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THE NON-STANDARD LQR PROBLEM
FOR BOUNDARY CONTROL SYSTEMS T

Abstract.

An overview of recent results concerning the non-standaritie horizon Lin-
ear Quadratic Regulator problem for a class of boundaryrebsystems is pro-
vided.

1. Introduction

In the present paper we give an account of recent resulteoaing the regulator problem with
non-coercive, quadratic cost functionals over a finite timierval, for a class of abstract linear
systems in a Hilbert space, of the form

) X'(t) = Ax(t) + But), O0<t<t<T
X(t) =Xg € X.

Here, A (free dynamics operator) is at least the generator of agly@ontinuous semigroup on
X, and B (input operator) is a linear operator subject to a suitabipilarity assumption. The
control functionu is L2 in time, with values in a Hilbert spad#. Through the abstract assump-
tions on the operatoré and B, a class of partial differential equations, with boundpoyht
control, is identified. We shall mostly focus our attentiamsystems which satisfy condition
(H2) = (8), see 8§1.2 below. It is known ([13]) that this condition amisuio a trace regularity
property which is fulfilled by the solutions to a variety ofg®rbolic (hyperbolic-like) partial
differential equations.

With system (1), we associate the following cost functional
T
@ IO 0 = [ F O, u®) -+ (Prx(T). X))

T

whereF is a continuous quadratic form ot x U,
3) F(x, u) = (QX, X) + (Su X) + (X, SU + (Ru, u),

andx(t) = X(t; 7, Xg, U) is the solution to system (1) due tig-) € L2(z, T; U). Itis asked to
provide conditions under which, for eagh € X, a constant; 1 (Xg) exists such that

4 inf Jr 7(X0: U) = Cr 7 (X0) -
uel2(r,T;U) ’
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The special, important case, where
(5) $=0, Q Pr>0, R>y>0,

is now referred to as the classical (standard LQR problem. We can say that this problem
is now pretty well understood even for boundary control eyst: the corresponding Riccati
operator yields the synthesis of the optimal control (s&)[1

Functionals which do not display property (5) arise in d#f& fields of systems/control
theory. To name a few, the study of dissipative systems [28]ere typical cases are

Foou =[u2—x2,  Fou = (xu);

the analysis of second variations of nonlinear control f@ois; Hy, theory. It is worth recalling
that the theory of infinite horizon linear quadratic contleleloped in [17], including the case
of singularfunctionals, withR = 0, has more recently provided new insight in the study of the
standard LQR problem for special classes of boundary cosystems, see [21, 12].

In conclusion, the characterization of property (4), in arengeneral framework than the
one defined by (5), is the object of then-standard_inear Quadratic Regulator (LQR) problem.

Most results of the theory of the non-standard LQR problemfifate dimensional sys-
tems have been extended to the boundary control setting hilllesge that in particular, neces-
sary conditions or sufficient conditions in order that (4yagisfied can be provided, in term of
non-negativity of suitable functionals. Unlike the infetime horizon case, a gap still remains
between necessary (non-negativity) conditions and seffidinon-negativity) conditions, even
when system (1) is exactly controllable. We shall examifgiisue more in detail in 83.

The infinite dimensional problem reveals however new disitie features. It is well known
that in the finite dimensional case, the conditien> 0 has long been recognized as necessary
in order that (4) is fulfilled; this applies even to time-dedent systems, see [7]. This property
extends to infinite dimensional systems, whHep = 0 (see [14, 6]). In contrast, in [6] an
example is provided where, in spite of the fact tRais negative definite, the cost functional is
coercive inL2(0, T; U), so that (4) is obviously satisfied. Crucially in that exaenpr # 0,
while the dynamics is given by a first order hyperbolic equath one dimension, with control
acted on the boundary.

Finally, we note that over an infinite horizon, the non-nigfgtcondition which is neces-
sary (and sufficient, under controllability of system (1) boundedness from below of the cost,
is in fact equivalent to a suitable frequency domain ineigdlL5) in 82, whose validity can be
easily checked. In contrast, whénis finite, there is a lack of a frequency domain interpretatio
of the conditions provided.

The plan of the paper is the following. In 81.1 we provide a&bdutline of the literature
concerning the non-standard, finite horizon LQR problemirifinite dimensional systems. In
81.2 we introduce the abstract assumptions which charaetdre class of dynamics of inter-
est. In 82 we derive necessary conditions in order that (datisfied, whereas 83 contains the
statement of sufficient conditions. Most results of §2 andu&3extracted from [6].

1.1. Literature

In this section we would like to provide a broad outline of wdutions to the non-standard,
finite horizon LQR problem for infinite dimensional systems. Foedew of the richest liter-
ature on the same problem over iafinite horizon, we refer to [20]. We just recall that most
recent extensions to the boundary control setting are gdivtl], [14, Ch. 9], [18, 22, 23, 24].



The non-standard LQR problem 107

Application to stability of holomorphic semigroup systewith boundary input is obtained, e.g.,
in [4].

The LQR problem with non-coercive functionals over a finited interval has been the
object of research starting around the 1970s. The mosteadiie contribution to the study of
this problem has been given, in our opinion, in [19]. For a poghensive account of the theory
developed in a finite dimensional context, and an extenssteof references, we refer to the
monography [7].

The first paper which deals with the non-standard LQR proldear a finite time interval
in infinite dimensions is, to our knowledge, [27]. The autbonsiders dynamics of the form
(1), which model distributed systems, with distributed tcon Partial results are provided in
order to characterize (4), without constraints on the foBin ¢xcept forS = 0. Moreover, the
issue of the existence (and uniqueness) of an optimal ddstconsidered, under the additional
assumption thaR is coercive.

A paper which deals with minimization of possible non-conaed non-coercive function-
als, in a context which is more general than ours, is [1]. Nsag/ conditions or sufficient
conditions for the existence of minimizers are stated themhich involve a suitable ‘recession
functional’ associated with the original functional.

In [9], the analysis is again restricted to cost functiorfalswhichR = 1, S= 0 (Q, Py
are allowed indefinite). SincR is coercive, the issue of the existence of solutions to tleedRi
equation associated with the control problem is investigiaA new feature of the non-standard
problem is pointed out, that the existence of an optimalrobig not equivalent to the existence
of a solution to the Riccati equation on [D].

The study of the LQR problem with general cost functiondid,is the case of distributed
systems with distributed control, has been carried out jn Extensions of most finite dimen-
sional results of [19] are provided. The application of thelBan optimality principle to the
infimization problem leads to introduce a crucial integnaéiator inequality, the so called ‘Dis-
sipation Inequality’,

b
(P(@x(@), x(@)) < (P(b)x(b), x(b)) +/ F(x(s),u(s)ds, 7<a<b<T,
a

whose solvability is equivalent to (4). Moreover, in [5] thegularity properties of the value
function

(6) V(t; Xg) = inf Jr 7 (Xo: U)
uel?(r,T;U)

of the infimization problem are investigated, and new rasaite provided in this direction. In
particular, it is showed that — unlike the standard case fuhetiont — V (z; Xg) is in general
only upper semicontinuous on,[0], and that lack of continuity in the interior of [0] may
occurr, for instance, in the case of delay systems.

We remark that in all the aforementioned papers [27, 9, Shragmecessary conditions for
finiteness of (6), a basic non-negativity condition is pded, namely (13) below, which in turn
impliesR > 0. On the other hand, sufficient conditions are so far givemform which requires
coercivity of the operatoR.

Finally, more recently, extensions to the boundary corgettling have been provided for a
class of holomorphic semigroup systems ([14, Ch. 9], [2&}) for a class of ‘hyperbolic-like’
dynamics ([6]), respectively. We note that in [14] and [2@]raater emphasis is still placed on
thenon-singularcase, sincéR is assumed coercive.
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1.2. Notations, basic assumptions and abstract classes gframics

As explained in the introduction, we consider systems ofdhm (1) in abstract spaces of infinite
dimension. A familiarity with the representation of conlied infinite dimensional systems is
assumed, compatible with, e.g., [2].

Most notation used in the paper is standard. We just pointhattinner products in any
Hilbert space are denoted Ky -); norms and operator norms are denoted by the synibdls
and| - ||, respectively. The linear space of linear, bounded opesdtom X to Y is denoted by
L(X,Y) (LX), if X=Y).

Throughout the paper we shall make the following standisgiaptions on the state equa-
tion (1) and the cost functional (2):

(i) A:D(A) c X — X is the generator of a strongly continuous (s.c.) semigreffpon
X, t>0;

(i) B e LU, (D(A*)'); equivalently,
(7 A7V B e L(U, X) for some constant < [0, 1].
(iii) Q, Py € L(X),Se LU, X), Re L(U); Q, Pr, R are selfadjoint.

REMARK 1. Assumptionsi)-(ii ) identify dynamics which model distributed systems with
distributed/boundary/point control. More specificallyetcase of distributed control leads to a
bounded input operatds, namelyy = 0in (ii ), whereags > 0 refers to the more challenging
case of boundary/point control.

In order to characterize two main classes of partial difided equations problems of inter-
est, roughly the ‘parabolic’ class and the ‘hyperbolic’'ssawe follow [13] and introduce two
distinct abstract conditions:

(H1) the s.c. semigroup”® is analytic on X, t> 0, and the constany appearing in (7) is
strictly < 1;

(H2) there exists a positive constant kuch that
T *
(8) / IB*eNx|2dt < kr|x|2 VX e D(A%).
0
It is well known that under eithaiH 1) or (H2), the (input-solution) operator

t
9) L :u— (Lzu)(t) :=/ eAt=9By(s)rmds,

T

is continuous fromL2(z, T; U) to L2(z, T; X). Consequently, system (1) admits a uniauiéd
solution on(z, T) given by

(10) x(t) = A"y + (Louyt),

which is (at least).2 in time. For a detailed analysis of examples of partial déffgial equations
with boundary/point control which fall into either classewefer to [13].

Let us recall thatH?2) is in fact equivalent to ([8])

(11) L, continuous: L2(z, T;U) — C(z, T;: X),
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and that the following estimate holds true, for a positivestantC, t and for anyu(-) in
L2(z, T; U):

(12) ((Lew®] < Cot Ul 2 Toy) VL€ [ T]

Therefore, for any initial datumrg € X, the unique mild solutiox(-; 7, Xg, u) to equation
(1), given by (10), is continuous om,[T], in particular at = T. Thus, the termix(T), Pt x(T))
makes sense for every contrgl) € L2(1', T;U).

REMARK 2. We note thafH 2), hence (11), follows as well frofH 1), wheny € [0, 1/2].
Instead, wher{H1) holds withy e [1/2, 1], counterexamples can be given to continuity of
solutions at = T, see [15, p. 202]. In that case, unless smoothing propatfiBs are required,
the class of admissible controls need to be restricted. Ceimepsive surveys of the theory of the
standard LQR problem for systems subjectitbl) are provided in [13] and [3]. Partial results
for the corresponding non-standard regulator can be foufitdi, Ch. 9].

In the present paper we shall mainly consider systems obtime f1) which satisfy assump-
tion (H2). This model covers many partial differential equationshvidbundary/point control,
including, e.g., second order hyperbolic equations, Efernoulli and Kirchoff equations, the
Schrodinger equation (see [13]).

2. Necessary conditions

In this section we are concerned with necessary conditior@der that (4) is satisfied, with
special regard to the role of conditidt > O.

We begin with the statement of two basic necessary conditiarthe case of distributed sys-
tems withdistributedcontrol. For the sake of completeness, an outline of thefgsagiven; we
refer to [5] for details. Condition (13) below is often rafed to as theon-negativity condition

THEOREM1. Assume that B= £(U, X) (equivalently,(H2) holds, withy = 0). If there
existal <t < T and an y € X such that (4) is satisfied, then

(13) LTOuW=0 Vuel?sT;U),
which in turn implies
(14) R>0.

Sketch of the proofFor simplicity of exposition we assume that (4) is satisfigith r = 0. In
order to show that this implies (13), one first derives a regmeation of the cosly 1 (Xg; U) as
a quadratic functional oh2(0, T; U), whenxg is fixed, namely

Jo, T (Xp; U) = (MXg, Xp)x + 2 Re(Nxg, U>L2(O,T;U) + (Ru, u>L2(O,T;U) ,

with M, A/ andR suitable bounded operators. ReadiRu, u) = Jo,7(G; u), and condition
(13) follows from general results pertaining to infimizatiof quadratic functionals (see [5]).
Next, we use the actual expression of the operRtand the regularity of the input-solution
operatorL g defined by (9). Boundedness of the input operd&dras here a crucial role. Pro-
ceeding by contradiction, (14) follows as a consequencé&3)f (
|



110 F. Bucci

REMARK 3. A counterpart of Theorem 1 can be stated in infinite horizamely when
T = 400 in (2) (setPr = 0). In this case, if the semigrow™ is not exponentially stable,
the cost is not necessarily finite for an arbitrary contr@) € L2(0, co; U). Consequently, the
class of admissible controls need to be restricted. Howeweter stabilizability of the system
(1), a non-negativity condition and (14) follow as well frqd). Even more, as remarked in the
introduction, the non-negativity condition has a frequedomain counterpart ([17]), which in
the stable case reads as

M(iw) :=B*(—iwl — A% 1Q(wl — A7IB+ S'(wl — A~1B

(15)
+B*(—iwl — A%TIStR>0 VoeR.

Theorem 1 can be extended to boundary control systems opirin

THEOREM?Z2 ([6]). Assumd&H 2). Then the following statements hold true:

(i) ifthere exists anx e X such that (4) is satisfied, then (13) holds;
(i) if Pt = 0, then (13) implies (14); hence (14) is a necessary conditimrder that (4) is
satisfied.
(iii) if Pt # 0, then (14) is not necessary in order that (13) is satisfied.

Sketch of the proofitem (i) can be shown by using essentially the same arguments as in the
proof of Theorem 1, which still apply to the present case, uassumptior(H?2). Similarly,
whenPt = 0, (ii) follows as well.

The following example ([6, Ex. 4.4]) illustrates the thitém. Let us consider, for a fixed
T € (0, 1) ande > 0, the cost functional

T 1 T
Jo,T<xO(->;u>=/0 {/T |x(t,s>|2ds—e|u<t>|2} o|t+/0 IX(T, &)1 dt,

wherex(t, &) solves the boundary value problem

{ Xt (t, &) = —Xe(t, &)

(16) x(0, &) = Xo(§) 0<é&<1

X(t,0) = u(t) O<t<T.

Note that herlR = —¢l, Pt = I.
The solution to (16), corresponding g = O, is given by

0 t<é§

4 o= le_g 1ok

so that

T T
—e/ |u<t>|2dt+/ lu(T — )2 de
0 0

.
(1—¢) / lu(t)|dt .
0

Jo,T(Xo =0; u)

Therefore, if 0< € < 1, Jo 7(0; u) is not only positive but even coercive ir?, which implies
(4). NeverthelessR < 0.
|
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A better result can be provided in the case of holomorphidgemp systems, by using the
smoothing properties of the operatof. Somehow the ‘analytic case’ parallels the case when
the input operator is bounded. See [14, Ch. 9, Theorem 3:théoproof.

THEOREM 3. Assume thatH1) holds, withy < 1/2. Then (14) is a necessary condition
in order that (4) is satisfied, even wheg B 0.

3. Sufficient conditions

In this section we provide sufficient conditions in orderttf# is satisfied. Let us go back to the
non-negativity conditions of Theorem 1. It can be easilywgahthat neither (14), nor (13), are,
by themselves, sufficient to guarantee that the cost fumatis bounded from below.

ExaMPLE 1. LetX = U = R, and sett = 0, A = —1, B = 0 in (1); moreover, let
F(x, u) = xu. Note that hereR = 0. For anyxg, the solution to (1) is given by(t) = xge™,
so that

.
Jo, T (Xg: u) = xo/ e tuct)dt
0

for any admissible contral. ThereforeJy 1(0; u) = 0, and (13) holds true, whereas it is readily
verified that wherxg # 0, infy Jg T (Xg; U) = —oo (if xg > 0O take, for instance, the sequence
Ugk() = —kon [0 T]).

If T = +o00, the same example shows that Theorem 1 cannot be reverdsalitvtirther
assumptions. However it turns out that, over an infinite Zej the necessary non-negativity
condition (13) is also sufficient in order that (4) is satidfié system (1) is completely control-
lable. This property is well known in the finite dimensionake, since the early work [10].

Recently, the aforementioned result has been extendedutwdboy control systems, under
the following assumptions:

(i) A:D(A) c X — X isthe generator of a s.c. grourﬁbon X, teR;
(H2) there exists a T~ 0 and a constantk > 0 such that

T *
(18) / IB*eA Ix12dt < kr|x[2 VX e D(A");
0

(H3) system (1) is completely controllable, namely for each ggix; € X thereisa T and
an admissibile controb(-) such that XT; O, Xg, v) = X3.

For simplicity of exposition, we state the theorem belowenmtie additional condition thaf™
is exponentially stable.

THEOREM4 ([22]). Assuméi’)—(H2)—(H3). If
Joo(O;u) >0 Vue L0, 00;U),
then for each § € X there exists a constanta(Xg) such that

L2((;nf o) Joo(X0: U) > Coo(Xg) VU € L2(0, 00;U) .
,00;
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We now return to the finite time interval [@'] and introduce the assumption that the system
is exactly controllable on a certain interval [Q (see, e.g., [3]):

(H3) thereis anr> 0 such that, for each pairg x; € X, there exists an admissibile control
v(-) € L2(0, r; U) yielding X ; 0, X, v) = X;. Equivalently,

r
(19) r, ¢ >0: / IB*e” tx|2 dt > ¢ [x|2 Vx € D(A").
0

On the basis of Theorem 4, one would be tempted to formulatéottowing claim.
CLAIM 5. Assume(i’)—(H2)—(H?3). If
JoTO;u) >0 VYuel?0T;U),
then (4) is satisfied for& z < T.

It turns out that this claim is false, as it can been shown bgme®f examples: see [7, 6].
A correct counterpart of Theorem 4 over a finite time intehad been given in [6].

THEOREMG ([6]). Assuméi’)—(H2)—(H3). If
(20) ITOw=0  Vuel?0,T+r;U),
then (4) is satisfied fod < 7 < T.

We point out that in fact a proof of Theorem 6 can be provideatvdoes not makexplicit
use of assumptiofi)’, see Theorem 7 below. Let us recall however that, when thet ioyer-
ator B is bounded, controllability of the pa{A, B) on [0, r], namely assumptionH 3) above,
implies that the semigroug™ is right invertible, [16]. Therefore, the actual need of some kind
of ‘group property’ in Theorem 6 is an issue which is left farther investigation.

THEOREM7. Assume&H2)—(H3). If (20) holds, then (4) is satisfied for< 7 < T.
Proof. Let x; € X be given. By(H3) there exists a contral(-) € L2(0,r; U) steering the
solution of (1) fromxg = 0 toxq in timer, namelyx(r; 0, 0, v) = x1. Obviously,v depends

on x1: more precisely, it can be shown that, as a consequencewhptiens(H2) and(H3), a
constantK exists such that

|U|L2(O,r;U) < Kixal,
see [6]. For arbitrary € L2(r, T +r; U), set now

v(t) O<t<r

uv(t)={ u) r<t<T-+r.

Readilyu, (-) € L2(0, T +r; U), andJp T4r (0; Uy) > 0 due to (20). On the other hand,

r
Jo,T+r (0; Uy) =/0 F(x(s; 0,0, v), v(s)) ds + Jr T4r (X33 1),
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where the first summand is a constant which depends onkj o\ straightforward computa-
tion shows that the second summand equgl$ (x1; Ur), with uy (t) = u(t 4 r) an arbitrary
admissible control on [OT]. In conclusion,

r
Jo.T(X1: Ur) > —/ F(x(s; 0,0, v), v(s)) ds =: c(x1) ,
’ 0

and (4) holds for = 0. The case > 0 can be treated by using similar arguments.
|

REMARK 4. In conclusion, we have provided the sufficiency counteérpéitem (i) of
Theorem 2, under the additional condition that system (&x&tly controllable in time > O.
Apparently, in order that (4) is satisfied, the non-neggtigondition need to be required on
a larger interval than [OT], precisely on an interval of lenght + r. This produces a gap
between necessary conditions and sufficient conditionghalias already pointed out in finite
dimensions ([7]).

Finally, we stress that the exact controllability assumptannot be weakened to null con-
trollability, as pointed out in [6, Ex. 4.5].
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