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Abstract. Let M be a surface, and let H be a subgroup of π1M . In this paper
we study the commensurator subgroup Cπ1M

(H) of π1M , and we extend a
result of L. Paris and D. Rolfsen [7], when H is a geometric subgroup of π1M .
We also give an application of commensurator subgroups to group representa-
tion theory. Finally, by considering certain closed curves on the Klein bottle,
we apply a classification of these curves to self-intersection Nielsen theory.
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Resumen. Sean M una superf́ıcie y H un subgrupo de π1M . En este art́ıculo
estudiamos los subgrupos conmensuradores Cπ1M

(H) de π1M , y extendemos
un resultado obtenido por L. Paris y D. Rolfsen en [7], cuando H es un sub-
grupo geométrico de π1M . También daremos una aplicación de estos subgru-
pos conmensuradores a la teoŕıa de representaciones de grupos. Finalmente,
considerando ciertas curvas cerradas en la botella de Klein, aplicaremos una
clasificación de estas curvas a la Teoŕıa de Nielsen de auto-intersección.
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1. Introduction

Commensurators play an important role in representation theory, especially
in the study of induced representations. Let G be a group, and let H be a
subgroup of G. The set of elements g ∈ G such that gHg−1∩H has finite index
in both gHg−1 and H is a subgroup of G, called the commensurator subgroup
of H in G, and denoted by CG(H).

aThis work was supported by the following entities: CNPq, FAPESP project no.
2008/58122-6 and the International Cooperation USP/Cofecub project no. 105/06.
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G. W. Mackey [5] pointed out an important connection between these sub-
groups and unitary group representations. For example, if a subgroup H of G is
its own commensurator, then any finite dimensional irreducible representation
ofH induces an irreducible representation of G. D. Rolfsen calculated commen-
surator subgroups of classical braid groups [8], and applied Mackey’s result to
them. Some years later, L. Paris and D. Rolfsen calculated commensurator
subgroups of geometric subgroups of surface braid groups [7].

Let M be a surface. It is known that the one-string braid group of M is
the fundamental group of M . In [7], the commensurator subgroup, Cπ1M (H),
is completely described when H is a geometric subgroup of π1M . We calculate
Cπ1M (H) for any subgroup H of the fundamental group of a non-large compact
surface. Also, we show that if H is a finitely-generated subgroup of π1M for

any surface M , then
[
Cπ1M (H) : C

π1M̃
(H)

]
is finite, where M̃ is a finite

covering space ofM and H is a geometric subgroup of π1M̃ . Using this, we try
to improve the description of Cπ1M (H) for any finitely-generated subgroup of
π1M and any surface M .

This paper is based on [7], which was also the main article of the author’s
M.Sc dissertation [6], and is organized as follows. In Section 2, we classify
compact large surfaces with help of a classification of compact abelian sur-
faces [4, Theorem 4.3]. We study the commensurator subgroup Cπ1M (H) of
the fundamental group of a surfaceM in Section 3. To highlight the interest of
commensurator subgroups, in Section 4, we give an application to group rep-
resentation theory. Finally, in Section 5, we study closed curves on the Klein
bottle. We classify certain curves called special curves, and we apply this to
self-intersection Nielsen theory for closed curves on the Klein bottle.

2. Large Surfaces

In this section, we recall the classification of large compact surfaces, which we
shall use to study algebraic properties of their fundamental group. In particular,
we focus on the center and commensurator subgroups of π1M , when M is a
compact surface.

As in [4], we say that a surface is Abelian (resp. non Abelian) if its fun-
damental group is Abelian (resp. non Abelian). Also, we have the following
classification of compact Abelian surfaces:

Proposition 1. [4, Theorem 4.3] Let M be a compact Abelian surface.

(1) If ∂M = φ, then M is the sphere S2, the torus T 2, or the real projective
plane P 2.

(2) If ∂M 6= φ, then M is the Möbius strip S1×̂I, or the annulus S1 × I.

Let S1×̂S1 denote the Klein bottle. The following definition, as well as the
statement of Proposition 2, can be found in [7]. A compact surface M is called
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large if

M 6= S2, P 2, D2, T 2, S1 × I, S1×̂I, S1×̂S1.

The following proposition gives us an algebraic characterization for these
surfaces. We give a proof using the classification of compact Abelian surfaces.

Proposition 2. [7] LetM be a compact surface, and let q ∈M . The surfaceM
is large if and only if its fundamental group π1(M, q) has no Abelian subgroup
of finite index.

Proof. Let M be a large compact surface, and suppose that there exists an
Abelian subgroup G of π1(M, q) of finite index k, k ∈ N. Then there exists
a covering p : MG −→ M such that if p(q̃) = q, for some q̃ ∈ MG, then
π1(MG, q̃) is isomorphic to G. Since M is a compact surface and [π1(M, q) : G]
is finite, MG is compact, π1(MG, q̃) is Abelian, and hence MG must be one of
the following Abelian surfaces:

S2, P 2, T 2, D2, S1 × I, or S1×̂I.

The Riemann-Hurwitz formula yields:

χ(MG) = k · χ(M).

If MG = S2 then χ(MG) = 2, and hence either χ(M) = 1 and k = 2, or
χ(M) = 2 and k = 1. In the first case, M is the disc or the projective plane,
while in the second case, M is the sphere.

In the cases MG = P 2, D2, we have χ(MG) = 1 and it follows that χ(M) =
1 = k. ThusM is the projective plane P 2, or the disc D2, sinceM is a compact
surface with Abelian fundamental group, and χ(M) = 1.

Now, ifMG = T 2, S1×I, or S1×̂I, then χ(MG) = 0 and therefore χ(M) = 0
since k ∈ N. Hence M must be one of the following surfaces:

T 2, S1 × I, S1×̂I, or S1×̂S1.

In either case, M is not a large compact surface, which is a contradiction.
Thus π1(M, q) has no Abelian subgroup of finite index.

Conversely, suppose that π1(M, q) has no Abelian subgroup of finite in-
dex. Then M cannot be an Abelian surface, and hence M 6= S2, P 2, T 2, D2,
S1 × I, S1×̂I. Thus, it suffices to show that the Klein bottle S1×̂S1 has an
Abelian subgroup of finite index. Consider the fundamental group, π1(S

1×̂S1, q),
of the Klein bottle given by the following presentation

π1(S
1×̂S1, q) = 〈a, b | abab−1 = 1〉. (1)
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The equation bsar = a(−1)srbs, with s, r ∈ Z in π1(S
1×̂S1, q) implies that

the subgroup generated by {a, b2} is Abelian of index two in π1(S
1×̂S1, q).

Consequently,

M 6= S2, P 2, D2, T 2, S1 × I, S1×̂I, or S1×̂S1. �X

By [4, Theorem 4.4], the only surfaces whose fundamental group has non-
trivial center are P 2, T 2, S1 × I, S1×̂I, S1×̂S1. In particular, if M is a large
compact surface then the center, Z(π1M), of π1M is trivial.

3. Geometric Elements and Commensurators in π1M

We now extend [7, Theorem 3.1], which describes the commensurator subgroup
CG(H) of the fundamental group of a surface M , when H is a geometric sub-
group.

3.1. Geometric Elements and Subsurfaces

Let M be a surface, and let α be an element of π1M . The element α is called
geometric if it can be represented by a simple closed curve in M . In general,
the elements of π1M are non-geometric. For instance, when M is the torus, a
non-trivial power of a non-trivial element of its fundamental group cannot be
represented by a simple closed curve, hence is non-geometric.

A subsurface N of a surface M is the closure of an open subset of M .
For simplicity, we suppose that every boundary component of N is either a
boundary component of M , or lies in the interior of M . Let M be a (compact)
surface, and let N be a subsurface ofM such that no component ofM \N is a
disc. Then the map induced by the inclusion, ψ : π1N −→ π1M , is injective [7].
In this case, we can think of π1N as a subgroup of π1M . Subgroups obtained
in this way are called geometric subgroups, or simply geometric.

Let N be a subsurface of a connected surfaceM . We call N a Möbius collar
in M , if N is a cylinder S1× I and M \N has two components, N1, N2, one of
which, N1 say, is a Möbius strip. Then M0 = N ∪N1 will be called the Möbius
strip collared by N in M .

The following proposition yields information about infinite cyclic geometric
subgroups.

Proposition 3. [9] An infinite cyclic subgroup of π1M is geometric if and only
if it has a geometric generator.

Proof. Suppose that H is an infinite cyclic geometric subgroup of π1M . Then
there exists a subsurface N ⊆M such that no connected component of M \N
is a disc, and the homomorphism ψ : π1N −→ π1M is injective on H . We can
choose a generator α of π1N to be geometric. Since ψ(α) is a generator of H
and ψ is induced by inclusion, one of the generators of H is geometric.
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The converse is clear by taking a tubular neighborhood of a simple closed
curve that represents a geometric generator. �X

We can easily find models of simple closed curves for representatives of the
classes ambn ∈ π1(S

1×̂S1, p), a, b being given by Equation 1, when n = 0 and
m = ±1, or m = 0 and n = ±2, or n = ±1 and m is arbitrary. In [3] it is
shown that these are the only possibilities for m,n that give rise to classes of
homotopic closed curves in π1(S

1×̂S1, p) possessing a simple closed curve as a
representative. Thus we have a characterization of simple closed curves on the
Klein bottle.

Proposition 4. Let γ be a closed curve on the Klein bottle such that [γ] =
ambn ∈ π1(S

1×̂S1, p). Then γ is a simple closed curve if and only if one of the
following conditions on m and n holds:

(1) n = 0 and m = ±1,

(2) m = 0 and n = ±2,

(3) n = ±1 and m is arbitrary.

3.2. Commensurator Subgroups

Let G be a group, and let H be a subgroup of G. The set of elements g ∈ G
such that gHg−1∩H has finite index in both gHg−1 and H is a subgroup of G,
called the commensurator subgroup of H in G, and denoted by CG(H). Also,
we denote the centralizer of H in G, and the normalizer of H in G by ZG(H)
and NG(H), respectively. It is easy to see that

ZG(H) ⊆ NG(H) ⊆ CG(H).

Clearly, if H is a finite order subgroup of G, or if H is a normal subgroup
of G, or if G is an Abelian group, then CG(H) = G. From this, it follows that
if H = Z(G), the center of G, or if H = [G,G], the commutator subgroup
of G, then CG(H) = G. In particular, we have ZG(Z(G)) = NG(Z(G)) =
CG(Z(G)) = G. It is very useful to understand commensurator subgroups.

Proposition 5. [7] Let G be a group, and let H,F be subgroups of G such that
F ≤ H. If F has finite index in H, then

CG(H) = CG(F ).

Proof. Suppose that g ∈ CG(F ). Thus F1 = gFg−1 ∩ F has finite index in
F and in gFg−1. Set H1 = gHg−1 ∩ H . We need to prove that H1 has finite
index in H and in gHg−1. It is clear that [H : F1] is finite. Also, we have
[H : H1][H1 : F1] = [H : F1], and so [H : H1] is also finite. In a similar manner
one proves that [gHg−1 : H1] is finite, and thus g ∈ CG(H). The converse
inclusion is proved similarly. �X
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We are now going to relate short exact sequences to certain commensurator
subgroups.

Lemma 1. [7, Lemma 5.5] Consider the following short exact sequence

1 −−−−→ G1 −−−−→ G2
φ

−−−−→ G3 −−−−→ 1.

Suppose that G1 ≤ G2, H2 ≤ G2, H3 = φ(H2) and H1 = H2 ∩G1. Then

φ
(
CG2

(H2)
)
⊆ CG3

(H3) and CG2
(H2) ∩G1 ⊆ CG1

(H1).

Note that the second inclusion holds under the weaker hypothesis that
G1 −→ G2 is injective, G1 ≤ G2 and H2 ≤ G2.

The following theorem describes the commensurator of geometric subgroups
of the fundamental group of a surface M .

Theorem 1. [7, Theorem 3.1] Let M be a connected surface, and let N be
a subsurface of M such that no connected component of M \N is a disc. Let
P0 ∈ N , and set π1M = π1(M,P0) and π1N = π1(N,P0).

(1) If M is not large, or if π1N = {1}, then Cπ1M (π1N) = π1M .

(2) If M is large, π1N 6= {1} and N is not a Möbius collar in M , then

Cπ1M (π1N) = π1N.

(3) If M is large and N is a Möbius collar in M , then

Cπ1M (π1N) = π1M0,

where M0 is the Möbius strip collared by N in M .

The following theorem, together with the characterization of closed curves
given in Proposition 4, not only provides a proof for Theorem 1(1), but also
generalizes it to arbitrary subgroups of the fundamental group of non-large
compact surfaces.

Theorem 2. Let M be a non-large compact surface.

(1) Let M be a surface different from the Klein bottle, and let H ≤ π1M .
Then Cπ1M (H) = π1M .

(2) Let M be the Klein bottle, let p ∈ S1×̂S1, and let H ≤ π1
(
S1×̂S1, p

)
.

Then
Cπ1(S1×̂S1,p)(H) = π1

(
S1×̂S1, p

)
,

unless H = 〈ambn〉 where m 6= 0, n 6= 0 and n is even. In this exceptional
case, Cπ1(S1×̂S1,p)

(
〈ambn〉

)
is the free Abelian subgroup of π1

(
S1×̂S1, p

)

of rank 2 generated by {a, b2}.
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Proof.

(1) In this case, M is an Abelian surface. The result is immediate since π1M
is Abelian.

(2) The subgroups of the fundamental group of the Klein bottle are either
trivial, free of rank one, free Abelian of rank two, or non-Abelian of
rank two. In the last two cases, the subgroups are of finite index in
π1

(
S1×̂S1, p

)
. If H is a free subgroup of π1

(
S1×̂S1, p

)
of rank two, it

follows from Proposition 5 that Cπ1(S1×̂S1,p)(H) = π1
(
S1×̂S1, p

)
.

We now analyze the free subgroups of rank one of π1
(
S1×̂S1, p

)
. Take

ambn ∈ π1
(
S1×̂S1, p

)
. Recall that every element of π1

(
S1×̂S1, p

)
is of

the form arbs with r, s ∈ Z. Denote f = arbsambnb−sa−r, and note that
arbs · 〈ambn〉 · b−sa−r = 〈f〉.

If n is odd then we have f = a2r+(−1)smbn whose square is exactly b2n.
Furthermore (ambn)2 = b2n, since n is odd. Thus 〈f〉 ∩ 〈ambn〉 6= {1}
for all r, s ∈ Z. Since 〈ambn〉 is an infinite cyclic subgroup,

[
〈ambn〉 :

〈f〉 ∩ 〈ambn〉
]
is finite for all r, s ∈ Z.

Similarly,
[
〈f〉 : 〈f〉 ∩ 〈ambn〉

]
is finite for all r, s ∈ Z, and so

Cπ1(S1
×̂S1,p)

(
〈ambn〉

)
= π1

(
S1×̂S1, p

)
.

Ifm = 0 or n = 0, we clearly have Cπ1(S1
×̂S1,p)

(
〈ambn〉

)
= π1

(
S1×̂S1, p

)
.

Now suppose that m 6= 0, n 6= 0 and n is even. Then we have
f = a(−1)smbn. If s is even, then f = ambn and consequently arbs ∈
Cπ1(S1

×̂S1,p)

(
〈ambn〉

)
. If s is odd, then f = a−mbn. In this case, since n 6=

0, we have 〈a−mbn〉∩ 〈ambn〉 = {1}, and so arbs 6∈ Cπ1(S1×̂S1,p)

(
〈ambn〉

)
.

Hence if m 6= 0, n 6= 0 and n is even, it follows that the commensura-
tor Cπ1(S1

×̂S1,p)

(
〈ambn〉

)
is equal to the group

{
arbs ∈ π1

(
S1×̂S1, p

)
|

s is even
}
, which is exactly

〈
a, b2 | ab2 = b2a

〉
. �X

Note that if m,n satisfy the conditions of Proposition 4, then ambn ∈
π1

(
S1×̂S1, p

)
is a geometric element and Cπ1(S1

×̂S1,p)

(
〈ambn〉

)
= π1

(
S1×̂S1, p

)
.

However, there are non-geometric elements ambn ∈ π1
(
S1×̂S1, p

)
for which the

commensurator Cπ1(S1×̂S1,p)

(
〈ambn〉

)
is equal to π1

(
S1×̂S1, p

)
, for instance,

when n is odd, with |n| 6= 1.

The following theorem shows that the subgroups of the fundamental group
of a surface are “almost” geometric, i.e., they are geometric in some finite
covering space of the surface.

Theorem 3. [9] Let M be a surface, let H be a finitely-generated subgroup of

π1M , and let g ∈ π1M \H. Then there exists a finite covering M̃ of M such

that π1M̃ contains H but not g and H is geometric in M̃ .
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We use Theorem 3 to prove that the commensurator of an arbitrary sub-
group of the fundamental group of a surface M has a subgroup of finite index
that can be calculated using Theorem 1.

Theorem 4. Let M be a compact surface (or compact with a finite number
of points removed), and let H be a finitely-generated subgroup of π1M . Then[
Cπ1M (H) : Cπ1M̃

(H)
]
is finite, where M̃ is a finite covering space of M and

H is geometric in π1M̃ .

Proof. By Theorem 3, there exists a finite covering space M̃ of M such that
H ≤ π1M̃ and H is geometric in M̃ . We can suppose that π1M̃ ≤ π1M . Clearly
Cπ1M̃

(H) ≤ Cπ1M (H) ∩ π1M̃ .

On the other hand, Lemma 1 implies that Cπ1M (H)∩π1M̃ ≤ Cπ1M̃
(H), and

thus Cπ1M (H) ∩ π1M̃ = C
π1M̃

(H). Since
[
π1M : π1M̃

]
is finite,

[
Cπ1M (H) :

Cπ1M̃
(H)

]
is finite. �X

Remark 1.

(1) The commensurator subgroup C
π1M̃

(H) is completely determined by
Theorem 1.

(2) Theorem 4 implies that Cπ1M (H) is the disjoint union C
π1M̃

(H) ∪

t1Cπ1M̃
(H) ∪ · · · ∪ tlCπ1M̃

(H), where T = {1, t1, . . . , tl} is a left

transversal of C
π1M̃

(H) in Cπ1M (H).

4. An Application to Group Representation Theory

In [5] G. W. Mackey made an important connection between commensurator
subgroups and unitary representation theory. In [8], we can see how results
related to commensurator subgroups of classical braid groups can be applied to
representation theory using this connection. We apply some results of Section 3
to unitary representation theory. Recommended references for this topic are
[2, 5].

Consider a discrete group G with subgroup G0. Given a (unitary) represen-
tation ρ of G0, there is a well-defined induced representation, IndGG0

(ρ), of G.
In particular, if ρ is the trivial representation, λG/G0

is the left regular repre-
sentation of G in l2(G/G0). As in [2, Theorem 2.1], we have the following result
of Mackey:

the representation λG/G0
is irreducible if and only if CG(G0) = G0. When

CG(G0) = G0, Ind
G
G0

(ρ) is irreducible for any unitary finite-dimensional irre-
ducible representation ρ of G0.

The following theorem is an immediate consequence of Theorem 1.
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Theorem 5. Let M be a connected surface, and let N be a subsurface of M
such that no component of M \N is a disc.

(1) If M is large, π1N 6= {1}, and N is not a Möbius collar in M , then
λπ1M/π1N is irreducible. Furthermore, Indπ1M

π1N
(ρ) is irreducible for any

unitary finite-dimensional irreducible representation ρ of π1N .

(2) If M and N are not as in item (1), then λπ1M/π1N is reducible.

The following theorem is an immediate consequence of Theorem 2.

Theorem 6. Let M be a non-large compact surface. Then, for any subgroup
H of π1M , λπ1M/H is reducible.

Let M, M̃ and H be as in Theorem 4. Let S be a subsurface of M̃ related
to H . The following theorem is an immediate consequence of Theorem 1 and
Theorem 4.

Theorem 7. If M̃ and S do not satisfy the conditions of Theorem 1(2), or

if the number of sheets of the finite covering space M̃ is greater than 1, then
λπ1M/H is reducible.

5. Nielsen Number of Self-Intersection Points of Closed Curves in

the Klein Bottle

By analysing closed curves and commensurator subgroups of the Klein bot-
tle, we give an application to self-intersection Nielsen theory. This application
is completely inspired by the paper of S. Bogatyi, E. Kudryavtseva and H.
Zieschang [1].

5.1. Basic Concepts

We start by introducing the basic concepts for the rest of this section. We say
that a closed curve on a surface is orientation-preserving if the local orientation
of the surface is preserved under the continuous transfer of the orientation along
the curve. Otherwise it is called orientation-reversing. We assume in this whole
subsection that γ : S1 −→M is a closed curve on the surface M .

A self-intersection point of γ is a pair (v1, v2), with v1, v2 ∈ S1, v1 6= v2, such
that γ(v1) = γ(v2). The minimal number of self-intersection points, MI[γ], is
defined to be the minimal number of self-intersection points of all curves γ′

such that γ′ ≃ γ.

Self-intersection points (v1, v2) and (v′1, v
′

2) are called Nielsen-equivalent
self-intersection points if there exist paths αi : [0, 1] −→ S1, i = 1, 2, satis-
fying

αi(0) = vi, αi(1) = v′i, γ ◦ α1 ≃∂ γ ◦ α2.

Revista Colombiana de Matemáticas
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A self-intersection point (v1, v2) is trivial or equivalent to zero, if there exists
a path α : [0, 1] −→ S1 satisfying

α(0) = v1, α(1) = v2, γ ◦ α ≃∂ 0.

Trivial self-intersection points form a Nielsen class called the trivial Nielsen
class. Such a class may be empty.

The index of an isolated self-intersection point, and of a class of self-
intersection points is defined to be the index of the corresponding coinci-
dence point or of the coincidence class, respectively, of the mappings γ̃1, γ̃2 :
S1 × S1 −→M , γ̃i(t1, t2) = γ(ti), for i = 1, 2.

A Nielsen class of self-intersection points is called essential if its index
does not vanish; otherwise it is called inessential. The Nielsen number of self-
intersection points, NI[γ], is the number of essential classes. Clearly, MI[γ] ≥
NI[γ]. If the numbers MI[γ] and NI[γ] coincide, we say that the Wecken
property holds for the intersection problem. We refer the reader to [1] for more
details on these topics.

5.2. Special Curves

We now study a family of so-called special curves on the Klein bottle. The de-
finition of special curve on a surface is general [1]. A closed curve γ : S1 −→M
on a surface M is called special if γ is orientation-preserving, non-contractible,
and homotopic to a proper power of a closed curve γ0 on M .

Let γ be a closed curve (non-contractible) on S1×̂S1 such that [γ] = ambn ∈
π1(S

1×̂S1, p).

If n is odd, then γ is orientation-reversing, and hence it is not special.
Now, suppose that n is even. In this case, ambn is orientation-preserving. If
gcd(m,n) = 1, then ambn cannot be a proper power of another element in
π1(S

1×̂S1, p), thus γ cannot be special. Suppose that gcd(m,n) = t is different

from 1. If n/t is even, then ambn =
(
a

m

t b
n

t

)t
, and consequently γ is special. If

n/t is odd with t 6= 2 (hence t is even), we have
(
a

2m

t b
2n

t

) t

2 = ambn, hence γ
is special. Finally, if n/t is odd and t = 2 we cannot write ambn as a proper
power of another element in π1

(
S1×̂S1, p

)
.

By the above analysis, we deduce the following classification of special
curves on the Klein bottle.

Proposition 6. Let γ be a non-contractible closed curve on the Klein bottle
such that [γ] = ambn ∈ π1

(
S1×̂S1, p

)
. Then γ is special on S1×̂S1 if and only

if one of the following conditions on m and n holds:

(1) gcd(m,n) = t 6= 1 and n/t is even,

(2) gcd(m,n) = t 6= 2, n is even, and n/t is odd.
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5.3. An Application

We now use the characterization of closed curves on the Klein bottle, given
by Proposition 6, in order to calculate the Nielsen number of self-intersection
points of closed curves on S1×̂S1. For this we need the following proposition.

Proposition 7. [1] Let M be a surface, not necessarily compact, and let γ :
S1 −→M be a closed curve.

(1) A curve γ which is not special has the Wecken property for the self-
intersection problem:

MI(γ) = NI(γ).

In this case, if γ ≃ γk0 , with k ∈ Z, |k| ≥ 1, and the curve γ0 is not
homotopic to a proper power of any closed curve on M , then

MI(γ) = NI(γ) = k2 ·NI(γ0) + |k| − 1.

(2) Let γ be a special curve. Then γ is homotopic to a proper power γk0 ,
with k ∈ Z, |k| > 1, where the curve γ0 is orientation-preserving or k
is even, and γ0 is not homotopic to a proper power of any closed curve
on M . Set k′ = k if γ0 is orientation-preserving, and k′ = k/2 if γ0 is
orientation-reversing. Then

MI(γ) = k2 ·NI(γ0) + 2(|k′| − 1),

NI(γ) = k2 ·NI(γ0).

The following theorem follows easily by applying the classification of special
closed curves given by Proposition 6, and Proposition 4 to Proposition 7.

Theorem 8. Let γ be a closed curve non-contractible in S1×̂S1. Choose a
point p in γ, and let [γ] = ambn ∈ π1

(
S1×̂S1, p

)
and t = gcd(m,n).

(1) If n is odd, then NI(γ) = n− 1,

(2) If n is even, n/t is odd and t 6= 2, then NI(γ) =
(
t
2

)2( 2n
t − 1

)
,

(3) If n is even, m,n 6= 0 and t = 1, then NI(γ) 6= 0,

(4) If n and n/t are even and t 6= 1, then NI(γ) = t2NI(γ0), where [γ0] =
a

m

t b
n

t ,

(5) If n = 0 and m = ±1, or if m = 0 and n = ±2, then NI(γ) = 0.
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