Rend. Sem. Mat. Univ. Pol. Torino Vol. 57, 4 (1999)

K. Corrádi - S. Szabó

PERIODIC FACTORIZATION OF A FINITE ABELIAN 2-GROUP

Abstract.

Let *G* be a finite abelian 2-group that is a direct product of a cyclic group and an elementary group. Suppose that *G* is a direct product of its subsets A_1, \ldots, A_n of cardinality two or four. Then one of the subsets A_1, \ldots, A_n is periodic. The subset A_i is periodic if $A_ig = A_i$ holds with a nonidentity element *g* of *G*. This is a generalization of an earlier result of A. D. Sands and S. Szabó.

1. Introduction

Throughout the paper *G* will be a finite abelian group. We use multiplicative notation. The identity element is denoted by *e*. The symbol " \subset " denotes a not necessarily strict inclusion, |a| denotes the order of the element $a \in A$, |A| denotes the cardinality of the subset *A* of *G*. If *G* is a direct product of its subsets A_1, \ldots, A_n , then we express this fact saying that the equality $G = A_1 \cdots A_n$ is a factorization of *G*. If $e \in A_i$, then we say that the subset *A* of *G* is called periodic if there is a $g \in G \setminus \{e\}$ such that Ag = A. The element *g* is a period of *A*. If *G* is a direct product of cyclic groups of orders t_1, \ldots, t_s respectively, then we say *G* is of type (t_1, \ldots, t_s) . A. D. Sands and S. Szabó [2] proved that if *G* is of type $(2, \ldots, 2)$ and $G = A_1 \cdots A_n$ is a factorization of this theorem. Let *G* be a finite abelian 2-group and let $G = A_1 \cdots A_n$ be a factorization of *G*, where each $|A_i|$ is either 2 or 4. If *G* is of type $(2^{\lambda}, 2, \ldots, 2)$, then one of the factors A_1, \ldots, A_n is periodic. We accomplish this using characters of *G*.

If χ is a character and A is a subset of G, then we denote the sum

$$\sum_{a \in A} \chi(a)$$

by $\chi(A)$. If $\chi(A) = 0$, then χ annihilates *A*. We denote by Ann(*A*) the set of characters of *G* that annihilates *A*.

If *A* and *A'* are subsets of *G* such that given any subset *B* of *G*, if G = AB is a factorization of *G*, then G = A'B is also a factorization of *G*, then we say that *A* is replaceable by *A'*. There is a character test for replaceability due to L. Rédei [1] which reads as follows. If |A| = |A'| and Ann $(A) \subset$ Ann(A'), then *A* can be replaced by *A'*

2. The result

Let *G* be a finite abelian group and let $A = \{e, a, b, c\}$ be a subset of *G*. We define a subset *A'* by $A' = \{e, a\}\{e, b\}$. Since the equation c = abd is solvable for *d*, *A* can be written in the form $A = \{e, a, b, abd\}$. We need the next lemma.

LEMMA 1. If |a| = 2, then (a) Ann $(A) \subset$ Ann(A'), (b) A is periodic if and only if d = e, (c) $\chi(A) = 0$ implies $\chi(d) = 1$.

Proof. (a) Let χ be a character of G for which $0 = \chi(A) = 1 + \chi(a) + \chi(b) + \chi(c)$. As |a| = 2, it follows that $\chi(a) = -1$ or $\chi(a) = 1$. If $\chi(a) = 1$, then $\chi(A) = 0$ gives that $\chi(b) = \chi(c) = -1$. Using this we have

$$\chi(A') = 1 + \chi(a) + \chi(b) + \chi(a)\chi(b) = 1 + 1 - 1 - 1 = 0.$$

If $\chi(a) = -1$, then $\chi(A) = 0$ gives that $\chi(b) = \rho$ and $\chi(c) = -\rho$, where ρ is a root of unity. Using this we have

$$\chi(A') = 1 + \chi(a) + \chi(b) + \chi(a)\chi(b) = 1 - 1 + \rho - \rho = 0.$$

(b) If d = e, then A = A' and so A is periodic with period a. Conversely, assume that A is periodic with period g. Note that g^2 is also a period of A if $g^2 \neq e$. Using this observation we may assume that |g| = 2. From $e \in A$ it follows that $g \in A$.

If g = a, then

$$Aa = \{a, e, ab, bd\} = \{e, a, b, abd\} = A$$

gives that $\{ab, bd\} = \{b, abd\}$. Here either ab = b or bd = b. The first one leads to the contradiction a = e. The second one gives d = e.

If
$$g = b$$
, then

 $Ab = \{b, ab, e, ad\} = \{e, a, b, abd\} = A$

gives that $\{ab, ad\} = \{a, abd\}$. Hence either ab = a or ad = a. The first one leads to the contradiction b = e. the second one gives d = e.

If g = abd, then

$$Aabd = \{abd, bd, ab^2d, e\} = \{e, a, b, abd\} = A$$

gives that $\{ab^2d, bd\} = \{a, b\}$. Now either $ab^2d = b$ or bd = b. The first equality gives the contradiction abd = e, the second one provides d = e.

(c) If $\chi(A) = 0$, then by part (a), $\chi(A') = 0$ and so

$$0 = \chi(A) - \chi(A') = \chi(ab)\chi(d) - \chi(ab) = \chi(ab) |\chi(d) - 1|.$$

This completes the proof.

After this preparation we are ready to prove the main result of the paper.

THEOREM 1. Let G be a finite group of type $(2^{\lambda}, 2, ..., 2)$. If $G = A_1 \cdots A_n$ is a normed factorization of G, where $|A_i|$ is either 2 or 4 for each i, $1 \le i \le n$, then at least one of the factors $A_1, ..., A_n$ is periodic.

Periodic factorization

Proof. The |G| = 2 case is trivial. So we assume that $|G| \ge 4$ and proceed by induction on |G|. Clearly *G* is a direct product of its subgroups *H* and *K* of types (2^{λ}) and (2, ..., 2) respectively. If $\lambda = 1$, then *G* is of type (2, ..., 2). This special case is covered by [2] Theorem 9. So for the remaining part of the proof we may assume that $\lambda \ge 2$. Let $H = \langle x \rangle$ and $K = \langle y_1, ..., y_s \rangle$, where $|x| = 2^{\lambda}$ and $|y_1| = \cdots = |y_s| = 2$. Consider a character χ of *G* that is faithful on *H* or equivalently for which $\chi(x) = \rho$, where ρ is a primitive (2^{λ}) th root of unity.

Let $A_i = \{e, a_i\}$ be a factor of order 2. If $0 = \chi(A_i) = 1 + \chi(a_i)$, then $\chi(a_i) = -1$ or $\chi(a_i^2) = 1$ and so $a_i^2 = e$. Therefore A_i is periodic with period a_i . So in the remaining part of the proof we may assume that $\chi(A_i) \neq 0$ when χ is faithful on H and $|A_i| = 2$. As χ is not the principal character of G, it follows that $0 = \chi(G) = \chi(A_1) \cdots \chi(A_n)$ and so $\chi(A_i) = 0$ for some $i, 1 \le i \le n$. Thus we may assume that $|A_i| = 4$ for some i.

Let $A_i = \{e, a_i, b_i, c_i\}$ be a factor of order 4. If

$$0 = \chi(A_i) = 1 + \chi(a_i) + \chi(b_i) + \chi(c_i),$$

then one of $\chi(a_i)$, $\chi(b_i)$, $\chi(c_i)$ must be -1 and so one of a_i^2 , b_i^2 , c_i^2 must be e. Thus there is at least one factor of order 4 that contains at least one second order element. We choose the notation such that A_1, \ldots, A_m are all the factors of order 4 containing at least one second order element. If m = 1, then $\chi(A_1) = 0$ for each χ that is faithful on H. Now, by [2] Theorem 1, A_1 is periodic. So we may assume that $m \ge 2$.

Let us consider an $A_i = \{e, a_i, b_i, c_i\}$ with $1 \le i \le m$. We choose the notation such that $|a_i| = 2$. Further c_i can be written in the form $c_i = a_i b_i d_i$ with a suitable $d_i \in G$. By Lemma 1 A_i is periodic if and only if $d_i = e$. Thus we may assume that $d_i \ne e$. Also by Lemma 1 $\chi(A_i) = 0$ implies $\chi(d_i) = 1$. From this it follows that A_i can be replaced by

$$\{e, a_i, b_i, a_i b_i d_i^k\}$$

for each integer k. In particular, we may assume that $|d_i| = 2$ for each $i, 1 \le i \le m$. Also A_i can be replaced by

$$\{e, a_i, b_i, a_i b_i\} = \{e, a_i\}\{e, b_i\}$$

If $b_i^2 = e$, then each element of $A_i \setminus \{e\}$ is of order 2. We will say that A_i is a type 1 factor. Now A_i can be replaced by $H_i B_i$, where $H_i = \langle a_i, b_i \rangle$ and $B_i = \{e\}$. If $b_i^2 \neq e$, then a_i is the only second order element in A_i . We will say that A_i is a type 2 factor. In this case A_i can be replaced by $H_i B_i$, where $H_i = \{e, a_i\} = \langle a_i \rangle$ and $B_i = \{e, b_i\}$.

The subgroup *H* has a unique subgroup $L = \langle x^{2^{\lambda-1}} \rangle$ of order 2. From the factorization

$$G = H_1 B_1 \cdots H_m B_m A_{m+1} \cdots A_n$$

it follows that the product $H_1 \cdots H_m$ is direct. So there can be only one subgroup H_i for which $L \subset H_i$. Such an H_i does not necessarily exists. But if it does, then we choose the notation such that $L \subset H_1$. We claim that $L \not\subset H_1$ may be assumed.

In order to prove this claim let us consider $A_1 = \{e, a_1, b_1, c_1\}$ and distinguish two cases depending on whether A_1 is of type 1 or type 2.

If A_1 is of type 1, then it can be written in the forms

$$A_1 = \{e, a_1, b_1, a_1b_1d_1\}, A_1 = \{e, b_1, c_1, b_1c_1d_1'\}, A_1 = \{e, a_1, c_1, a_1c_1d_1''\}$$

and can be replaced by the subgroups

$$H_1 = \langle a_1, b_1 \rangle, \quad H'_1 = \langle b_1, c_1 \rangle, \quad H''_1 = \langle a_1, c_1 \rangle$$

K. Corrádi - S. Szabó

respectively. If $L \subset H_1$, then one of a_1 , b_1 , a_1b_1 is equal to $x^{2^{\lambda-1}}$. In the $a_1 = x^{2^{\lambda-1}}$ case $a_1 \notin H'_1$ since obviously $a_1 \neq e$, $a_1 \neq b_1$, $a_1 \neq c_1$ and $a_1 = b_1c_1$ combined with $c_1 = a_1b_1d_1$ leads to the $d_1 = e$ contradiction. In the $b_1 = x^{2^{\lambda-1}}$ case $b_1 \notin H''_1$ since clearly $b_1 \neq e$, $b_1 \neq a_1$, $b_1 \neq c_1$ and $b_1 = a_1c_1$ leads to the $d_1 = e$ contradiction. In the $a_1 = e$ contradiction. In the $a_1 = a_1b_1d_1$ since $a_1b_1 \neq c_1$ and $b_1 = a_1c_1$ leads to the $d_1 = e$ contradiction. In the $a_1b_1 = x^{2^{\lambda-1}}$ case $a_1b_1 \notin H'_1$ since $a_1b_1 = e$, $a_1b_1 = b_1$, $a_1b_1 = c_1$, $a_1b_1 = b_1c_1$ leads in order to the $a_1 = b_1$, $a_1 = e$, $d_1 = e$, $a_1 = c_1$ contradictions.

If A_1 is of type 2, then $a_1^2 = e$, $b_1^2 \neq e$ and A_1 can be written in the form $A_1 = \{e, a_1, b_1, a_1b_1d_1\}$ and can be replaced by H_1B_1 , where $H_1 = \{e, a_1\}$, $B_1 = \{e, b_1\}$. If $L \subset H_1$, then $a_1 = x^{2^{\lambda-1}}$. Now replace A_1 by

$$A_1' = b_1^{-1}A_1 = \{b_1^{-1}, b_1^{-1}a_1, e, a_1d_1\} = \{e, a_1', b_1', a_1'b_1'd_1'\},\$$

where $a'_1 = a_1d_1$, $b'_1 = b_1^{-1}a_1$, $d'_1 = d_1$. The only second order element in A'_1 is $a'_1 = a_1d_1$ which is not equal to $x^{2^{\lambda-1}}$. Here A'_1 is replaceable by $H'_1B'_1$, where

$$H_1' = \langle a_1' \rangle = \langle a_1 d_1 \rangle, \quad B_1' = \{e, b_1'\}.$$

Thus in each case we may assume that $L \not\subset H_1$.

Replace A_i by $H_i B_i$ in the factorization $G = A_1 \cdots A_n$ to get the factorization

$$G = A_1 \cdots A_{i-1} (H_i B_i) A_{i+1} \cdots A_n,$$

where $1 \le i \le m$. This leads to the factorization

$$\overline{G} = \overline{A}_1 \cdots \overline{A}_{i-1} \overline{B}_i \overline{A}_{i+1} \cdots \overline{A}_n$$

of the factor group $\overline{G} = G/H_i$. Here

$$\overline{A}_j = \{H_i, a_j H_i, b_j H_i, c_j H_i\} \quad \text{or} \quad \overline{A}_j = \{H_i, a_j H_i\},\\ \overline{B}_i = \{H_i, b_i H_i\} \quad \text{or} \quad \overline{B}_i = \{H_i\}.$$

As $|\overline{G}| < |G|$, by the inductive assumption it follows that either \overline{B}_i or \overline{A}_j is periodic for some $j, 1 \le j \le n, j \ne i$.

If \overline{B}_i is periodic, then $|\overline{B}_i| = |B_i|$ must be 2 and consequently A_i must be of type 2. Since \overline{B}_i is periodic, it follows that $(b_i H_i)^2 = b_i^2 H_i = H_i$ and so $b_i^2 \in H_i = \{e, a_i\}$. We know that $b_i^2 \neq e$ and hence $b_i^2 = a_i$. Let

$$b_i = x^{\beta} y_1^{\beta_1} \cdots y_s^{\beta_s}$$
 and $a_i = x^{\alpha} y_1^{\alpha_1} \cdots y_s^{\alpha_s}$

where $\alpha = 2^{\lambda-1}$, $0 \le \beta \le 2^{\lambda} - 1$, $0 \le \alpha_1, \beta_1, \dots, \alpha_s, \beta_s \le 1$. Now

$$b_i^2 = (x^{\beta} y_1^{\beta_1} \cdots y_s^{\beta_s})^2 = x^{2\beta} = x^{\alpha} y_1^{\alpha_1} \cdots y_s^{\alpha_s} = a_i$$

gives that $\alpha_1 = \cdots = \alpha_s = 0$ and so $L \subset H_i$ and this is a contradiction.

If A_j is periodic and $|\overline{A}_j| = |A_j| = 2$, then in a similar way $a_j^2 \in H_i$ and $a_j^2 \neq e$ lead to the contradiction $L \subset H_i$. Therefore if A_j is periodic, then $|\overline{A}_j| = |A_j| = 4$. The periodicity of \overline{A}_j implies that \overline{A}_j contains a second order element, say $(a_j H_i)^2 = a_j^2 H_i = H_i$. Hence $a_j^2 \in H_i$. As $a_j^2 \neq e$ in the known way leads to the contradiction $L \subset H_i$, it follows that $a_j^2 = e$.

Periodic factorization

Thus A_j contains a second order element, that is $1 \le j \le m$. By Lemma 1 the periodicity of $\overline{A_j}$ implies that $d_j \in H_i$.

The summary of the above argument is that for each $i, 1 \le i \le m$ there is a $j, 1 \le j \le m$ such that $d_j \in H_i$ and $i \ne j$. We define a bipartite graph Γ whose nodes are H_1, \ldots, H_m and d_1, \ldots, d_m and if $d_j \in H_i$, then (H_i, d_j) is a directed edge of Γ . If $(H_i, d_j), (H_k, d_j)$ are edges of Γ with $i \ne k$, then $d_j \in H_i \cap H_k = \{e\}$ which is a contradiction. Thus for each d_j there is at most one H_i such that (H_i, d_j) is an edge of Γ . Further, for each H_i there is at least one d_j for which (H_i, d_j) is an edge of Γ . Therefore there is a ono-to-one map f from $\{H_1, \ldots, H_m\}$ into $\{d_1, \ldots, d_m\}$ such that $(H_i, f(H_i)), 1 \le i \le m$ are all the edges of Γ .

Let us consider

$$A_m = \{e, a_m, b_m, c_m\}.$$

(Remember $m \ge 2$.) If A_m is of type 1, then it can be written in the forms

$$A_m = \{e, a_m, b_m, a_m b_m d_m\}, A_m = \{e, a_m, c_m, a_m c_m d'_m\}, A_m = \{e, b_m, c_m, b_m c_m d''_m\}$$

and it can be replaced by the subgroups

$$H_m = \langle a_m, b_m \rangle, \qquad H'_m = \langle a_m, c_m \rangle, \qquad H''_m = \langle b_m, c_m \rangle$$

respectively. These replacements give rise to the graphs Γ , Γ' , Γ'' and the maps f, f', f'' respectively. The nodes H_1, \ldots, H_{m-1} and d_1, \ldots, d_{m-1} are common in these graphs. After removing the edges joining to H_m , H'_m , H''_m and d_m , d'_m , d''_m the remaining parts of the graphs are identical. From this it follows that $f(H_m) = f'(H'_m) = f''(H''_m)$. Let d_j be this common value. This leads to the contradiction $d_j \in H_m \cap H'_m \cap H''_m = \{e\}$.

If A_m is of type 2, then $a_m^2 = e$, $b_m^2 \neq e$ and A_m can be written in the form

$$A_m = \{e, a_m, b_m, a_m b_m d_m\}$$

and can be replaced by $H_m B_m$, where

$$H_m = \{e, a_m\}, \qquad B_m = \{e, b_m\}.$$

The factor A_m can be replaced by

$$A'_{m} = b_{m}^{-1}A_{m} = \{b_{m}^{-1}, b_{m}^{-1}a_{m}, e, a_{m}d_{m}\} = \{e, a'_{m}, b'_{m}, a'_{m}b'_{m}d'_{m}\},\$$

where $a'_m = a_m d_m$, $b'_m = b_m^{-1} a_m$, $d'_m = d_m$. Then A'_m can be replaced by $H'_m B'_m$, where

$$H'_m = \{e, a'_m\}, \qquad B'_m = \{e, b'_m\}.$$

The $A_m \to H_m B_m$ and $A'_m \to H'_m B'_m$ replacements give rise to the graphs Γ , Γ' and the maps f, f' respectively. The nodes H_1, \ldots, H_{m-1} and $d_1, \ldots, d_{m-1}, d_m$ are common in these graphs. After removing the edges joining to H_m, H'_m the remaining parts of the graphs are identical. From this it follows that $f(H_m) = f'(H'_m)$. Let d_j be this common value. This gives the contradiction $d_j \in H_m \cap H'_m = \{e\}$.

This completes the proof.

References

- [1] RÉDEI L., Die neue Theorie der endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. **16** (1965), 329–373.
- [2] SANDS A.D. AND SZABÓ S., Factorization of periodic subsets, Acta Math. Hung. 57 (1991), 159–167.

AMS Subject Classification: 20K01, 52C22.

Keresztély CORRÁDI Department of Computer Sciences Eötvös University Budapest 1088 Budapest, HUNGARY

Sándor SZABÓ Department of Mathematics University of Bahrain P.O. Box: 32038, BAHRAIN

Lavoro pervenuto in redazione il 31.08.1998.