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THE NON-STANDARD LQR PROBLEM

FOR BOUNDARY CONTROL SYSTEMS †

Abstract.
An overview of recent results concerning the non-standard,finite horizon Lin-

ear Quadratic Regulator problem for a class of boundary control systems is pro-
vided.

1. Introduction

In the present paper we give an account of recent results concerning the regulator problem with
non-coercive, quadratic cost functionals over a finite timeinterval, for a class of abstract linear
systems in a Hilbert spaceX, of the form

{

x′(t) = Ax(t) + Bu(t), 0 ≤ τ < t < T
x(τ) = x0 ∈ X .

(1)

Here,A (free dynamics operator) is at least the generator of a strongly continuous semigroup on
X, and B (input operator) is a linear operator subject to a suitable regularity assumption. The
control functionu is L2 in time, with values in a Hilbert spaceU . Through the abstract assump-
tions on the operatorsA and B, a class of partial differential equations, with boundary/point
control, is identified. We shall mostly focus our attention on systems which satisfy condition
(H2) = (8), see §1.2 below. It is known ([13]) that this condition amounts to a trace regularity
property which is fulfilled by the solutions to a variety of hyperbolic (hyperbolic-like) partial
differential equations.

With system (1), we associate the following cost functional

Jτ,T (x0; u) =

∫ T

τ
F(x(t), u(t)) dt + 〈PT x(T), x(T)〉 ,(2)

whereF is a continuous quadratic form onX × U ,

F(x, u) = 〈Qx, x〉 + 〈Su, x〉 + 〈x, Su〉 + 〈Ru, u〉 ,(3)

andx(t) = x(t; τ, x0, u) is the solution to system (1) due tou(·) ∈ L2(τ, T;U). It is asked to
provide conditions under which, for eachx0 ∈ X, a constantcτ,T (x0) exists such that

inf
u∈L2(τ,T;U )

Jτ,T (x0; u) ≥ cτ,T (x0) .(4)
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The special, important case, where

S= 0, Q, PT ≥ 0, R ≥ γ > 0 ,(5)

is now referred to as the classical (or,standard) LQR problem. We can say that this problem
is now pretty well understood even for boundary control systems: the corresponding Riccati
operator yields the synthesis of the optimal control (see [13]).

Functionals which do not display property (5) arise in different fields of systems/control
theory. To name a few, the study of dissipative systems ([25]), where typical cases are

F(x, u) = |u|2 − |x|2 , F(x, u) = 〈x, u〉 ;

the analysis of second variations of nonlinear control problems;H∞ theory. It is worth recalling
that the theory of infinite horizon linear quadratic controldeveloped in [17], including the case
of singular functionals, withR = 0, has more recently provided new insight in the study of the
standard LQR problem for special classes of boundary control systems, see [21, 12].

In conclusion, the characterization of property (4), in a more general framework than the
one defined by (5), is the object of thenon-standardLinear Quadratic Regulator (LQR) problem.

Most results of the theory of the non-standard LQR problem for finite dimensional sys-
tems have been extended to the boundary control setting. We shall see that in particular, neces-
sary conditions or sufficient conditions in order that (4) issatisfied can be provided, in term of
non-negativity of suitable functionals. Unlike the infinite time horizon case, a gap still remains
between necessary (non-negativity) conditions and sufficient (non-negativity) conditions, even
when system (1) is exactly controllable. We shall examine this issue more in detail in §3.

The infinite dimensional problem reveals however new distinctive features. It is well known
that in the finite dimensional case, the conditionR ≥ 0 has long been recognized as necessary
in order that (4) is fulfilled; this applies even to time-dependent systems, see [7]. This property
extends to infinite dimensional systems, whenPT = 0 (see [14, 6]). In contrast, in [6] an
example is provided where, in spite of the fact thatR is negative definite, the cost functional is
coercive inL2(0, T;U), so that (4) is obviously satisfied. Crucially in that example PT 6= 0,
while the dynamics is given by a first order hyperbolic equation in one dimension, with control
acted on the boundary.

Finally, we note that over an infinite horizon, the non-negativity condition which is neces-
sary (and sufficient, under controllability of system (1)) for boundedness from below of the cost,
is in fact equivalent to a suitable frequency domain inequality, (15) in §2, whose validity can be
easily checked. In contrast, whenT is finite, there is a lack of a frequency domain interpretation
of the conditions provided.

The plan of the paper is the following. In §1.1 we provide a brief outline of the literature
concerning the non-standard, finite horizon LQR problem forinfinite dimensional systems. In
§1.2 we introduce the abstract assumptions which characterize the class of dynamics of inter-
est. In §2 we derive necessary conditions in order that (4) issatisfied, whereas §3 contains the
statement of sufficient conditions. Most results of §2 and §3are extracted from [6].

1.1. Literature

In this section we would like to provide a broad outline of contributions to the non-standard,
finite horizon LQR problem for infinite dimensional systems. For a review of the richest liter-
ature on the same problem over aninfinite horizon, we refer to [20]. We just recall that most
recent extensions to the boundary control setting are givenin [11], [14, Ch. 9], [18, 22, 23, 24].
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Application to stability of holomorphic semigroup systemswith boundary input is obtained, e.g.,
in [4].

The LQR problem with non-coercive functionals over a finite time interval has been the
object of research starting around the 1970s. The most noticeable contribution to the study of
this problem has been given, in our opinion, in [19]. For a comprehensive account of the theory
developed in a finite dimensional context, and an extensive list of references, we refer to the
monography [7].

The first paper which deals with the non-standard LQR problemover a finite time interval
in infinite dimensions is, to our knowledge, [27]. The authorconsiders dynamics of the form
(1), which model distributed systems, with distributed control. Partial results are provided in
order to characterize (4), without constraints on the form (3), except forS = 0. Moreover, the
issue of the existence (and uniqueness) of an optimal control is considered, under the additional
assumption thatR is coercive.

A paper which deals with minimization of possible non-convex and non-coercive function-
als, in a context which is more general than ours, is [1]. Necessary conditions or sufficient
conditions for the existence of minimizers are stated therein, which involve a suitable ‘recession
functional’ associated with the original functional.

In [9], the analysis is again restricted to cost functionalsfor which R = I , S = 0 (Q, PT
are allowed indefinite). SinceR is coercive, the issue of the existence of solutions to the Riccati
equation associated with the control problem is investigated. A new feature of the non-standard
problem is pointed out, that the existence of an optimal control is not equivalent to the existence
of a solution to the Riccati equation on [0, T ].

The study of the LQR problem with general cost functionals, still in the case of distributed
systems with distributed control, has been carried out in [5]. Extensions of most finite dimen-
sional results of [19] are provided. The application of the Bellman optimality principle to the
infimization problem leads to introduce a crucial integral operator inequality, the so called ‘Dis-
sipation Inequality’,

〈P(a)x(a), x(a)〉 ≤ 〈P(b)x(b), x(b)〉 +

∫ b

a
F(x(s), u(s)) ds , τ ≤ a < b ≤ T ,

whose solvability is equivalent to (4). Moreover, in [5] theregularity properties of the value
function

V(τ ; x0) = inf
u∈L2(τ,T;U )

Jτ,T (x0; u)(6)

of the infimization problem are investigated, and new results are provided in this direction. In
particular, it is showed that – unlike the standard case – thefunctionτ → V(τ ; x0) is in general
only upper semicontinuous on [0, T ], and that lack of continuity in the interior of [0, T ] may
occurr, for instance, in the case of delay systems.

We remark that in all the aforementioned papers [27, 9, 5], among necessary conditions for
finiteness of (6), a basic non-negativity condition is provided, namely (13) below, which in turn
implies R ≥ 0. On the other hand, sufficient conditions are so far given ina form which requires
coercivity of the operatorR.

Finally, more recently, extensions to the boundary controlsetting have been provided for a
class of holomorphic semigroup systems ([14, Ch. 9], [26]),and for a class of ‘hyperbolic-like’
dynamics ([6]), respectively. We note that in [14] and [26] agreater emphasis is still placed on
thenon-singularcase, sinceR is assumed coercive.
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1.2. Notations, basic assumptions and abstract classes of dynamics

As explained in the introduction, we consider systems of theform (1) in abstract spaces of infinite
dimension. A familiarity with the representation of controlled infinite dimensional systems is
assumed, compatible with, e.g., [2].

Most notation used in the paper is standard. We just point outthat inner products in any
Hilbert space are denoted by〈·, ·〉; norms and operator norms are denoted by the symbols| · |

and‖ · ‖, respectively. The linear space of linear, bounded operators from X to Y is denoted by
�

(X, Y) (
�

(X), if X = Y).

Throughout the paper we shall make the following standing assumptions on the state equa-
tion (1) and the cost functional (2):

(i ) A : D(A) ⊂ X → X is the generator of a strongly continuous (s.c.) semigroupeAt on
X, t > 0;

(i i ) B ∈
�

(U, (D(A∗))′); equivalently,

A−γ B ∈
�

(U, X) for some constantγ ∈ [0, 1] .(7)

(i i i ) Q, PT ∈
�

(X), S∈
�

(U, X), R ∈
�

(U); Q, PT , R are selfadjoint.

REMARK 1. Assumptions(i )-(i i ) identify dynamics which model distributed systems with
distributed/boundary/point control. More specifically, the case of distributed control leads to a
bounded input operatorB, namelyγ = 0 in (i i ), whereasγ > 0 refers to the more challenging
case of boundary/point control.

In order to characterize two main classes of partial differential equations problems of inter-
est, roughly the ‘parabolic’ class and the ‘hyperbolic’ class, we follow [13] and introduce two
distinct abstract conditions:

(H1) the s.c. semigroup eAt is analytic on X, t> 0, and the constantγ appearing in (7) is
strictly < 1;

(H2) there exists a positive constant kT such that

∫ T

0
|B∗eA∗ t x|2 dt ≤ kT |x|2 ∀x ∈ D(A∗) .(8)

It is well known that under either(H1) or (H2), the (input-solution) operator

Lτ : u → (Lτ u)(t) :=
∫ t

τ
eA(t−s) Bu(s) rmds,(9)

is continuous fromL2(τ, T;U) to L2(τ, T; X). Consequently, system (1) admits a uniquemild
solution on(τ, T) given by

x(t) = eA(t−τ )x0 + (Lτ u)(t) ,(10)

which is (at least)L2 in time. For a detailed analysis of examples of partial differential equations
with boundary/point control which fall into either class, we refer to [13].

Let us recall that(H2) is in fact equivalent to ([8])

Lτ continuous: L2(τ, T;U) → C(τ, T; X) ,(11)
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and that the following estimate holds true, for a positive constantCτ,T and for anyu(·) in
L2(τ, T; U):

|(Lτ u)(t)| ≤ Cτ,T |u|L2(τ,T;U ) ∀t ∈ [τ, T ](12)

Therefore, for any initial datumx0 ∈ X, the unique mild solutionx(·; τ, x0, u) to equation
(1), given by (10), is continuous on [τ, T ], in particular att = T . Thus, the term〈x(T), PT x(T)〉

makes sense for every controlu(·) ∈ L2(τ, T;U).

REMARK 2. We note that(H2), hence (11), follows as well from(H1), whenγ ∈ [0, 1/2[.
Instead, when(H1) holds withγ ∈ [1/2, 1[, counterexamples can be given to continuity of
solutions att = T , see [15, p. 202]. In that case, unless smoothing propertiesof PT are required,
the class of admissible controls need to be restricted. Comprehensive surveys of the theory of the
standard LQR problem for systems subject to(H1) are provided in [13] and [3]. Partial results
for the corresponding non-standard regulator can be found in [14, Ch. 9].

In the present paper we shall mainly consider systems of the form (1) which satisfy assump-
tion (H2). This model covers many partial differential equations with boundary/point control,
including, e.g., second order hyperbolic equations, Euler–Bernoulli and Kirchoff equations, the
Schrödinger equation (see [13]).

2. Necessary conditions

In this section we are concerned with necessary conditions in order that (4) is satisfied, with
special regard to the role of conditionR ≥ 0.

We begin with the statement of two basic necessary conditions, in the case of distributed sys-
tems withdistributedcontrol. For the sake of completeness, an outline of the proof is given; we
refer to [5] for details. Condition (13) below is often referred to as thenon-negativity condition.

THEOREM 1. Assume that B∈
�

(U, X) (equivalently,(H2) holds, withγ = 0). If there
exist a0 ≤ τ < T and an x0 ∈ X such that (4) is satisfied, then

Jτ,T (0; u) ≥ 0 ∀u ∈ L2(τ, T;U) ,(13)

which in turn implies

R ≥ 0 .(14)

Sketch of the proof.For simplicity of exposition we assume that (4) is satisfied,with τ = 0. In
order to show that this implies (13), one first derives a representation of the costJ0,T (x0; u) as
a quadratic functional onL2(0, T;U), whenx0 is fixed, namely

J0,T (x0; u) = 〈� x0, x0〉X + 2 Re〈
�

x0, u〉L2(0,T;U ) + 〈�u, u〉L2(0,T;U ) ,

with � ,
�

and� suitable bounded operators. Readily〈�u, u〉 = J0,T (0; u), and condition
(13) follows from general results pertaining to infimization of quadratic functionals (see [5]).

Next, we use the actual expression of the operator� and the regularity of the input-solution
operatorL0 defined by (9). Boundedness of the input operatorB has here a crucial role. Pro-
ceeding by contradiction, (14) follows as a consequence of (13).
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REMARK 3. A counterpart of Theorem 1 can be stated in infinite horizon, namely when
T = +∞ in (2) (setPT = 0). In this case, if the semigroupeAt is not exponentially stable,
the cost is not necessarily finite for an arbitrary controlu(·) ∈ L2(0,∞;U). Consequently, the
class of admissible controls need to be restricted. However, under stabilizability of the system
(1), a non-negativity condition and (14) follow as well from(4). Even more, as remarked in the
introduction, the non-negativity condition has a frequency domain counterpart ([17]), which in
the stable case reads as

5(iω) :=B∗(−iωI − A∗)−1Q(iωI − A)−1B + S∗(iωI − A)−1B

+ B∗(−iωI − A∗)−1S+ R ≥ 0 ∀ω ∈ � .
(15)

Theorem 1 can be extended to boundary control systems only inpart.

THEOREM 2 ([6]). Assume(H2). Then the following statements hold true:

(i ) if there exists an x0 ∈ X such that (4) is satisfied, then (13) holds;

(i i ) if PT = 0, then (13) implies (14); hence (14) is a necessary conditionin order that (4) is
satisfied.

(i i i ) if PT 6= 0, then (14) is not necessary in order that (13) is satisfied.

Sketch of the proof.Item (i ) can be shown by using essentially the same arguments as in the
proof of Theorem 1, which still apply to the present case, dueto assumption(H2). Similarly,
whenPT = 0, (i i ) follows as well.

The following example ([6, Ex. 4.4]) illustrates the third item. Let us consider, for a fixed
T ∈ (0, 1) andε > 0, the cost functional

J0,T (x0(·); u) =

∫ T

0

{

∫ 1

T
|x(t, ξ)|2 dξ − ε|u(t)|2

}

dt +

∫ T

0
|x(T, ξ)|2 dξ ,

wherex(t, ξ) solves the boundary value problem






xt (t, ξ) = −xξ (t, ξ)

x(0, ξ) = x0(ξ) 0 < ξ < 1
x(t, 0) = u(t) 0 < t < T .

(16)

Note that hereR = −ε I , PT = I .

The solution to (16), corresponding tox0 ≡ 0, is given by

x(t, ξ) =

{

0 t < ξ

u(t − ξ) t > ξ ,
(17)

so that

J0,T (x0 ≡ 0; u) = −ε

∫ T

0
|u(t)|2 dt +

∫ T

0
|u(T − ξ)|2 dξ

= (1 − ε)

∫ T

0
|u(t)|2 dt .

Therefore, if 0< ε < 1, J0,T (0; u) is not only positive but even coercive inL2, which implies
(4). Nevertheless,R < 0.
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A better result can be provided in the case of holomorphic semigroup systems, by using the
smoothing properties of the operatorLτ . Somehow the ‘analytic case’ parallels the case when
the input operator is bounded. See [14, Ch. 9, Theorem 3.1] for the proof.

THEOREM 3. Assume that(H1) holds, withγ < 1/2. Then (14) is a necessary condition
in order that (4) is satisfied, even when PT 6= 0.

3. Sufficient conditions

In this section we provide sufficient conditions in order that (4) is satisfied. Let us go back to the
non-negativity conditions of Theorem 1. It can be easily shown that neither (14), nor (13), are,
by themselves, sufficient to guarantee that the cost functional is bounded from below.

EXAMPLE 1. Let X = U = � , and setτ = 0, A = −1, B = 0 in (1); moreover, let
F(x, u) = xu. Note that hereR = 0. For anyx0, the solution to (1) is given byx(t) = x0e−t ,
so that

J0,T (x0; u) = x0

∫ T

0
e−t u(t) dt

for any admissible controlu. ThereforeJ0,T (0; u) ≡ 0, and (13) holds true, whereas it is readily
verified that whenx0 6= 0, infu J0,T (x0; u) = −∞ (if x0 > 0 take, for instance, the sequence
uk(t) = −k on [0, T ]).

If T = +∞, the same example shows that Theorem 1 cannot be reversed without further
assumptions. However it turns out that, over an infinite horizon, the necessary non-negativity
condition (13) is also sufficient in order that (4) is satisfied, if system (1) is completely control-
lable. This property is well known in the finite dimensional case, since the early work [10].

Recently, the aforementioned result has been extended to boundary control systems, under
the following assumptions:

(i ′) A : D(A) ⊂ X → X is the generator of a s.c. group eAt on X, t ∈ � ;

(H2′) there exists a T> 0 and a constant kT > 0 such that

∫ T

0
|B∗eA∗ t x|2 dt ≤ kT |x|2 ∀x ∈ D(A∗) ;(18)

(H3′) system (1) is completely controllable, namely for each pairx0, x1 ∈ X there is a T and
an admissibile controlv(·) such that x(T; 0, x0, v) = x1.

For simplicity of exposition, we state the theorem below under the additional condition thateAt

is exponentially stable.

THEOREM 4 ([22]). Assume(i ′)–(H2′)–(H3′). If

J∞(0; u) ≥ 0 ∀u ∈ L2(0, ∞;U) ,

then for each x0 ∈ X there exists a constant c∞(x0) such that

inf
L2(0,∞;U )

J∞(x0; u) ≥ c∞(x0) ∀u ∈ L2(0,∞;U) .
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We now return to the finite time interval [0, T ] and introduce the assumption that the system
is exactly controllable on a certain interval [0, r ] (see, e.g., [3]):

(H3) there is an r> 0 such that, for each pair x0, x1 ∈ X, there exists an admissibile control
v(·) ∈ L2(0, r ;U) yielding x(r ; 0, x0, v) = x1. Equivalently,

∃ r, cr > 0 :
∫ r

0
|B∗eA∗ t x|2 dt ≥ cr |x|2 ∀x ∈ D(A∗) .(19)

On the basis of Theorem 4, one would be tempted to formulate the following claim.

CLAIM 5. Assume(i ′)–(H2)–(H3). If

J0,T (0; u) ≥ 0 ∀u ∈ L2(0, T;U) ,

then (4) is satisfied for 0≤ τ ≤ T .

It turns out that this claim is false, as it can been shown by means of examples: see [7, 6].

A correct counterpart of Theorem 4 over a finite time intervalhas been given in [6].

THEOREM 6 ([6]). Assume(i ′)–(H2)–(H3). If

J0,T+r (0; u) ≥ 0 ∀u ∈ L2(0, T + r ;U) ,(20)

then (4) is satisfied for0 ≤ τ ≤ T .

We point out that in fact a proof of Theorem 6 can be provided which does not makeexplicit
use of assumption(i )′, see Theorem 7 below. Let us recall however that, when the input oper-
ator B is bounded, controllability of the pair(A, B) on [0, r ], namely assumption(H3) above,
implies that the semigroupeAt is right invertible, [16]. Therefore, the actual need of some kind
of ‘group property’ in Theorem 6 is an issue which is left for further investigation.

THEOREM 7. Assume(H2)–(H3). If (20) holds, then (4) is satisfied for0 ≤ τ ≤ T .

Proof. Let x1 ∈ X be given. By(H3) there exists a controlv(·) ∈ L2(0, r ;U) steering the
solution of (1) fromx0 = 0 to x1 in time r , namelyx(r ; 0, 0, v) = x1. Obviously,v depends
on x1: more precisely, it can be shown that, as a consequence of assumptions(H2) and(H3), a
constantK exists such that

|v|L2(0,r ;U ) ≤ K |x1| ,

see [6]. For arbitraryu ∈ L2(r, T + r ;U), set now

uv(t) =

{

v(t) 0 ≤ t ≤ r
u(t) r < t ≤ T + r .

Readilyuv(·) ∈ L2(0, T + r ;U), andJ0,T+r (0; uv) ≥ 0 due to (20). On the other hand,

J0,T+r (0; uv) =

∫ r

0
F(x(s; 0, 0, v), v(s)) ds + Jr,T+r (x1; u) ,
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where the first summand is a constant which depends only onx1. A straightforward computa-
tion shows that the second summand equalsJ0,T (x1; ur ), with ur (t) = u(t + r ) an arbitrary
admissible control on [0, T ]. In conclusion,

J0,T (x1; ur ) ≥ −

∫ r

0
F(x(s; 0, 0, v), v(s)) ds =: c(x1) ,

and (4) holds forτ = 0. The caseτ > 0 can be treated by using similar arguments.

REMARK 4. In conclusion, we have provided the sufficiency counterpart of item (i ) of
Theorem 2, under the additional condition that system (1) isexactly controllable in timer > 0.
Apparently, in order that (4) is satisfied, the non-negativity condition need to be required on
a larger interval than [0, T ], precisely on an interval of lenghtT + r . This produces a gap
between necessary conditions and sufficient conditions, which was already pointed out in finite
dimensions ([7]).

Finally, we stress that the exact controllability assumption cannot be weakened to null con-
trollability, as pointed out in [6, Ex. 4.5].
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