices.

The goal of this study is to evaluate the performance of the different methods
in terms of their precision to estimate a covariance matrix in the high dimensional
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minimum variance optimal portfolios allocation context[]l The simulated Fama-
French three factor model was used to generate the returns of p = 200 and p = 500
stocks over a period of 1 and 3 years of daily and intraday data. Using the Monte
Carlo simulation we provide evidence than the mixed frequency factor model and
the factor model using daily data show a high accuracy when there are portfolios
with p closer or larger than 7.

The paper is organized as follows. In Section 2] we present a general review of
different methods to estimate high dimensional covariance matrices. In Section [3]
we describe the global portfolio variance minimization problem with the gross ex-
posure constraint proposed by Fan et al. (2009), and the optimization methodology
used to solve it. In Sectiondl we compare the minimum variance optimal portfolio
obtained using simulated stocks returns and five different estimation methods for
the covariance matrix. Also in this section we include an empirical study using the
data of 100 industrial portfolios by Kenneth French web site. Finally, in Section
we conclude.

2. General Review of High Dimensional Covariance
Matrix Estimators

In this Section, we introduce different methods to estimate the high dimen-
sional covariance matrix which is the input for the portfolio variance minimization
problem. Let us first introduce some notation used throughout the paper. Con-
sider a p-dimensional vector of returns, ry = (r14,...,7)’, on a set of p stocks
with the associated p x p covariance matrix, 3, t =1,...,7T.

2.1. Sample Covariance Matrix

The most usual candidate for estimating X is the empirical sample covariance
matrix. Let R be a p x T matrix of p returns on 7' observations. The sample
covariance matrix is defined by

) %R <I - %m') R’ (1)

where 2 denotes a T" X 1 vector of ones and I is the identity matrix of order TA
The (i, j)th element of ¥ is 3% = (T'—1)~! Zthl (ri = 7%) (r{ — 7*) where r} and
rf are the ith and jth returns of the assets ¢ and j on t = 1,...,T, respectively;
and 7 is the mean of the ith return.

1Other authors have compared a set of models which are suitable to handle large dimensional
covariance matrices. Voev (2008) compares the forecasting performance and also proposes a
new methodology which improves the sample covariance matrix. Lam, Fung & Yu (2009) also
compare the predictive power of different methods.

2When p > T the rank of 33 is T — 1 which is the rank of the matrix I — %1,1,’7 thus it is not
invertible. Then, when p exceeds T'— 1 the sample covariance matrix is rank deficient, (Ledoit

& Wolf (2003)).
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Although the sample covariance matrix is always unbiased estimator is well
known that the sample covariance matrix is an extremely noisy estimator of the
population covariance matrix when p is large (Dempster 1979)E Indeed, estima-
tion of covariance matrix for samples of size T" from a p-variate Gaussian distribu-
tion, Np(p, X)), has unexpected features if both p and T" are large such as extreme
eigenvalues of 3, and associated eigenvectors (Bickel & Levina QOOS)E

2.2. Exponentially Weighted Moving Average Methods

Morgan’s RiskMetrics covariance matrix, which is very popular among market
practitioners, is just a modification of the sample covariance matrix which is based
on an exponentially weighted moving average method. This method attaches
greater importance on the more recent observations while further observations on
the past have smaller exponential weights. Let us denote X pps the RiskMetrics
covariance matrix, the (4, j)th element is given by

ZgM =(1-w) Zwt_l (ri —7") (r{ - Fj) (2)

t=1

where 0 < w < 1 is the decay factor. Morgan (1996) suggest to use a value of 0.94
for this factor. It can be write also as follows:

Srume =wrioari_ + (1 —w)Xrari—1

which correspond a BEKK scalar integrated model by Engle & Kroner (1995).

Other straightforward methods such as rolling averages and exponentially weighted
moving average using different weighting schemes have long been used and are
widely adopted specially among practitioners.

2.3. Shrinkage Method

Regularizing large covariance matrices using the Stein (1956) shrinkage method
have been used to reduce the noise inherent in covariance estimators. In his seminal
paper Stein found that the optimal trade-off between bias and estimation error can
be handled simply taking properly a weighted average of the biased and unbiased
estimators. This is called shrinking the unbiased estimator full of estimation error
towards a fixed target represented by the biased estimator.

This procedure improved covariance estimation in terms of efficiency and ac-
curacy. The shrinkage pulls the most extreme coefficients towards more central
values, systematically reducing estimation error where it matters most. In sum-
mary, such method produces a result to exhibit the following characteristics: 1) the

3There is a fair amount of theoretical work on eigenvalues of sample covariance matrices of
Gaussian data. See Johnstone (2001) for a review.

4For example, the larger p/T the more spread out the eigenvalues of the sample covariance
matrix, even asymptotically.
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estimate should always be positive definite, that is, all eigenvalues should be dis-
tinct from zero and ii) the estimated covariance matrix should be well-conditioned.

Ledoit & Wolf (2003) used this approach to decrease the sensitivity of the high-
dimensional Markowitz-optimal portfolios to input uncertainty. Let us denote X g
the shrinkage estimators of the covariance matrix, which generally have the form

~

Ys=aF +(1—a)% (3)

where o € [0, 1] is the shrinkage intensity optimally chosen, F' corresponds to a

positive definite matrix which is the target matrix and > represents the sample
covariance matrix.

The shrinkage intensity is chosen as the optimal a with respect to a loss function
(risk), L(«), defined as a quadratic measure of distance between the true and the
estimated covariance matrices based on the Frobenius norm. That is

N 2
o =argminE MQF +(1-a)2 - EH ]

Given that a* is non observable, Ledoit & Wolf (2004) proposed a consistent
estimator of « for the case when the shrinkage target is a matrix in which all pair-
wise correlations are equal to the same constant. This constant is the average value
of all pairwise correlations from the sample covariance matrix. The covariance ma-
trix resulting from combining this correlation matrix with the sample variances,
known as equicorrelated matrix, is the shrinkage target.

Ledoit & Wolf (2003) also proposed to estimate the covariance matrix of stock
returns by an optimally weighted average of two existing estimators: the sample
covariance matrix with the single-index covariance matrix or the identity matrix

An alternative method frequently used proposes banding the sample covariance
matrix or estimating a banded version of the inverse population covariance matrix.
A relevant assumption, in particular for time series data, is that the covariance
matrix is banded, meaning that the entries decay based on their distance from
the diagonal. Thus, Furrer & Bengtsson (2006) proposed to shrink the covariance
entries based on this distance from the diagonal. In other words, this method
keeps only the elements in a band along its diagonal and gradually shrinking the
off-diagonal elements toward zeroll Wu & Pourahmadi (2003) and Huang, Liu,
Pourahmadi & Liu (2006) estimate the banded inverse covariance matrix by using
thresholding and Ljpenalty, respectivelyﬂ

2.4. Factor Models

The factor model is one of the most frequently used effective ways for dimen-
sion reduction, and a is widely accepted statistical tool for modeling multivariate

5The single-index covariance matrix corresponds to a estimation using one factor model given
the strong consensus about the use of the market index as a natural factor.

6This method is also known how “tapering” the sample covariance matrix.

TThresholding a matrix is to retain only the elements whose absolute values exceed a given
value and replace others by zero.
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volatility in finance. If few factors can completely capture the cross sectional vari-
ability of data then the number of parameters in the covariance matrix estimation
can be significatively reduced (Fan et al. 2008). Let us consider the p x 1 vector
ry. Then the K-factor model is written as

K
TtZAft+Vt:Z)\k'fkt+Vt (4)

k=1
where f, = (fit, ..., fx+)' is the K-dimensional factor vector, A is a px K unknown

constant loading matrix which indicates the impact of the kth factor over the ith
variable, and v, is a vector of idiosyncratic errors. f, and v, are assumed to satisfy

E(f,|Si-1) =0, E(f fi|Si1) = @ = diag{ous,..., K},
E(v: | Si—1) =0, E(vw) | Sim1) = = diag{¢1,..., ¥},
E(fw) | Si 1) = 0,

where 3¢_1 denotes the information set available at time ¢ — 1.

The covariance matrix of 7, is given by

K
S =E(rr, | Sim1) = A®AN + 0 = ZAk)‘;c(bkt + v (5)
k=1

where all the variance and covariance functions depend on the common movements
of fkt .

The multi-factor model which utilizes observed market returns as factors has
been widely used both theoretically and empirically in economics and finance. It
states that the excessive return of any asset r;; over the risk-free interest rate
satisfies the equation above. Fama & French (1992) identified three key factors
that capture the cross-sectional risk in the US equity market, which have been
widely used. For instance, the Capital Asset Pricing Model —CAPM— uses a
single factor to compare the excess returns of a portfolio with the excess returns
of the market as a whole. But it oversimplifies the complex market. Fama and
French added two more factors to CAPM to have a better description of market
behavior. They proposed the “small market capitalization minus big” and “high
book-to-price ratio minus low” as possible factors. These measure the historic
excess returns of small caps over big caps and of value stocks over growth stocks,
respectively. Another choice is macroeconomic factors such as: inflation, output
and interest rates; and the third possibility are statistical factors which work under
a purely dimension-reduction point of view.

The main advantage of statistical factors is that it is very easy to build the
model. Fan et al. (2008) find that the major advantage of factor models is in the
estimation of the inverse of the covariance matrix and demonstrate that the factor
model provides a better conditioned alternative to the fully estimated covariance
matrix. The main disadvantage is that there is no clear meaning for the factors.
However, a lack of interpretability is not much of a handicap for portfolio optimiza-
tion. Pena & Box (1987), Chan, Karceski & Lakonishok (1999), Pefia & Poncela
(2006), Pan & Yao (2008) and Lam & Yao (2010) among others have studied the

covariance matrix estimate based on the factor model context.
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2.5. Realized Covariance

More recently, with the availability of high frequency databases, the technique
of realized volatility introduced by Andersen, Bollerslev, Diebold & Labys (2003)
in a univariate setting has gain popularity. In a multivariate setting, Barndorfl-
Nielsen & Shephard (2004) proposed the realized covariance —RCV —, which is
computed by adding the cross products of the intra-day returns of two assets.
Dividing day ¢ into M non-overlapping intervals of length A = 1/M, the realized
covariance between assets ¢ and j can be obtained by

M
A . .
zJRCV,t = Z Tz,mri,m (6)

m=1

where 77, is the continuously compounded return on asset i during the mth
interval on day t.

The RCV based on the synchronized discrete observations of the latent process
is a good proxy or representative of the integrated covariance matrix. Barndorfl-
Nielsen & Shephard (2004) showed that this is true in the low dimensional case.
However, in the high dimensional case, i.e. when the dimension p is not small
compared with 7', it is in general not a good proxy (Zheng & Li 2010). This
is a consequence of several issues related with non-synchronous trading, market
microstructure noise and spurious intra-day dependence.

Indeed, estimating high dimensional integrated covariance matrix has been
drawing more attention. Several solutions have been proposed that are robust to
these frictions. Bannouh, Martens, Oomen & van Dijk (2010) propose a Mixed-
Frequency Factor Model —MFFM— for estimating the daily covariance matrix
for a vast number of assets, which aims to exploit the benefits of high-frequency
data and a factor structure. They proposed to obtain the factor loadings in the
conventional way by linear regression using daily stock information, and calculated
the factor covariance matrix and residual variances with high precision from intra-
day data. Using this approach they can avoid non-synchronicity problems inherent
in the use of high frequency data for individual stocks.

Considering the same linear factor structure specified in (], the covariance
matrix can be defined as before:

EMFFM:AHA/—F@ (7)

where IT = E(FF’) is the realized covariance matrix obtained using F high-
frequency factor return observations. A denotes the factor loadings, and ® the
idiosyncratic residuals, which are obtained using ¥ = R — AF where R denotes
the high-frequency matrix return observations.

This methodology has several advantages over the realized covariance matrix.
First, the advantages of dimension reduction in the context of the factor model
based purely on daily data continue to hold in the MFFM. Second, the MFFM
makes efficient use of high-frequency factor data while bypassing potentially severe
biases induced by microstructure noise for the individual assets. Third, we can
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easily expand the number of assets in the MFFM approach while this is more
difficult with the RC matrix for which the inverse does not exist when the number
of assets exceeds the number of return observations per asset. For additional
details see Bannouh et al. (2010).

Wang & Zou (2009) also develop a methodology for estimating large volatility
matrices based on high frequency data. The estimator proposed is constructed in
two stages: first, they propose to calculate the average of the realized volatility
matrices constructed using tick method and pre sampling frequency, which is called
ARVM estimator. Then, regularize ARVM estimator to yield good consistent
estimators of the large integrated volatility matrix. Other proposal have been
introduced by Barndorff-Nielsen, Hansen, Lunde & Shephard (2010), Zheng & Li
(2010), among others.

3. Portfolio Variance Minimization Problem with
the Gross Exposure Constraint

In this section, we start recalling the portfolio variance minimization problem
proposed by Fan et al. (2009). The noteworthy innovation in their proposal is
to relax the gross exposure constraint in order to enlarge the pools of admissi-
ble portfolios generating more diversified portfoliosﬁ Moreover, they showed that
there is no accumulation of estimation errors thanks to the gross exposure con-
straint. We also present, in a different subsection, the LARS algorithm developed
by Efron, Hastie, Johnstone & Tibshirani (2004), which permits to find efficiently
the solution paths to the constrained variance minimization problem.

3.1. The Variance Minimization Problem with Gross
Exposure Constraint

Following the proposal of Fan et al. (2009), we suppose a portfolio with p assets
and corresponding returns r» = (rq,...,7,)’ to be managed. Let X be its associated
covariance matrix, and w be its portfolio allocation vector. as a consequence, the
variance of the portfolio return w’r is given by w’'¥Xw. Considering the variance
minimization problem with gross-exposure constraint as follows:

min (w, ) = w'Iw,

subject to: w's =1 (Budget constraint) (8)

lwl, <ec (Gross exposure constraint)

where ||w||; is the L; norm. The constraint ||w||,; < ¢ prevents extreme positions
in the portfolio. Notice that when [|w||; = 1, ie ¢ = 1, no short sales are allowed
as studied by Jagannathan & Ma (2003); when ¢ = oo, there is no constraint on

8The portfolio optimization with the gross-exposure constraint bridges the gap between the
optimal no-short-sale portfolio studied by Jagannathan & Ma (2003) and no constraint on short-
sale in the Markowitz’s framework.
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short sales as in Markowitz (1952). Thus, the proposal of Fan et al. (2009) is a
generalization to the work of them ]

The solution to the optimization problem w* depends sensitively on the input
vectors ¥ and its accumulated estimation errors, but under the gross-exposure
constraint, with a moderate value of ¢, the sensitive of the problem is bounded
and these two problems disappear. The upper bounds on the approximation errors
is given by

Nw,X)-T (w, EAJ)‘ < 2a,c? (9)

where T' (w, ) and I'(w, f)) correspond to the theoretical and empirical portfolio
risks, a, = ||2 — X||o and X is an estimated covariance matrix based on the data
with sample size T.

They point out that this holds for any estimation of covariance matrix. However
as long as each element is estimated precisely, the theoretical minimum risk and
the empirical risk calculated from the data should be very close, thanks to the
constraint on the gross exposure.

3.2. The Optimization Methodology

The risk minimization problem described in the equation (§) takes the form
of the Lasso problem developed by Tibshirani (1996). For a complete study of
Lasso (Least Absolute Shrinkage and Selection Operator) method see Buhlmann
& van de Geer (2011). The connection between Markowitz problem and Lasso
is conceptually and computationally useful. The Lasso is a constrained version
of ordinary least squares —OLS—, which minimize a penalized residual sum of
squares. Markowitz problem also can be viewed as a penalized least square problem
given by

T p—1 2
* .
W peso = AT MIN E yr —b— E Ty W

t=1 j=1

(10)
subject to Z lwi| <d (L1 penalty)
j=1
where yy = ryp, xj =1y — 1y With j=1,...,p—1land d = c — ‘1—2?;;10; .

Thus, finding the optimal weight w is equivalent to finding the regression coeffcient
w* = (wy, ..., wp—1)" along with the intercept b to best predict y.

Quadratic programming techniques can be used to solve () and (I0). How-
ever, Efron et al. (2004) proposed to compute the Lasso solution using the LARS
algorithm which uses a simple mathematical formula that greatly reduced the

9Let wt and w— be the total percent of long and short positions, respectively. Then, under
wt —w™ =1and wt —w™ < ¢, we have wt = (¢+1)/2 and w™ = (¢ —1)/2. These correspond
to percentage of long and short positions allowed. The constraint on ||w||; < ¢ is equivalent to
the constraint on w™, which is binding when the portfolio is optimized.
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computational burden. Fan et al. (2009) showed that this algorithm provides an
accurate solution approximation of problem (8).

The LARS procedure works roughly as follows. Given a collection of possible
predictors, we select the one having largest absolute correlation with the response
Yy, say xj, ,and perform simple linear regression of y on x;;. This leaves a residual
vector orthogonal to z;,, which now is considered to be the response. We project
the other predictors orthogonally to ;1 and repeat the selection process. Doing
the same procedure after s steps this produce a set of predictors z;,,x;,,...,x;,
that are then used in the usual way to construct a s-parameter linear model (Efron
et al. (2004)). For more details, the LARS algorithm steps are summarized in the

Append A

The LARS algorithm applied to the problem (0] produces the whole solution
path w*(d), for all d > 0. The number of non-vanishing weights varies as d ranges
from 0 to 1. It recruits successively one stock, two stocks, and gradually all the
stocks of the portfolio. When all stocks are recruited, the problem is the same
as the Markowitz risk minimization problem, since no gross-exposure constraint is
imposed when d is large enough (Fan et al. 2009).

4. Comparison of Minimum Variance Optimal
Portfolios

In this section, we compare the minimum variance optimal portfolio con-
structed using five different estimation methods for the covariance matrix: the
sample covariance, RiskMetrics, factor model, mixed frequency factor model and
shrinkage method.

4.1. Dataset

We use a simulated return of p stocks considering 1 and 3 years of daily data,
this is 7" = 252, 756. The simulated Fama-French three factor model is used to
generate the returns of p = 200 and p = 500 stocks, using the specification in
@) and following the procedure employed by Fan et al. (2008). We carry out the
following steps:

1. Generate p factor loading vectors Ai,..., A, as a random sample of size
p from the trivariate normal distribution N(py,covy). This is kept fixed
during the simulation.

2. Generate a random sample of factors f;, fy and f5 of size T" from the
trivariate normal distribution N (g4, covy).

3. Generate p standard deviations of the errors ¢1,...,1, as a random sample
of size p from a gamma distribution with parameters @ = 3.3586 and 8 =
0.1876. This is also kept fixed during the simulation.
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4. Generate a random sample of p idiosyncratic noises v1,...,v, with size T
from the p-variate normal distribution N (0, ¥), and also from Student’s t
distribution ¢-Stud(6, ¥).

5. Calculate a random sample of returns r;, ¢ = 1,...,T using the model @)
and the information generated in steps 1, 2 and 4.

6. By means of this simulated returns we calculated the following covariance
matrix using: the sample covariance, RiskMetrics, factor model and shrink-
age method, as was discussed in Section 2l

The parameters used in steps 1, 2 and 3, were taken from Fan et al. (2008)
who fit three-factor model using the three-year daily data of 30 Industry Portfolios
from May 1, 2002 to August 29, 2005, available at the Kenneth French website.
They calculated the sample means and sample covariance matrices of f and A

denoted by (ptg,covy) and (uy,cova). These values are reported in
Table [l

Additionally, to implement the Mixed-Frequency Factor Model we simulated, as
proposed by Bannouh et al. (2010), five minutes high frequency factor data F from
a trivariate Gaussian distribution, N(0,covy) and high frequency idiosyncratic
noises from a p-variate normal distribution N (0, ¥). In practice high-frequency
financial asset prices bring problems such as non-synchronous trading and are
contaminated by market microstructure noise.

We implement non-synchronous trading by assuming trades arrive following a
Poisson process with an intensity parameter equal to the average number of daily
trades for the S&P500[1 Also, we include a microstructure noise component in
the model, n ~ N (0, A) where A = (1/47)(AIIA’ +©) with 7 the high frequency
sample size returns. Using this we also calculate the random sample of high
frequency returns R = AF + v + n and by means of these returns we calculate
@.

Finally, from the estimated covariance matrices obtained using the different
methods, we find an approximately optimal solution to problem (§]) using the
LARS algorithm. For this calculation, we take the no short sale constraint optimal
portfolio as dependent variable in (I0). Thus, having the optimal portfolio weights
and the estimated covariance matrix we calculate the theoretical and empirical
minimum variance optimal risk. In this paper, the risk of each optimal portfolio

is referring to the standard deviation of the quantities I' (w,¥) and I’ (QTJ, f]),
calculated as the square-root thereof.

4.2. Simulation results

Fan et al. (2009) showed that the unknown theoretical minimum risk, I' (w, X),
and the empirical minimum risk, I’ (13, f]), of the invested portfolio are approx-

imately the same as long as: i) the ¢ is not too large and ii) the accuracy of

10T his value corresponds to 19.385 which is the average number of daily trades over the period
November 2006 through May 2008 (Bannouh et al. (2010)Z).
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estimated covariance matrix is not too low. Based on this result, we are going to
compare the theoretical solution path of the minimum variance optimal portfolios
with the solution path obtained using five different estimation methods for high
dimensional covariance matrix: the sample covariance, RiskMetrics, factor model,
shrinkage and mixed frequency factor model.

We first examine the results in case of p = 200 with 100 replications. In Table
[0l we present the mean value of the minimum variance optimal portfolio in three
cases: 1) when no short sales are allowed, that is ¢ = 1, as studied by Jagannathan
& Ma (2003), ii) under a gross exposure constraint equal to ¢ = 1.6 as proposed
by Fan et al. (2009), which correspond to a typical choice and iii) when ¢ = oo,
that is, no constraint on short sales as in Markowitz (1952)

The results show that the empirical minimum portfolio risk obtained using the
covariance matrix estimated from mixed frequency factor model method has the
smaller difference with respect to the theoretical risk. Thus, the MFFM method
produces the better relative estimation accuracy among the competing estimators.
The gains come from the fact that this model exploits the advantages of both high
frequency data and the factor model approach. The factor model also permits a
precise estimation of the covariance matrix, which is closer to the MFFM. The
accuracy of the covariance matrix estimated from the shrinkage method is also
fairly similar to the factor models and slightly superior to the sample covariance
matrix['4 Finally, all estimation methods overcome the RiskMetrics, especially
when no short sales are allowed. We have the same results when we used three
years of daily returns, presented at the bottom of Table [1l

TABLE 1: Theoretical and empirical risk of the minimum variance optimal portfolio
High dimensional case (p = 200).

True covariance matrix Competing estimators
c ) D] YRrRM s XF YXMFFM
T =252
1 21.23 19.16  16.65 19.72 19.88 20.12
1.6 7.64 6.76 5.92 7.29 7.35 7.42
0 1.32 0.88 0.85 0.93 1.03 1.01
T =756
1 19.84 18.53 15,53 19.01 19.15 19.45
1.6 5.85 3.82 3.05 4.95 5.05 5.53
[e%S) 1.25 0.69 0.61 0.87 0.94 0.98

As we can see in Table [Tl in all cases the theoretical risk is greater than the
empirical risk, although in some cases the difference is slim. The intuition of

11 The corresponding values for parameter d in each case is: 0, 0.7, and 12.8.

12We used as target matrix the identity which works well as was shown by Ledoit & Wolf (2003)
and also the shrinkage target actually proposed by them. The practical problem in applying the
shrinkage method is to determine the shrinkage intensity. Ledoit & Wolf (2003) showed that
it behaves like a constant over the sample size and provide a way to consistently estimate it.
Following the Ledoit & Wolf (2003) proposal we found a* = 0.7895. However, we check the
stability of the results using different values for « chosen ad hoc. The results show that the
as long as the shrinkage intensity is lower than a* the methods tends to underestimate a little
bit more the risk. However, this method maintains his superiority with respect to sample and
RiskMetrics estimated covariance matrices. Detailed results are available upon request.
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these results is that having to estimate the high dimensional covariance matrix at
stake here leads to risk underestimation. In other words, in general the covariance
matrix estimation leads to overoptimistic conclusions about the risk. The most
dramatic case occurs with the RiskMetrics portfolio, which shows the lower risk.

Additionally, the results show that constrained short sale portfolios are not
diversified enough, as also was found by Fan et al. (2009). For instance, the risks
can be improved by relaxing the gross exposure constraint, which implies allowing
some short positions. However, allowing the possibility of extreme short or long
positions in the portfolio we can get a lower optimal risk; extremely negative
weights are difficult to implement in practice. Actually, practical portfolio choices
always involve constraints on individual assets such as the allocations are no larger
than certain percentages of the median daily trading volume of an asset. This
result is true no matter what method is used to estimate the covariance matrix
and which sample size is used.

Figure [[l shows the whole path solution of the risk for a selected portfolio as
a function of LARS steps. The path solution was calculated for each of the five
competing methods and the true covariance matrix, using the LARS algorithm.
This figure illustrates the decrease in optimal risk when we move from a portfolio
with no short sale to allowed short sale portfolio, which is more diversified and
therefore less risky. In other words, the graph suggests that the optimal risk
decreases as soon as in each step the parameter d is growing. This occurs as long
as the LARS algorithm progresses This implies that the higher value of optimal
risk is reached in the case of no short sale.
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0.20 A - = Factor
— - MFFM
-— Sample
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~
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........... - \
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0 20 40 60 80 100
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Ficure 1: LARS solution path of the optimal risk for each minimum variance portfolio

13The number of steps required to complete the algorithm and have the entire solution path
can be different in each case
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In consequence, once the gross exposure constraint is relaxed the number of
selected stocks increases and the portfolio becomes more diversified. In fact, at the
first step when d is relaxed the LARS algorithm identifies the stock that permit
reduction of the minimum optimal risk under no short sale restriction, permitting
this stock to enter into the optimal portfolio allocation with a weight that can be
positive or negative. This process is continued until the entire set of stocks are
examined and as result in each step you will have a decreasing optimal risk but
increasing short percentage. This process is illustrated in Figure Each graph
in the panel corresponds to a profile of optimal portfolio weights obtained solving
the problem (I0) using the true covariance matrix and each estimated covariance
matrix.
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FiGure 2: Estimated optimal portfolio weights via the Lasso. The abscissae correspond
to the standardized Lasso parameter, s = d/ ;’;i Jwj|.

The figure shows the optimal portfolio weights as a function of the standardized
Lasso parameter s = d/ Z?;ll |w;|. Each curve represents the optimal weight of a
particular stock in the portfolio as s is varied. We start with no short sale portfolio
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at s = 0. The stocks begin to enter in the active set sequentially as d increases,
allowing us to have a more diversified portfolio. Finally, at s = 1, the graph shows
the stocks that are included in the active stock set where short sales are allowed
with no restriction. The number of some of them are labeled on the right side in
each graph

We now examine the results in case of p = 500, again with 100 replications.
The results, considering this very high dimensional case, are presented in Table
Similarly, this table contains the mean value of the minimum variance optimal
portfolio risk using different estimation methods for covariance matrix. First of
all, as we can see, sampling variability for the case with 500 stocks is smaller than
the case involuing 200 stocks. These are due to the fact that with more stocks, the
selected portfolio is generally more diversified and hence the risks are generally
smaller. This result is according with the founded results by Fan et al. (2009).

TABLE 2: Theoretical and empirical risk of the minimum variance optimal portfolio
Very high dimensional case (p = 500).

True covariance matrix Competing estimators
c p3) D] YRrM s YXr  YMFFM
T =252
1 15.49 13.89 12.85 14.28 14.07 14.16
1.6 4.91 1.89 1.22 4.17 4.04 4.14
00 1.21 0.40 0.38 1.11 0.98 1.09
T = 756
1 14.04 13.03 12.23 13.71 13.11 13.55
1.6 3.58 1.32 1.00 3.05 1.55 3.68
00 1.01 0.17 0.01 0.89 0.64 0.78

Additionally, simulation results show that the shrinkage method offers an es-
timated covariance matrix with superior estimation accuracy. This is reflected in
the fact that the minimum optimal portfolio risk using this method is just a little
different with respect to the theoretical risk. The mixed frequency factor model
and the factor model using daily data also have a high accuracy. However, as can
be seen, the factor model, the MFFM and shrinkage method offer a quite close
estimation accuracy of the covariance matrix. Finally, all estimation methods
overcome the sample covariance matrix, however, its performance is quite similar
to the RiskMetrics.

4.3. Empirical Results

In the same way than Fan et al. (2009), data from Kenneth French was obtained
is website from January 2, 1997 to December 31, 2010. We use the daily returns
of 100 industrial portfolios formed on size and book to market ratio, to estimate
according to four estimators, the sample covariance, RiskMetrics, factor model and

14The active stock set refers to the stocks with weight different from zero. This set changes as
the LARS algorithm progresses. Actually, it can increase or decrease in each step depending if
a particular stock is added or dropped from the active set. This is the reason why in Figure 2
some curves at the last step are at zero.
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the Shrinkage, the covariance matrix of the 100 assets using the past 12 months’
daily returns data[™ These covariance matrices, calculated at the end of each
month from 1997 to 2010, are then used to construct optimal portfolios under three
different gross exposure constraints. The portfolios are then held for one month
and rebalanced at the beginning of the next month. Different characteristics of
these portfolios are presented in Table

TABLE 3: Returns and Risks based on Fama French Industrial Portfolios, p = 100.

c Mean Standard deviation Sharpe ratio Min weight Max weight
Sample covariance
1 20.89 12.03 1.80 0.00 0.30
1.6 22.36 8.06 2.22 —0.05 0.28
[e9) 15.64 7.13 1.86 —0.11 0.25
Factor model
1 21.49 12.09 1.82 0.00 0.29
1.6 22.56 8.26 2.24 —0.04 0.24
[e9) 16.73 7.40 1.90 —0.11 0.22
Shrinkage
1 21.34 11.90 1.79 0.00 0.29
1.6 22.46 8.06 2.23 —0.05 0.23
[e9) 15.94 7.16 1.88 —0.11 0.22
RiskMetrics
1 17.07 9.23 1.43 0.00 0.46
1.6 18.89 7.83 1.56 —0.07 0.44
e 15.80 6.87 1.48 —0.13 0.42

We found that the optimal no short sale portfolio is not diversified enough. It is
still a conservative portfolio that can be improved by allowing some short positions.
In fact, when ¢ = 1, the risk is greater than when we allowed short positions.
These results hold using all covariance matrices measures. Also, we found that the
portfolios selected by using the RiskMetrics have lower risk which coincides with
Fan et al. (2009) results. Thus, according our simulation and empirical results,
RiskMetrics give us the most overoptimistic conclusions about the risk.

Finally, the Sharpe ratio is a more interesting characterization of a security
than the mean return alone. It is a measure of risk premium per unit of risk
in an investment. Thus the higher the Sharpe Ratio the better. Because of the
low returns showed by Riskmetrics, it has also a lower Sharpe ratio. Although
differences between the other three methods are not important, the factor model
has the higher Sharpe ratio. This result indicates that the return of the portfolio
better compensates the investor for the risk taken.

5. Conclusions

When p is small, an estimate of the covariance matrix and its inverse can
easily obtained. However, when p is closer or larger than 7', the presence of

15We do not include the mixed frequency factor model because of the impossibility to have
access to high frequency data.
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many small or null eigenvalues makes the covariance matrix not positive definite
any more and it can not be inverted as it becomes singular. That suggests that
serious problems may arise if one naively solves the high-dimensional Markowitz
problem. This paper evaluates the performance of the different methods in terms
of their precision to estimate a covariance matrix in the high dimensional minimum
variance optimal portfolios allocation context. Five methods were employed for
the comparison: the sample covariance, RiskMetrics, factor model, shrinkage and
realized covariance.

The simulated Fama-French three factor model was used to generate the returns
of p =200 and p = 500 stocks over a period of 1 and 3 years of daily and intraday
data. Thus using the Monte Carlo simulation we provide evidence than the mixed
frequency factor model and the factor model using daily data show a high accuracy
when we have portfolios with p closer or larger than 7. This is reflected in the
fact that the minimum optimal portfolio risk using these methods is just a little
different with respect to the theoretical risk. The superiority of the MFFM, comes
from the fact that this model offers a more efficient estimation of the covariance
matrix being able to deal with a very large number of stocks (Bannouh et al. 2010).

Simulation results also show that the accuracy of the covariance matrix es-
timated from shrinkage method is also fairly similar to the factor models with
slightly superior estimation accuracy in a very high dimensional situation. Fi-
nally, as have been found in the literature all these estimation methods overcome
the sample covariance matrix. However, RiskMetrics shows a low accuracy and in
both studies (simulation and empirical) leads to the most overoptimistic conclu-
sions about the risk.

Finally, we discuss the construction of portfolios that take advantage of short
selling to expand investment opportunities and enhance performance beyond that
available from long-only portfolios. In fact, when long only constraint is present
we have an optimal portfolio with some associated risk exposure. When shorting
is allowed, by contrast, a less risky optimal portfolio can be achieved.
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Appendix A.

In this appendix we present the LAR algorithm with the Lasso modification
proposed by Efron et al. (2004), which is an efficient way of computing the solution
to any Lasso problem, especially when T < p.

Algorithm. LARS: Least Angle Regression algorithm to calculate the entire
Lasso path

1. Standardize the predictors to have mean zero and unit norm. Start with the
residual r =y —y,and w; =0for j=1,...,p— 1.

2. Find the predictor x; most correlated with r.

3. Move w; from 0 towards its least-squares coefficient (x;,r), until some other
competitor xj has as much correlation with the current residual as does ;.

4. Move w; and wy, in the direction defined by their joint least squares coefficient
of the current residual on (z;, z), until some other competitor z; has as much
correlation with the current residual. If a non-zero coefficient hits zero, drop
its variable from the active set of variables and recompute the current joint
least squares direction.

5. Continue in this way until all p predictors have been entered. After a num-
ber of steps no more than min(7 — 1, p), we arrive at the full least-squares
solution.

Source: Hastie, Tibshirani & Friedman (2009)
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Appendix B.

TABLE 4: Parameters used in the simulation.

Parameters for factor loadings Parameters for factor returns
738 covy Ky cov g
0.7828  0.029145 0.023558 1.2507
0.5180  0.023873 0.053951 0.012989  —0.0349 0.31564

0.4100 0.010184 —0.006967  0.086856  0.020714  —0.2041 —0.0022526  0.19303
Source: Fan et al. (2008).
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