K. Corrádi - S. Szabó

PERIODIC FACTORIZATION OF A FINITE ABELIAN
 2-GROUP

Abstract

. Let G be a finite abelian 2-group that is a direct product of a cyclic group and an elementary group. Suppose that G is a direct product of its subsets A_{1}, \ldots, A_{n} of cardinality two or four. Then one of the subsets A_{1}, \ldots, A_{n} is periodic. The subset A_{i} is periodic if $A_{i} g=A_{i}$ holds with a nonidentity element g of G. This is a generalization of an earlier result of A. D. Sands and S. Szabó.

1. Introduction

Throughout the paper G will be a finite abelian group. We use multiplicative notation. The identity element is denoted by e. The symbol " \subset " denotes a not necessarily strict inclusion, $|a|$ denotes the order of the element $a \in A,|A|$ denotes the cardinality of the subset A of G. If G is a direct product of its subsets A_{1}, \ldots, A_{n}, then we express this fact saying that the equality $G=A_{1} \cdots A_{n}$ is a factorization of G. If $e \in A_{i}$, then we say that the subset A_{i} is normed. We call the factorization $G=A_{1} \cdots A_{n}$ normed if each A_{i} is normed. A subset A of G is called periodic if there is a $g \in G \backslash\{e\}$ such that $A g=A$. The element g is a period of A. If G is a direct product of cyclic groups of orders t_{1}, \ldots, t_{s} respectively, then we say G is of type $\left(t_{1}, \ldots, t_{s}\right)$. A. D. Sands and S. Szabó [2] proved that if G is of type $(2, \ldots, 2)$ and $G=A_{1} \cdots A_{n}$ is a factorization, where $\left|A_{1}\right|=\cdots=\left|A_{n}\right|=4$, then one of the factors A_{1}, \ldots, A_{n} is periodic. We will prove the following generalization of this theorem. Let G be a finite abelian 2-group and let $G=A_{1} \cdots A_{n}$ be a factorization of G, where each $\left|A_{i}\right|$ is either 2 or 4 . If G is of type $\left(2^{\lambda}, 2, \ldots, 2\right)$, then one of the factors A_{1}, \ldots, A_{n} is periodic. We accomplish this using characters of G.

If χ is a character and A is a subset of G, then we denote the sum

$$
\sum_{a \in A} \chi(a)
$$

by $\chi(A)$. If $\chi(A)=0$, then χ annihilates A. We denote by $\operatorname{Ann}(A)$ the set of characters of G that annihilates A.

If A and A^{\prime} are subsets of G such that given any subset B of G, if $G=A B$ is a factorization of G, then $G=A^{\prime} B$ is also a factorization of G, then we say that A is replaceable by A^{\prime}. There is a character test for replaceability due to L. Rédei [1] which reads as follows. If $|A|=\left|A^{\prime}\right|$ and $\operatorname{Ann}(A) \subset \operatorname{Ann}\left(A^{\prime}\right)$, then A can be replaced by A^{\prime}

2. The result

Let G be a finite abelian group and let $A=\{e, a, b, c\}$ be a subset of G. We define a subset A^{\prime} by $A^{\prime}=\{e, a\}\{e, b\}$. Since the equation $c=a b d$ is solvable for d, A can be written in the form $A=\{e, a, b, a b d\}$. We need the next lemma.

Lemma 1. If $|a|=2$, then
(a) $\operatorname{Ann}(A) \subset \operatorname{Ann}\left(A^{\prime}\right)$,
(b) A is periodic if and only if $d=e$,
(c) $\chi(A)=0$ implies $\chi(d)=1$.

Proof. (a) Let χ be a character of G for which $0=\chi(A)=1+\chi(a)+\chi(b)+\chi(c)$. As $|a|=2$, it follows that $\chi(a)=-1$ or $\chi(a)=1$. If $\chi(a)=1$, then $\chi(A)=0$ gives that $\chi(b)=\chi(c)=-1$. Using this we have

$$
\chi\left(A^{\prime}\right)=1+\chi(a)+\chi(b)+\chi(a) \chi(b)=1+1-1-1=0 .
$$

If $\chi(a)=-1$, then $\chi(A)=0$ gives that $\chi(b)=\rho$ and $\chi(c)=-\rho$, where ρ is a root of unity. Using this we have

$$
\chi\left(A^{\prime}\right)=1+\chi(a)+\chi(b)+\chi(a) \chi(b)=1-1+\rho-\rho=0 .
$$

(b) If $d=e$, then $A=A^{\prime}$ and so A is periodic with period a. Conversely, assume that A is periodic with period g. Note that g^{2} is also a period of A if $g^{2} \neq e$. Using this observation we may assume that $|g|=2$. From $e \in A$ it follows that $g \in A$.

$$
\text { If } g=a \text {, then }
$$

$$
A a=\{a, e, a b, b d\}=\{e, a, b, a b d\}=A
$$

gives that $\{a b, b d\}=\{b, a b d\}$. Here either $a b=b$ or $b d=b$. The first one leads to the contradiction $a=e$. The second one gives $d=e$.

If $g=b$, then

$$
A b=\{b, a b, e, a d\}=\{e, a, b, a b d\}=A
$$

gives that $\{a b, a d\}=\{a, a b d\}$. Hence either $a b=a$ or $a d=a$. The first one leads to the contradiction $b=e$. the second one gives $d=e$.

If $g=a b d$, then

$$
A a b d=\left\{a b d, b d, a b^{2} d, e\right\}=\{e, a, b, a b d\}=A
$$

gives that $\left\{a b^{2} d, b d\right\}=\{a, b\}$. Now either $a b^{2} d=b$ or $b d=b$. The first equality gives the contradiction $a b d=e$, the second one provides $d=e$.
(c) If $\chi(A)=0$, then by part (a), $\chi\left(A^{\prime}\right)=0$ and so

$$
0=\chi(A)-\chi\left(A^{\prime}\right)=\chi(a b) \chi(d)-\chi(a b)=\chi(a b)[\chi(d)-1] .
$$

This completes the proof.

After this preparation we are ready to prove the main result of the paper.
THEOREM 1. Let G be a finite group of type $\left(2^{\lambda}, 2, \ldots, 2\right)$. If $G=A_{1} \cdots A_{n}$ is a normed factorization of G, where $\left|A_{i}\right|$ is either 2 or 4 for each $i, 1 \leq i \leq n$, then at least one of the factors A_{1}, \ldots, A_{n} is periodic.

Proof. The $|G|=2$ case is trivial. So we assume that $|G| \geq 4$ and proceed by induction on $|G|$. Clearly G is a direct product of its subgroups H and K of types (2^{λ}) and $(2, \ldots, 2)$ respectively. If $\lambda=1$, then G is of type $(2, \ldots, 2)$. This special case is covered by [2] Theorem 9 . So for the remaining part of the proof we may assume that $\lambda \geq 2$. Let $H=\langle x\rangle$ and $K=\left\langle y_{1}, \ldots, y_{s}\right\rangle$, where $|x|=2^{\lambda}$ and $\left|y_{1}\right|=\cdots=\left|y_{s}\right|=2$. Consider a character χ of G that is faithful on H or equivalently for which $\chi(x)=\rho$, where ρ is a primitive $\left(2^{\lambda}\right)$ th root of unity.

Let $A_{i}=\left\{e, a_{i}\right\}$ be a factor of order 2. If $0=\chi\left(A_{i}\right)=1+\chi\left(a_{i}\right)$, then $\chi\left(a_{i}\right)=-1$ or $\chi\left(a_{i}^{2}\right)=1$ and so $a_{i}^{2}=e$. Therefore A_{i} is periodic with period a_{i}. So in the remaining part of the proof we may assume that $\chi\left(A_{i}\right) \neq 0$ when χ is faithful on H and $\left|A_{i}\right|=2$. As χ is not the principal character of G, it follows that $0=\chi(G)=\chi\left(A_{1}\right) \cdots \chi\left(A_{n}\right)$ and so $\chi\left(A_{i}\right)=0$ for some $i, 1 \leq i \leq n$. Thus we may assume that $\left|A_{i}\right|=4$ for some i.

Let $A_{i}=\left\{e, a_{i}, b_{i}, c_{i}\right\}$ be a factor of order 4. If

$$
0=\chi\left(A_{i}\right)=1+\chi\left(a_{i}\right)+\chi\left(b_{i}\right)+\chi\left(c_{i}\right),
$$

then one of $\chi\left(a_{i}\right), \chi\left(b_{i}\right), \chi\left(c_{i}\right)$ must be -1 and so one of $a_{i}^{2}, b_{i}^{2}, c_{i}^{2}$ must be e. Thus there is at least one factor of order 4 that contains at least one second order element. We choose the notation such that A_{1}, \ldots, A_{m} are all the factors of order 4 containing at least one second order element. If $m=1$, then $\chi\left(A_{1}\right)=0$ for each χ that is faithful on H. Now, by [2] Theorem 1, A_{1} is periodic. So we may assume that $m \geq 2$.

Let us consider an $A_{i}=\left\{e, a_{i}, b_{i}, c_{i}\right\}$ with $1 \leq i \leq m$. We choose the notation such that $\left|a_{i}\right|=2$. Further c_{i} can be written in the form $c_{i}=a_{i} b_{i} d_{i}$ with a suitable $d_{i} \in G$. By Lemma $1 A_{i}$ is periodic if and only if $d_{i}=e$. Thus we may assume that $d_{i} \neq e$. Also by Lemma 1 $\chi\left(A_{i}\right)=0$ implies $\chi\left(d_{i}\right)=1$. From this it follows that A_{i} can be replaced by

$$
\left\{e, a_{i}, b_{i}, a_{i} b_{i} d_{i}^{k}\right\}
$$

for each integer k. In particular, we may assume that $\left|d_{i}\right|=2$ for each $i, 1 \leq i \leq m$. Also A_{i} can be replaced by

$$
\left\{e, a_{i}, b_{i}, a_{i} b_{i}\right\}=\left\{e, a_{i}\right\}\left\{e, b_{i}\right\}
$$

If $b_{i}^{2}=e$, then each element of $A_{i} \backslash\{e\}$ is of order 2 . We will say that A_{i} is a type 1 factor. Now A_{i} can be replaced by $H_{i} B_{i}$, where $H_{i}=\left\langle a_{i}, b_{i}\right\rangle$ and $B_{i}=\{e\}$. If $b_{i}^{2} \neq e$, then a_{i} is the only second order element in A_{i}. We will say that A_{i} is a type 2 factor. In this case A_{i} can be replaced by $H_{i} B_{i}$, where $H_{i}=\left\{e, a_{i}\right\}=\left\langle a_{i}\right\rangle$ and $B_{i}=\left\{e, b_{i}\right\}$.

The subgroup H has a unique subgroup $L=\left\langle x^{2^{\lambda-1}}\right\rangle$ of order 2. From the factorization

$$
G=H_{1} B_{1} \cdots H_{m} B_{m} A_{m+1} \cdots A_{n}
$$

it follows that the product $H_{1} \cdots H_{m}$ is direct. So there can be only one subgroup H_{i} for which $L \subset H_{i}$. Such an H_{i} does not necessarily exists. But if it does, then we choose the notation such that $L \subset H_{1}$. We claim that $L \not \subset H_{1}$ may be assumed.

In order to prove this claim let us consider $A_{1}=\left\{e, a_{1}, b_{1}, c_{1}\right\}$ and distinguish two cases depending on whether A_{1} is of type 1 or type 2 .

If A_{1} is of type 1 , then it can be written in the forms

$$
A_{1}=\left\{e, a_{1}, b_{1}, a_{1} b_{1} d_{1}\right\}, \quad A_{1}=\left\{e, b_{1}, c_{1}, b_{1} c_{1} d_{1}^{\prime}\right\}, \quad A_{1}=\left\{e, a_{1}, c_{1}, a_{1} c_{1} d_{1}^{\prime \prime}\right\}
$$

and can be replaced by the subgroups

$$
H_{1}=\left\langle a_{1}, b_{1}\right\rangle, \quad H_{1}^{\prime}=\left\langle b_{1}, c_{1}\right\rangle, \quad H_{1}^{\prime \prime}=\left\langle a_{1}, c_{1}\right\rangle
$$

respectively. If $L \subset H_{1}$, then one of $a_{1}, b_{1}, a_{1} b_{1}$ is equal to $x^{2^{\lambda-1}}$. In the $a_{1}=x^{2^{\lambda-1}}$ case $a_{1} \notin H_{1}^{\prime}$ since obviously $a_{1} \neq e, a_{1} \neq b_{1}, a_{1} \neq c_{1}$ and $a_{1}=b_{1} c_{1}$ combined with $c_{1}=a_{1} b_{1} d_{1}$ leads to the $d_{1}=e$ contradiction. In the $b_{1}=x^{2^{\lambda-1}}$ case $b_{1} \notin H_{1}^{\prime \prime}$ since clearly $b_{1} \neq e$, $b_{1} \neq a_{1}, b_{1} \neq c_{1}$ and $b_{1}=a_{1} c_{1}$ leads to the $d_{1}=e$ contradiction. In the $a_{1} b_{1}=x^{2^{\lambda-1}}$ case $a_{1} b_{1} \notin H_{1}^{\prime}$ since $a_{1} b_{1}=e, a_{1} b_{1}=b_{1}, a_{1} b_{1}=c_{1}, a_{1} b_{1}=b_{1} c_{1}$ leads in order to the $a_{1}=b_{1}$, $a_{1}=e, d_{1}=e, a_{1}=c_{1}$ contradictions.

If A_{1} is of type 2 , then $a_{1}^{2}=e, b_{1}^{2} \neq e$ and A_{1} can be written in the form $A_{1}=$ $\left\{e, a_{1}, b_{1}, a_{1} b_{1} d_{1}\right\}$ and can be replaced by $H_{1} B_{1}$, where $H_{1}=\left\{e, a_{1}\right\}, B_{1}=\left\{e, b_{1}\right\}$. If $L \subset H_{1}$, then $a_{1}=x^{2^{\lambda-1}}$. Now replace A_{1} by

$$
A_{1}^{\prime}=b_{1}^{-1} A_{1}=\left\{b_{1}^{-1}, b_{1}^{-1} a_{1}, e, a_{1} d_{1}\right\}=\left\{e, a_{1}^{\prime}, b_{1}^{\prime}, a_{1}^{\prime} b_{1}^{\prime} d_{1}^{\prime}\right\}
$$

where $a_{1}^{\prime}=a_{1} d_{1}, b_{1}^{\prime}=b_{1}^{-1} a_{1}, d_{1}^{\prime}=d_{1}$. The only second order element in A_{1}^{\prime} is $a_{1}^{\prime}=a_{1} d_{1}$ which is not equal to $x^{2^{\lambda-1}}$. Here A_{1}^{\prime} is replaceable by $H_{1}^{\prime} B_{1}^{\prime}$, where

$$
H_{1}^{\prime}=\left\langle a_{1}^{\prime}\right\rangle=\left\langle a_{1} d_{1}\right\rangle, \quad B_{1}^{\prime}=\left\{e, b_{1}^{\prime}\right\}
$$

Thus in each case we may assume that $L \not \subset H_{1}$.
Replace A_{i} by $H_{i} B_{i}$ in the factorization $G=A_{1} \cdots A_{n}$ to get the factorization

$$
G=A_{1} \cdots A_{i-1}\left(H_{i} B_{i}\right) A_{i+1} \cdots A_{n},
$$

where $1 \leq i \leq m$. This leads to the factorization

$$
\bar{G}=\bar{A}_{1} \cdots \bar{A}_{i-1} \bar{B}_{i} \bar{A}_{i+1} \cdots \bar{A}_{n}
$$

of the factor group $\bar{G}=G / H_{i}$. Here

$$
\begin{array}{lll}
\bar{A}_{j}=\left\{H_{i}, a_{j} H_{i}, b_{j} H_{i}, c_{j} H_{i}\right\} & \text { or } & \bar{A}_{j}=\left\{H_{i}, a_{j} H_{i}\right\} \\
\bar{B}_{i}=\left\{H_{i}, b_{i} H_{i}\right\} & \text { or } & \bar{B}_{i}=\left\{H_{i}\right\}
\end{array}
$$

As $|\bar{G}|<|G|$, by the inductive assumption it follows that either \bar{B}_{i} or \bar{A}_{j} is periodic for some $j, 1 \leq j \leq n, j \neq i$.

If \bar{B}_{i} is periodic, then $\left|\bar{B}_{i}\right|=\left|B_{i}\right|$ must be 2 and consequently A_{i} must be of type 2 . Since \bar{B}_{i} is periodic, it follows that $\left(b_{i} H_{i}\right)^{2}=b_{i}^{2} H_{i}=H_{i}$ and so $b_{i}^{2} \in H_{i}=\left\{e, a_{i}\right\}$. We know that $b_{i}^{2} \neq e$ and hence $b_{i}^{2}=a_{i}$. Let

$$
b_{i}=x^{\beta} y_{1}^{\beta_{1}} \cdots y_{s}^{\beta_{s}} \quad \text { and } \quad a_{i}=x^{\alpha} y_{1}^{\alpha_{1}} \cdots y_{s}^{\alpha_{s}}
$$

where $\alpha=2^{\lambda-1}, \quad 0 \leq \beta \leq 2^{\lambda}-1, \quad 0 \leq \alpha_{1}, \beta_{1}, \ldots, \alpha_{s}, \beta_{s} \leq 1$. Now

$$
b_{i}^{2}=\left(x^{\beta} y_{1}^{\beta_{1}} \cdots y_{s}^{\beta_{s}}\right)^{2}=x^{2 \beta}=x^{\alpha} y_{1}^{\alpha_{1}} \cdots y_{s}^{\alpha_{s}}=a_{i}
$$

gives that $\alpha_{1}=\cdots=\alpha_{s}=0$ and so $L \subset H_{i}$ and this is a contradiction.
If A_{j} is periodic and $\left|\bar{A}_{j}\right|=\left|A_{j}\right|=2$, then in a similar way $a_{j}^{2} \in H_{i}$ and $a_{j}^{2} \neq e$ lead to the contradiction $L \subset H_{i}$. Therefore if A_{j} is periodic, then $\left|\bar{A}_{j}\right|=\left|A_{j}\right|=4$. The periodicity of \bar{A}_{j} implies that \bar{A}_{j} contains a second order element, say $\left(a_{j} H_{i}\right)^{2}=a_{j}^{2} H_{i}=H_{i}$. Hence $a_{j}^{2} \in H_{i}$. As $a_{j}^{2} \neq e$ in the known way leads to the contradiction $L \subset H_{i}$, it follows that $a_{j}^{2}=e$.

Thus A_{j} contains a second order element, that is $1 \leq j \leq m$. By Lemma 1 the periodicity of \bar{A}_{j} implies that $d_{j} \in H_{i}$.

The summary of the above argument is that for each $i, 1 \leq i \leq m$ there is a $j, 1 \leq j \leq m$ such that $d_{j} \in H_{i}$ and $i \neq j$. We define a bipartite graph Γ whose nodes are H_{1}, \ldots, H_{m} and d_{1}, \ldots, d_{m} and if $d_{j} \in H_{i}$, then $\left(H_{i}, d_{j}\right)$ is a directed edge of Γ. If $\left(H_{i}, d_{j}\right),\left(H_{k}, d_{j}\right)$ are edges of Γ with $i \neq k$, then $d_{j} \in H_{i} \cap H_{k}=\{e\}$ which is a contradiction. Thus for each d_{j} there is at most one H_{i} such that $\left(H_{i}, d_{j}\right)$ is an edge of Γ. Further, for each H_{i} there is at least one d_{j} for which $\left(H_{i}, d_{j}\right)$ is an edge of Γ. Therefore there is a ono-to-one map f from $\left\{H_{1}, \ldots, H_{m}\right\}$ into $\left\{d_{1}, \ldots, d_{m}\right\}$ such that $\left(H_{i}, f\left(H_{i}\right)\right), 1 \leq i \leq m$ are all the edges of Γ.

Let us consider

$$
A_{m}=\left\{e, a_{m}, b_{m}, c_{m}\right\}
$$

(Remember $m \geq 2$.) If A_{m} is of type 1 , then it can be written in the forms

$$
A_{m}=\left\{e, a_{m}, b_{m}, a_{m} b_{m} d_{m}\right\}, A_{m}=\left\{e, a_{m}, c_{m}, a_{m} c_{m} d_{m}^{\prime}\right\}, A_{m}=\left\{e, b_{m}, c_{m}, b_{m} c_{m} d_{m}^{\prime \prime}\right\}
$$

and it can be replaced by the subgroups

$$
H_{m}=\left\langle a_{m}, b_{m}\right\rangle, \quad H_{m}^{\prime}=\left\langle a_{m}, c_{m}\right\rangle, \quad H_{m}^{\prime \prime}=\left\langle b_{m}, c_{m}\right\rangle
$$

respectively. These replacements give rise to the graphs $\Gamma, \Gamma^{\prime}, \Gamma^{\prime \prime}$ and the maps $f, f^{\prime}, f^{\prime \prime}$ respectively. The nodes H_{1}, \ldots, H_{m-1} and d_{1}, \ldots, d_{m-1} are common in these graphs. After removing the edges joining to $H_{m}, H_{m}^{\prime}, H_{m}^{\prime \prime}$ and $d_{m}, d_{m}^{\prime}, d_{m}^{\prime \prime}$ the remaining parts of the graphs are identical. From this it follows that $f\left(H_{m}\right)=f^{\prime}\left(H_{m}^{\prime}\right)=f^{\prime \prime}\left(H_{m}^{\prime \prime}\right)$. Let d_{j} be this common value. This leads to the contradiction $d_{j} \in H_{m} \cap H_{m}^{\prime} \cap H_{m}^{\prime \prime}=\{e\}$.

If A_{m} is of type 2 , then $a_{m}^{2}=e, b_{m}^{2} \neq e$ and A_{m} can be written in the form

$$
A_{m}=\left\{e, a_{m}, b_{m}, a_{m} b_{m} d_{m}\right\}
$$

and can be replaced by $H_{m} B_{m}$, where

$$
H_{m}=\left\{e, a_{m}\right\}, \quad B_{m}=\left\{e, b_{m}\right\}
$$

The factor A_{m} can be replaced by

$$
A_{m}^{\prime}=b_{m}^{-1} A_{m}=\left\{b_{m}^{-1}, b_{m}^{-1} a_{m}, e, a_{m} d_{m}\right\}=\left\{e, a_{m}^{\prime}, b_{m}^{\prime}, a_{m}^{\prime} b_{m}^{\prime} d_{m}^{\prime}\right\}
$$

where $a_{m}^{\prime}=a_{m} d_{m}, b_{m}^{\prime}=b_{m}^{-1} a_{m}, d_{m}^{\prime}=d_{m}$. Then A_{m}^{\prime} can be replaced by $H_{m}^{\prime} B_{m}^{\prime}$, where

$$
H_{m}^{\prime}=\left\{e, a_{m}^{\prime}\right\}, \quad B_{m}^{\prime}=\left\{e, b_{m}^{\prime}\right\}
$$

The $A_{m} \rightarrow H_{m} B_{m}$ and $A_{m}^{\prime} \rightarrow H_{m}^{\prime} B_{m}^{\prime}$ replacements give rise to the graphs Γ, Γ^{\prime} and the maps f, f^{\prime} respectively. The nodes H_{1}, \ldots, H_{m-1} and $d_{1}, \ldots, d_{m-1}, d_{m}$ are common in these graphs. After removing the edges joining to H_{m}, H_{m}^{\prime} the remaining parts of the graphs are identical. From this it follows that $f\left(H_{m}\right)=f^{\prime}\left(H_{m}^{\prime}\right)$. Let d_{j} be this common value. This gives the contradiction $d_{j} \in H_{m} \cap H_{m}^{\prime}=\{e\}$.

This completes the proof.

References

[1] RÉdei L., Die neue Theorie der endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329-373.
[2] Sands A.D. and Szabó S., Factorization of periodic subsets, Acta Math. Hung. 57 (1991), 159-167.

AMS Subject Classification: 20K01, 52C22.
Keresztély CORRÁDI
Department of Computer Sciences
Eötvös University Budapest
1088 Budapest, HUNGARY
Sándor SZABÓ
Department of Mathematics
University of Bahrain
P.O. Box: 32038, BAHRAIN

Lavoro pervenuto in redazione il 31.08.1998.

