E. Ballico *

NON-PRIMITIVE LINEAR SYSTEMS ON SMOOTH ALGEBRAIC CURVES AND A GENERALIZATION OF MARONI THEORY

Abstract

Let X be a smooth curve of genus g and M, L special spanned line bundles with $h^{0}(X, L)=2$ and $h^{0}\left(X, M \otimes L^{*}\right)=h^{0}(X, M)-2>0$. Generalizing Maroni theory for trigonal curves we study the existence of such triples (X, M, L) for certain numerical invariants and classify all spanned line bundles, R, on any such X with $h^{0}\left(X, M \otimes R^{*}\right)>0$. We construct smooth curves with non-primitive special linear systems with prescribed numerical invariants.

1. Introduction

Let X be a smooth connected projective curve of genus g . We introduce the following definition.

Definition 1. Take $M \in \operatorname{Pic}^{d}(X), L \in \operatorname{Pic} c^{k}(X)$ with M and L spanned, $h^{0}(X, L)$ $=2$ and $h^{0}(X, M) \geq 3$. We will say that the pair (M, L) is a Maroni pair if $h^{0}(X, M \otimes$ $\left.L^{*}\right)=h^{0}(X, M)-2$.

The terminology comes from the case $k=3, M \cong \omega_{X}$; indeed we will see how to use the classical theory of Maroni of special linear systems on trigonal curves in our set-up. With the terminology of [6], Definition in 1.1, a Maroni pair (M, L) is essentially a linear series M of type $2+1$ with respect to the pencil L (see 1). This is the first unknown case, because D. Eisenbud gave a complete classification of all pairs (M, L) with $h^{0}\left(X, M \otimes L^{*}=h^{0}(X, M)-1\right.$ (see [7], Cor. 5.2, or [5], Lemma 1.2.1).

Definition 2. Take $M \in \operatorname{Pic}^{d}(X), L \in \operatorname{Pic}{ }^{k}(X)$ with M and L spanned, $h^{0}(X, L)$ $=2$ and $h^{0}(X, M) \geq 3$. Let $W \subseteq H^{0}(X, M)$ be a linear subspace spanning M and with $r:=\operatorname{dim}(W)-1 \geq 2$. We will say that (M, W, L) is a weak Maroni triple if $\operatorname{dim}(W(-D))=r-1$ for every $D \in|L|$. Now we drop the assumption $h^{0}(X, L)=2$ and take a linear subspace V of $H^{0}(X, L)$ with $\operatorname{dim}(V)=2$ and V spanning L; if $\operatorname{dim}(W(-D))=r-1$ for every $D \in|V|$, then we will say that (M, W, L, V) is a very weak Maroni quadruple.

In section 2 we will study curves with a Maroni pair. We will give existence the-

[^0]orems for assigned invariants $g, \operatorname{deg}(L), h^{0}(X, M)$ and the so-called Maroni invariant of a Maroni pair (see Remarks 2 and 3). Here is a sample of our results on this topic.

Proposition 1. Assume char $(K)=0$. Fix integers g, d, k, r, m with $g \geq 5$, $r \geq 3, k \geq 3,0 \leq m \leq r-1, r-m$ odd, $2 g-2 \geq d \geq k(r+m-1) / 2$ and $0 \leq g \leq 1+(k-1)(d-k(r-m-1) / 2)-k-m\left(k^{2}-k\right) / 2$.
Then there exist a smooth curve X of genus g and a very weak Maroni quadruple (M, W, L, V) on X with invariants d, k, r and m and such that the morphism h_{W} is birational. If $m \neq r-1$ or $m=r-1$ and $k(r-1) \leq d \leq k(r-1)+2$ we may find a smooth curve X and a very weak Maroni quadruple (M, W, L, V) such that $h_{W}(X)$ has exactly $1+(k-1)(d-k(r-m-1) / 2)-k-m\left(k^{2}-k\right) / 2-g+\epsilon$ ordinary nodes as singularities, $0 \leq \epsilon \leq 1$ and $\epsilon=1$ if and only if $m=r-1$ and $d=k(r-1)+2$.

See Propositions 2 and 3 for other results.
For any curve X with a Maroni pair (M, L) such that the induced morphism h_{M} : $X \rightarrow \mathbf{P}\left(H^{0}(X, M)\right)$ is birational we will give a partial classification of all $R \in \operatorname{Pic}(X)$ with R spanned and $h^{0}\left(X, M \otimes R^{*}\right)>0$ (see Theorem 2$)$.

Now we recall the following classical definition ([3]).
Definition 3. Let X be a smooth projective curve and $M \in \operatorname{Pic}(X) . M$ is said to be primitive if both M and $\omega_{X} \otimes M^{*}$ are spanned by their global sections.

By Riemann - Roch $M \in \operatorname{Pic}(X)$ is primitive if and only if M is spanned and $h^{0}(X, M(P))=h^{0}(X, M)$ for every $P \in X$.

In the last part of section 3 we will use the method of [2] to construct pairs (X, L), L spanned, such that not only $L^{\otimes s}$ is not primitive, but $\omega_{X} \otimes\left(L^{\otimes s}\right)^{*}$ has base locus containing c distinct points P_{1}, \ldots, P_{c} of X. We want $h^{0}\left(X, L^{\otimes s}\right)=s+1$ and hence we will obtain $h^{0}\left(X, L^{\otimes s}\left(P_{1}+\ldots+P_{i}\right)\right)=s+1+i$ for all integers i with $1 \leq i \leq c$. This condition seems to be a very restrictive condition for a pair (X, L). For instance it is never satisfied for $s \geq 2$ and any L if X is a general curve of genus g or a general k gonal curve ([3], [4], [5], [6]). Notice that $h^{0}\left(X, L^{\otimes s}\right)=s+1$ implies $h^{0}\left(X, L^{\otimes t}\right)=t+1$ for $1 \leq t \leq s$. In section 3 we will prove the following result.

Theorem 1. Fix integers g, k and s with $s \geq 1, k \geq 4, g \geq s(k-1)$ and $g \geq 2 k+2$. Assume the existence of integers a, w with $s<a \leq 2 s+2,0<w \leq[k / 2]+1,2[(k+$ $a) / 2]>w(a-1-s)$ and $w(a-1-s) \leq a k-a-k+1-g<([k / 2]+1)([(a+1) / 2]+1)$. Then there exist a smooth curve X of genus g and $L \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, L)=2$, $h^{0}\left(X, L^{\otimes t}\right)=t+1$ for every integer t with $1 \leq t \leq s, L$ spanned and $\omega_{X} \otimes\left(L^{\otimes s}\right)^{*}$ has base locus containing $w(s+1)$ distinct points of X.

From Theorem 1 taking $\mathrm{a}=\mathrm{s}+2$ we obtain the following corollary.
Corollary 1. Fix integers g, k and s with $s \geq 1, k \geq 4, g \geq s(k-1)+1$ and $g \geq 2 k+2$. Fix an integer w with $1 \leq w \leq 1+[k / 2]$ and assume $w \leq s k-s+k-1-g$. Then there exist a smooth curve X of genus g and $L \in \operatorname{Pic}^{k}(X)$ with $h^{0}\left(X, L^{\otimes t}=t+1\right.$ for every integer t with $1 \leq t \leq s, L$ spanned and $\omega_{X} \otimes\left(L^{\otimes s}\right)^{*}$ has base locus containing $w(s+1)$ distinct points of X.

In the first part of section 3 we will use the same ideas to obtain results related to Theorem 1 but concerning line bundles, L, with just one point as the base locus of $\omega_{X} \otimes\left(L^{\otimes s}\right)^{*}$ (see Corollary 2 and to construct pairs (X, L, D) with D effective divisor of degree $b \geq 1, L \in \operatorname{Pic}(X), L$ spanned, $h^{0}\left(X, L^{\otimes t}\right)=t+1$ for every integer t with $1 \leq t \leq s$, with $h^{0}\left(X, L^{\otimes s}(D)\right)=s+2$ and $L^{\otimes s}(D)$ spanned, i.e. with $\mathrm{h}^{0}\left(\mathrm{X}, \mathrm{L}^{\otimes s}\left(\mathrm{D}^{\prime}\right)\right)$ $=\mathrm{s}+1$ for every effective (or zero) divisor strictly contained in D (see (${ }^{* *}$) at page 12). The proofs of all our existence results use the deformation theory of nodal curves on Hirzebruch surfaces.

2. Maroni pairs

We work over an algebraically closed field \mathbf{K}. In this section we study properties of curves admitting a Maroni pair (M, L) and related to the pair (M, L). Let X be a smooth connected projective curve of genus g. For any spanned line bundle F on X, let

$$
h_{F}: X \rightarrow \mathbf{P}\left(H^{0}(X, F)\right)
$$

be the associated morphism; if $W \subseteq H^{0}(X, F)$ is a linear subspace spanning F, let

$$
h_{W}: X \rightarrow \mathbf{P}(W)
$$

be the associated morphism. For any linear subspace W of $H^{0}(X, F)$ and any effective divisor D on X, set

$$
W(-D):=W \cap H^{0}\left(X, I_{D} \otimes F\right)
$$

For any $L \in \operatorname{Pic}(X)$ and any linear subspace W of $H^{0}(X, L)$, let $|W|$ be the associated linear system of effective divisors on X. If $W=H^{0}(X, L)$ we will often write $|L|$ instead of $\left|H^{0}(X, L)\right|$.

Remark 1. Let (M, W, L, V) be a very weak Maroni quadruple. If $W=H^{0}(X, M)$ then $\operatorname{dim}(W(-D))=\operatorname{dim}\left(W\left(-D^{\prime}\right)\right)$ for all $D, D^{\prime} \in|L|$. Assume $u:=h^{0}(X, L)-1 \geq$ 2, i.e. assume that (M, L) is not a Maroni pair. Let N be the subsheaf of $M \otimes L^{*}$ spanned by $H^{0}\left(X, M \otimes L^{*}\right)$, say $N(D) \cong M \otimes L^{*}$ with D an effective divisor. Since

$$
h^{0}(X, N)+h^{0}(X, L) \geq h^{0}(X, M)+1 \geq h^{0}(X, N \otimes L)+1,
$$

by a lemma of Eisenbud ([5], Lemma 1.2.1) there is $R \in \operatorname{Pic}(X)$ with R spanned, $h^{0}(X, R)=2, N \cong R^{\otimes(r-2)}$ and $L \cong R^{\otimes u}$. Thus $M \cong R^{\otimes(r+u-2)}(D)$. Since M is spanned, $u \geq 2$ and $h^{0}(X, M)=r+1$, we obtain $D=\emptyset$ and $u=2$. Furthermore, $h^{0}\left(X, R^{\otimes t}\right)=t+1$ for every integer t with $1 \leq t \leq r$. Viceversa, for any such R the pair $\left(R^{\otimes r}, R^{\otimes 2}\right)$ induces a very weak Maroni quadruple with $W:=H^{0}(X, M)$.

Remark 2. Let (M, L) be a Maroni pair. If h_{M} is birational, then the condition $h^{0}\left(X, M \otimes L^{*}\right)=h^{0}(X, M)-2$ means that for a general $D \in|L|$ the set $h_{M}(D)$ is contained in a line of $\mathbf{P}\left(H^{0}(X, M)\right)$. It is easy to check that the same is true even if h_{M} is not birational (see e.g. $\left(^{\ddagger}\right)$ at page 9) and that the condition $h^{0}\left(X, M \otimes L^{*}\right)<$ $h^{0}(X, M)-1$ gives the uniqueness of this line. Call $S \subset \mathbf{P}\left(H^{0}(X, M)\right)$ the union of these lines. By [11], $\S 2, \mathrm{~S}$ is a minimal degree rational normal surface (not the Veronese surface of \mathbf{P}^{5}), i.e. $\operatorname{deg}(S)=h^{0}(X, M)-2$ and either S is the cone over a rational normal curve of a hyperplane of $\mathbf{P}\left(H^{0}(X, M)\right)$ or it is isomorphic to a Hirzebruch surface F_{m}. In the latter case we will call m the Maroni invariant of the
pair (M, L). In the former case we will call $h^{0}(X, M)-2$ the Maroni invariant of (M, L). The integer $r:=h^{0}(X, M)-1$ is called the dimension of $(M, L) . S$ is called the scroll associated to the pair (M, L). Instead of m and r we may use two integers e_{1}, e_{2} with $e_{1} \geq e_{2} \geq 0, e_{1}+e_{2}=r-1$ and $e_{1}-e_{2}=m$. Notice that $r-m$ is always odd.

Remark 3. Let (M, L) be a Maroni pair with invariants e_{1} and e_{2}. It is easy to check that $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes\left(e_{1}\right)}\right) \neq 0$ and $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes\left(e_{1}+1\right)}\right)=0$. In particular we have $\operatorname{deg}(M) \geq e_{1}(\operatorname{deg}(L))$ with equality if and only if $M \cong L^{\otimes\left(e_{1}\right)}$.

REMARK 4. We will often use the dimension of some cohomology groups of certain line bundles on a Hirzebruch surface $F_{s}, s \geq 0$. We will give here the general formulas. We have $F_{s} \cong \mathbf{P}\left(O_{\mathbf{P}^{1}} \oplus O_{\mathbf{P}^{1}}(-s)\right)$. Let $u: F_{s} \rightarrow \mathbf{P}^{1}$ be a ruling (which is unique if $s>0)$. We have $\operatorname{Pic}\left(F_{s}\right) \cong \mathbf{Z}^{\oplus 2}$ and we take as base of $\operatorname{Pic}\left(F_{s}\right)$ a fiber, f, of the ruling u and a section, h, of the ruling with minimal self-intersection. We have $h^{2}=-s$, $h \cdot f=1$ and $f^{2}=0$. The canonical line bundle of F_{s} is $O_{F_{s}}(-2 h+(-s-2) f)$. Hence by Serre duality we have

$$
h^{1}\left(F_{s}, O_{F_{s}}(t h+z f)\right)=h^{1}\left(F_{s}, O_{F_{s}}((-t-2) h+(-z-s-2) f)\right)
$$

We have $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)=0$ if $t<0$, because $|f|$ is base point free and $(t h+z f) \cdot f=t$. Hence to compute the cohomology groups of all line bundles on F_{s} it is sufficient to compute $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)$ for all integers t, z with $t \geq 0$ and $h^{1}\left(F_{s}, O_{F_{s}}(t h+z f)\right)$ for all integers t, z with $t \geq-1$. We have $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)<0$ if $z<0$, while if $t s>z \geq 0, h$ is a base component of the linear system associated to $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)$ and h occurs as a base component at least (and, as we will see, exactly) with multiplicity e, where e is the minimal integer such that $(t-e) s \leq z$. Hence to compute all values of $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)\left(\right.$ resp. $\left.h^{1}\left(F_{s}, O_{F_{s}}(t h+z f)\right)\right)$ it is sufficient to compute the ones with $t \geq 0$ and $z \geq$ st (resp. $t \geq-1$). We claim that for all integers t, z with $t \geq 0$ we have

$$
\begin{equation*}
u_{*}\left(O_{F_{s}}(t h+z f)\right)=\bigoplus_{0 \leq i \leq t} O_{\mathbf{P}^{1}}(z-i s) \tag{1}
\end{equation*}
$$

Set $E:=O_{\mathbf{P}^{1}} \oplus O_{\mathbf{P}^{1}}(-s)$. We have $F_{s}=\mathbf{P}(E)$. By [8], Prop. II.7.11 (a), for every integer $t \geq 0$ we have

$$
u_{*}\left(O_{F_{s}}(t h)\right) \cong S^{t}(E) \cong \bigoplus_{0 \leq i \leq t} O_{\mathbf{P}^{1}}(-i s)
$$

Hence (1) follows the projection formula ([8], Ex. II.V. 1 (d)). By (1) and the Leray spectral sequence of u we obtain that if $t \geq 0$ we have $h^{1}\left(F_{s}, O_{F_{s}}(t h+z f)\right)=0$ if and only if $z \geq t s-1$. Since $h^{0}\left(\mathbf{P}^{1}, O_{\mathbf{P}^{1}}(-1)\right)=h^{1}\left(\mathbf{P}^{1}, O_{\mathbf{P}^{1}}(-1)\right)=0$, we have $R^{1} u_{*}\left(O_{F_{s}}(-h+z f)\right)=u_{*}\left(O_{F_{s}}(-h+z f)\right)=0$ for every z. Hence the Leray - Spectral sequence of u gives $h^{1}\left(F_{s}, O_{F_{s}}(-h+z f)\right)=0$ for every integer z. By (1) we obtain $h^{0}\left(F_{s}, O_{F_{s}}(t h+z f)\right)=\sum_{0 \leq i \leq t}(z-i s+1)=(t+1)(2 z-t s+2) / 2$ if $t \geq 0$ and $z \geq t s-1$. It is easy to check using (1) that if $t>0$ the linear system $|t h+t s f|$ is base point free and its general member is smooth and irreducible, while if $z>t s$ and $t>0$ then $\left.O_{F_{s}}(t h+z f)\right)$ is very ample; alternatively, see [8], V.2.17 and V.2.18. Now
fix integers k, x with $k \geq 0, x \geq s k,(k, x) \neq(0,0)$ and any $D \in|k h+x f|$. By the adjunction formula we have

$$
\omega_{D} \cong \omega_{F_{s}}(D) \mid D \cong O_{D}((k-2) h+(x-2-s) f) .
$$

Thus

$$
2 p_{a}(D)-2=-s k(k-2)+x(k-2)+k(x-2-s),
$$

i.e.

$$
\begin{aligned}
p_{a}(D) & =1+k x-k-x-s k(k-1) / 2 \\
& =1+(k-1) x-k-s k(k-1) / 2 \\
& =1+s k(k-1) / 2+k(x-k s)-(x-k s)-k
\end{aligned}
$$

Proof of Proposition 1. Let $S \subset \mathbf{P}^{r}$ be a minimal degree surface (not the Veronese surface if $r=5$) with Maroni invariant m. Thus $\operatorname{deg}(S)=r-1$ and S is a cone if and only if $m=r-1$. First assume $0 \leq m<r-1$, i.e. $S \cong F_{m}$. We use the notation of Remark 4 with $s=m$. The linear system $|h+((r+m-1) / 2) f|$ on S is very ample and it induces the complete linear system associated to the fixed embedding of S into \mathbf{P}^{r}. Set $x:=d-k(r-m-1) / 2$. Thus $x \geq k m$. Hence the linear system $|k h+x f|$ is base point free and a general member of $|k h+x f|$ is a smooth curve of genus $q:=1+k x-x-k-m\left(k^{2}-k\right) / 2$ (see Remark 4). By [12], Remark 3.2, there is an integral curve $C \in|k h+x f|$ whose only singularities are $q-g$ ordinary nodes. Let $\pi: X \rightarrow C$ be the normalization. Thus X is a smooth curve of genus g. The pencil $|f|$ induces $\mid L \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, L) \geq 2$. Set $M:=\pi^{*}\left(O_{C}(1)\right)$. Hence $M \in \operatorname{Pic}^{d}(X)$, M is spanned, $h^{0}(X, M) \geq r+1, h^{0}\left(X, M \otimes L^{*}\right)=r-1$ if $h^{0}(X, M)=r+1$ and h_{M} is birational with nodal image. Set $W:=\pi^{*}\left(H^{0}\left(\mathbf{P}^{r}, O_{\mathbf{P}^{r}}(1)\right)\right)$ and $V:=\pi^{*}(|f|)$. We have $\operatorname{dim}(W(-D))=r-1$ for every divisor $D \in|V|$ and hence (M, W, L, V) is a very weak Maroni pair. Now assume $m=r-1$, i.e. S a cone. Let $\delta: F_{r-1} \rightarrow S$ be the minimal resolution. We repeat the previous construction in F_{r-1} and obtain a nodal curve $C \in|k h+d f|$. The curve $\delta(C)=h_{W}(X) \subset \mathbf{P}^{r}$ is nodal if and only if it has not a worst singularity at the vertex, v, of the cone S. A necessary condition for this is $C \cdot h \leq 2$, i.e. $d \leq k(r-1)+2$. If $d=k(r-1), C \subset F_{r-1}$ and C is nodal, then $\delta(C)$ is nodal because $v \notin \delta(C)$. If $d=k(r-1)+1, C \subset F_{r-1}$ and C is nodal, then $\delta(C)$ is nodal because $v \in \delta(C)_{\text {reg }}$. If $d=k(r-1)+2$ we may find a nodal curve $C \subset F_{r-1}$ intersecting transversally h and hence with $\delta(C)$ nodal at v.

Remark 5. Let (M, L) be a Maroni pair on X with invariants d, k, r and m. The proof of Proposition 1 shows that the morphism h_{M} is very ample if and only if it is birational and either $m<r-1$ and $g=1+(k-1)(d-k(r-m-1) / 2)-k-m\left(k^{2}-k\right) / 2$ or $m=r-1, k(r-1) \leq d \leq k(r-1)+1$ and g is as above.

Remark 6. Let (M, L) be a Maroni pair with invariants d, k, r and m. Assume h_{M} birational. The proof of Proposition 1 gives that $M \otimes\left(L^{*}\right)^{\otimes t}$ is base point free with $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes t}\right)=r+1-2 t$ if $0 \leq t \leq(r-1-m) / 2$.

Proposition 2. With the notations and assumptions of Remark 6, make the further assumptions

$$
d \geq k(r+m-1) / 2-m+2
$$

and

$$
\begin{aligned}
& 1+(k-1)(d-k(r-m-1) / 2)-k-m\left(k^{2}-k\right) / 2-g \\
& \quad \leq(k-1)(d-k(r-m-1) / 2-2-m)-m(k-1)(k-2) / 2
\end{aligned}
$$

Then $h^{0}(X, L)=2$, i.e. (M, W, L) is a weak Maroni triple.
Proposition 3. With the notations and assumptions of Remark 5, make the further assumptions

$$
d \geq 1+(k+1)(r+m-1) / 2-2 m
$$

and

$$
\begin{aligned}
& 1+(k-1)(d-k(r-m-1) / 2)-k-m\left(k^{2}-k\right) / 2-g \\
& \quad \leq(k-2)(d-k(r-m-1) / 2-1-m-(r+m-1) / 2) \\
& \quad-m(k-2)(k-3) / 2 .
\end{aligned}
$$

Then $h^{0}(X, L)=2$ and $h^{0}(X, M)=r+1$, i.e. (M, L) is a Maroni pair.
Proof of Propositions 2 and 3. We use the notation introduced in the proof of Proposition 1. In particular $d=(k h+x f) \cdot(h+((r+m-1) / 2) f)=-m k+x+k(r+m-1) / 2$. Since $d \geq k(r+m-1) / 2$, we have $x \geq k m$. Under the assumptions of Proposition 2 we need to check the equality $h^{0}(X, L)=2$; for Proposition 3 we need to check the equality $h^{0}(X, M)=r+1$. We have $h^{0}\left(S, O_{S}(1)\right)=r+1$. We have $h^{0}\left(S, O_{S}(1)(-C)\right)=r+1$ because $k>1$. We have

$$
\begin{aligned}
h^{1}\left(S, O_{S}(1)(-C)\right) & =h^{1}\left(S, O_{S}((1-k) h+((r+m-1) / 2-x) f)\right. \\
& =h^{1}\left(S, O_{S}((k-3) h+(x-(r+m-1) / 2-2-m) f)\right.
\end{aligned}
$$

(Serre duality).
By Remark 4 we have $h^{1}\left(S, O_{S}((k-3) h+(x-(r+m-1) / 2-2-m) f)=0\right.$ if and only if $x \geq-1+m(k-3)+(r+m-1) / 2+2+m$, i.e. if and only if

$$
\begin{aligned}
d & \geq k(r-m-1) / 2-1+m(k-3)+(r+m-1) / 2+2+m \\
& =(k+1)(r+m-1) / 2-2 m+1
\end{aligned}
$$

Hence we have $h^{0}\left(C, O_{C}(1)\right)=r+1$ in the case of Proposition 3 by our assumption on d. We have $h^{0}\left(C, O_{C}(f)\right)=2$ if and only if $h^{1}\left(S, O_{S}(-k h-(x-1) f)\right)=0$, i.e. by Serre duality if and only if $h^{1}\left(S, O_{S}((k-2) h+(x-3-m) f)\right)=0$ and this is true if an only if $x-3-m+1 \geq m(k-2)$ (see Remark 4), i.e. if and only if $d \geq k(r+m-1) / 2-m+2$. By the adjunction formula we have $\omega_{S} \cong \mid\left(-2 h+(-2-m) f \mid\right.$ and $\omega_{C} \cong O_{C}((k-2) h+$ $(x-2-m) f)$ (see Remark 4). Since $h^{0}\left(S, \omega_{S}\right)=h^{1}\left(S, \omega_{S}\right)=0$, the restriction map $H^{0}\left(S, O_{S}((k-2) h+(x-2-m) f)\right) \rightarrow H^{0}\left(C, \omega_{C}\right)$ is bijective. Since C is nodal, the linear system $H^{0}\left(X, \omega_{X}\right)$ is induced by $\left.H^{0}\left(S, I_{\text {Sing }(C)}\right)((k-2) h+(x-2-m) f)\right)$. We have $\operatorname{card}(\operatorname{Sing}(C))=q-g$. Hence the equality $h^{0}(X, L)=2\left(\right.$ resp. $\left.h^{0}(X, M)=r+1\right)$ is equivalent to the linear independence of the conditions imposed by $\operatorname{Sing}(C)$ to the linear system $|(k-2) h+(x-3-m) f|$ (resp. $|(k-3) h+(x-2-m-(r+m-1) / 2) f|$. There is a nodal curve $D \in|k h+x f|$ with geometric genus 0 and such that D is the flat limit inside $|k h+x f|$ of a flat family of nodal irreducible curves with geometric genus g (and hence with $q-g$ ordinary nodes as only singularities) ([12], 2.2, 2.11,
2.13 and 2.14); here the proofs are quite simple because ω_{S}^{*} is ample). With the terminology of [12] this flat family is obtained taking a rational irreducible nodal curve $D \in|k x+x f|$ and smoothing inside $|k h+x f|$ exactly g of the nodes of D; any subset, B, of $\operatorname{Sing}(D)$ with $\operatorname{card}(B)=g$ may be taken as such set of "unassigned", nodes, while the set $\operatorname{Sing}(D) \backslash B$ is the limit of the nodes of the nearby nodal curves with geometric genus g. We would like to take as C a general member of this flat family which smooths exactly the unassigned nodes of D. By semicontinuity to use that curve C it is sufficient to show the existence of a subset Γ of $\operatorname{Sing}(D)$ with $\operatorname{card}(\Gamma)=q-g$ and such that Γ imposes independent conditions to $|(k-2) h+(x-3-m) f|$ (resp. $|(k-3) h+(x-2-m-(r+m-1) / 2) f|)$ for Proposition 2 (resp. 3). Since D is rational, we have $h^{0}\left(S, I_{\text {Sing }(D)}((k-2) h+(x-2-m) f)\right)=0$. Thus

$$
\begin{aligned}
& h^{0}\left(S, I_{\text {Sing }(D)}((k-2) h+(x-3-m) f)\right) \\
& \quad=h^{0}\left(S, I_{\text {Sing }(D)}((k-3) h+(x-2-m-(r+m-1) / 2) f)\right)=0 .
\end{aligned}
$$

Hence for every integer $z \leq h^{0}\left(S, O_{S}((k-2) h+(x-3-m) f)\right)=(k-1)(2 x-m k-4) / 2$ $\left(\right.$ resp. $\left.\left.w \leq h^{0}\left(S, O_{S}((k-3) h+(x-2-m-(r+m-1) / 2) f)\right)\right)=(k-2)(2 x-m k-r-1) / 2\right)$ there is a subset Φ of $\operatorname{Sing}(D)$ with $\operatorname{card}(\Phi)=z(\operatorname{resp} . \operatorname{card}(\Phi)=w)$ and imposing independent conditions to $H^{0}\left(S, O_{S}((k-2) h+(x-3-m) f)\right)$ (resp. $h^{0}\left(S, O_{S}((k-3) h+\right.$ $(x-2-m-(r+m-1) / 2) f)))$). Hence if $q-g:=\operatorname{card}(\operatorname{Sing}(C)) \leq h^{0}\left(S, O_{S}((k-2) h+\right.$ $(x-3-m) f))\left(\right.$ resp. $\left.q-g \leq h^{0}\left(S, O_{S}((k-3) h+(x-2-m-(r+m-1) / 2) f)\right)\right)$ there is a subset A of $\operatorname{Sing}(C)$ with $\operatorname{card}(A)=q-g$ and $h^{1}\left(S, I_{A}((k-2) h+(x-3-m) f)\right)=0$ $\left(\right.$ resp. $\left.h^{1}\left(S, I_{A}((k-3) h+(x-2-m-(r+m-1) / 2) f)\right)=0\right)$.
The values of the h^{0} 's explain the upper bound of g in the statements of Propositions 2 and 3.

Remark 7. Fix a minimal degree surface $S \subset \mathbf{P}^{r}$ (not the Veronese surface) with Maroni invariant m. In the case $m=r-1$ we must work on the minimal desingularization, F_{r-1}, of the cone S, but we leave the details to the reader. Since $\left.|h+((r+m-1) / 2) f| \cong \mid O_{S}(1)\right) \mid$, we have $h^{0}\left(S, O_{S}(1)(-t f)\right)=r+1-2 t$ if $0 \leq t \leq$ $(r-m+1) / 2$ and $h^{0}\left(S, O_{S}(1)(-t f)\right)=\max \{0,(r+m+1) / 2-t\}$ if $t>(r-m+$ 1)/2. Now assume that we are in the case considered in Proposition 3, i.e. assume $h^{0}(X, M)=r+1$. We obtain the same values of $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes t}\right), t \geq 0$, i.e. we obtain $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes(t-1)}\right)-h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes t}\right)=2$ if $1 \leq t \leq(r-m+1) / 2$ and $h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes(t-1)}\right)-h^{0}\left(X, M \otimes\left(L^{*}\right)^{\otimes t}\right)=1$ if $t>(r-m+1) / 2$ and $h^{0}(X, M \otimes$ $\left.\left(L^{*}\right)^{\otimes(t-1)}\right)>0$, explaining the meaning of the Maroni invariant m. Indeed, these equalities are true because the assumption $h^{0}(X, M)=r+1$ forces the set $\operatorname{Sing}(C)$ to impose independent conditions to a suitable linear system which is a subsystem of the ones needed for the inequalities considered here.

Remark 8. Let X be a smooth curve of genus g with a Maroni pair (M, L) with invariants d, k, r and m and such that the morphism h_{M} is birational. Then the triple (X, M, L) arises as in the proof of Proposition 1, except that C may be not nodal, but just an integral curve in $|k h+x f|$ with geometric genus g.

Remark 9. By [12], Prop. 2.11, the family, Γ, of nodal curves considered in the proof of Proposition 1 is smooth and equidimensional of dimension $\operatorname{dim}(|k h+x f|)-$ $(q-g)$. If $q-g$ is quite small, it is even easy to check that Γ is irreducible and that its closure in $|k h+x f|$ contains all irreducible curves with geometric genus $|g|$.

Lemma 1. Let (M, L) be a Maroni pair with $r:=h^{0}(X, M)-1 \geq 4$. Let N be the subsheaf of $M \otimes L^{*}$ spanned by $H^{0}\left(X, M \otimes L^{*}\right)$.
Then either (N, L) is a Maroni pair or $N \cong L^{\otimes(r-2)}$. In the latter case there is an effective (or empy) divisor D with $M \cong L^{\otimes(r-1)}(D)$ and $h^{0}\left(X, O_{X}(D)\right)=1$.

Proof. We have $h^{0}(X, N)=H^{0}\left(X, M \otimes L^{*}\right)=r-1 \geq 3$. Since $h^{0}(X, N)>h^{0}(X, N \otimes$ $\left.L^{*}\right)$ and $h^{0}(X, N)-h^{0}\left(X, N \otimes L^{*}\right) \leq h^{0}(X, M)>h^{0}\left(X, M \otimes L^{*}\right)=2$, either (N, L) is a Maroni pair or we may apply a Lemma of Eisenbud ([5], Lemma 1.2.1, or, in arbitrary characteristic, [7], Cor. 5.2) and obtain $N \cong L^{\otimes(r-2)}$. In the latter case the definition of N gives $M \otimes L^{*}=N(D)$ with $h^{0}\left(X, O_{X}(D)\right)=1$, concluding the proof.

Remark 10. Fix a Maroni pair (M, L) with h_{M} birational. Since $h^{0}(X, M)=$ $r+1$, we may use Remark 7 to apply several times Lemma 1.

Remark 11. Let (M, L) be a Maroni pair on X and F a subsheaf of M with F spanned. We have $1 \leq h^{0}(X, F)-h^{0}\left(X, F \otimes L^{*}\right) \leq h^{0}(X, M)-h^{0}\left(X, M \otimes L^{*}\right)=2$. If $h^{0}(X, F)-h^{0}\left(X, F \otimes L^{*}\right)=1$ we may apply [5], Lemma 1.2.1, or [7], Cor. 5.2, and obtain $F \cong L^{\otimes f}$ with $f:=\operatorname{deg}(F) / \operatorname{deg}(L) \in \mathbb{N}$. If $h^{0}(X, F)-h^{0}\left(X, F \otimes L^{*}\right)=2$ and $h^{0}(X, F) \geq 3$, then (F, L) is a Maroni pair.

Definition 4. Let (M, L) be a Maroni pair on X and F a subsheaf of M. The level, $s(F, M)$ of F in (M, L) is the maximal integer $s \geq 0$ such that $h^{0}\left(X, M \otimes F^{*} \otimes\right.$ $\left.\left(L^{*}\right)^{\otimes s}\right) \neq 0$. By DEfinition 2 we have $s\left(O_{X}, M\right)=e_{1}$.

Theorem 2. Let (M, L) be a Maroni pair on X with invariants d, k, r and m with h_{M} birational and $R \in \operatorname{Pic}(X)$ with R spanned and $h^{0}\left(X, M \otimes R^{*}>0\right.$. Then one of the following cases occurs:
(i) $R \cong L^{\otimes y}$ for some integer y with $y \leq(r+m-1) / 2$;
(ii) there is an integer $t>0$ and an effective divisor D (or empty) with $R(D) \cong$ $M \otimes\left(L^{*}\right)^{\otimes t}, h^{0}(X, D)=1$ and $h^{0}\left(X, L^{\otimes t}(D)\right)=h^{0}\left(X, L^{\otimes t}\right)$, i.e. D is the fixed divisor of $L^{\otimes t}(D)$.

Proof. Let $S \subset \mathbf{P}^{r}$ be the minimal degree ruled surface associated to M. For simplicity we assume $m<r-1$; in the case $m=r-1$ we just use F_{r-1} instead of S. For any subscheme Z of \mathbf{P}^{r}, let $\langle Z\rangle$ be its linear span. For any effective divisor B of X let $\langle B\rangle$ be the intersection of all hyperplanes of \mathbf{P}^{r} whose pull-back is a divisor of $|M|$ containing B. Assume R not isomorphic to $L^{\otimes y}$ for some $y \leq(r+m-1) / 2$.
(a) First assume $h^{0}\left(X, M \otimes R^{*}\right)=1$. Hence for a general $E \in|R|$ the linear span $\langle E\rangle \mid$ is a hyperplane H. The hyperplane H corresponds to a divisor $B+E \in|M|$ with B effective. We have $\operatorname{dim}(\langle B\rangle)=r-1-\operatorname{dim}(|R|) \leq r-2$.
Claim: $\langle B\rangle \cap S$ is finite.
Proof of the Claim: Assume $\langle B\rangle \cap S$ not finite. Hence it contains a curve $\Delta \in|\epsilon h+\alpha f|$ with $0 \leq \epsilon \leq 1,0 \leq \alpha \leq(r+m-1) / 2$ and $\alpha+\epsilon \neq 0$. Since R is spanned, the divisor of X induced by Δ is contained in B. Hence $h_{M}(E)$ is contained in a curve belonging to $|(1-\epsilon) h+((r+m-1) / 2-\alpha) f|$, contradicting the assumption $h^{0}\left(X, M \otimes R^{*}\right)=1$.
(b) Now assume $h^{0}\left(X, M \otimes R^{*}\right)>1$. Hence for a general $E \in|R|$ the linear span $\langle E\rangle$

Abstract

has dimension at most $r-2$. Since $|R|$ is not composed with $|L|$, for a general $P \in X$ there are divisors $E_{P} \in|R|$ and $F \in|L|$ with $P \in E_{P}, P \in F$ and $\operatorname{deg}(F)-\operatorname{deg}\left(F \cap E_{P}\right) \geq 2$. By the generality of P we have $\operatorname{dim}\left(\left\langle E_{P}\right\rangle\right) \leq r-2$. Set $F_{P}:=F-\left(E_{P} \cap F\right)$ and tale $Q \in F_{P}$. Since $h^{0}\left(X, M \otimes L^{*}\right)=r-1$, a general hyperplane H in \mathbf{P}^{r} containing Q and $\left\langle E_{P}\right\rangle$ contains F. Hence for every $B \in\left|M \otimes R^{*}\right|$ with $B \geq Q$ we find $B \geq F_{P}$. Hence a general hyperplane in \mathbf{P}^{r} containing B contains F. Since $|R|$ is spanned, this implies $F \subset B$. Since Q is general on X, we find $|B|$ composed with $|L|$, i.e. $|B|=t|L|+D$ with D fixed divisor of $|B|$. Hence $t=\operatorname{dim}\left(\left|M \otimes R^{*}\right|\right)=\operatorname{dim}\left(\left|M \otimes R^{*}(-D)\right|\right)$. Thus $h^{0}\left(X, O_{X}(D)\right)=1$ and D is a fixed divisor of $\left|L^{\otimes t}(D)\right|$. We have $R \cong$ $M \otimes\left(L^{*}\right)^{\otimes t}(-D)$, i.e. we are in case (ii).

Definition 5. Let (M, L) be a Maroni pair and F a subsheaf of M spanned by $H^{0}(X, F)$. Let N be the subsheaf of $M \otimes F^{*}$ spanned by $H^{0}\left(X, M \otimes F^{*}\right)$. Hence there is an effective divisor (or \emptyset) with $N(D) \cong M \otimes F^{*}$ and $h^{0}(X, N)=h^{0}\left(X, M \otimes F^{*}\right)$. The line bundle $M \otimes N^{*} \cong F(D)$ will be called the primitive hull of F in M. We have $\operatorname{deg}\left(M \otimes N^{*}\right)=\operatorname{deg}(F)+\operatorname{deg}(D)$. If $F=M \otimes N^{*}$ we will say that F is primitive in M.

Motivated by Theorem 2 we raise the following questions:
(Q1) What are the integers $h^{0}\left(X, L^{\otimes t}\right)$ for $2 \leq t \leq s(L, M)$, i.e. what are the part of the scrollar invariants of L related to M ?
(Q2) For what integers t with $1 \leq t \leq s(L, M)$ is $L^{\otimes t}$ primitive in M ? If $L^{\otimes t}$ is not primitive, what is the degree of its primitive hull in M, i.e. what is the degree of the base locus of the linear system $\left.\mid M \otimes L^{*}\right)^{\otimes t} \mid$?

First assume h_{M} birational. For questions (Q1) and (Q2) a key integer is the Maroni invariant m of the pair (M, L) (Remark 6). If h_{M} is not birational, we may use $\left(^{\ddagger}\right)$ below to reduce questions (Q1) and (Q2) (at least if $\operatorname{char}(\mathbf{K})=0$) to the case in which h_{M} is birational.
$\left(^{\ddagger}\right)$ Assume $\operatorname{char}(\mathbf{K})=0$. We always assume $k \geq 3$, because if X is hyperelliptic everything is obvious. Let (M, L) be a Maroni pair on X such that the morphism h_{M} is not birational. Thus there is $\left(C, \alpha, M^{\prime}\right)$ with C smooth curve, α : $X \rightarrow C$ morphism with $\operatorname{deg}(\alpha)>1$ and $M^{\prime} \in \operatorname{Pic}(C)$ with $M \cong \alpha^{*}\left(M^{\prime}\right)$ and $\alpha^{*}\left(H^{0}\left(C, M^{\prime}\right)\right)=H^{0}(X, M)$. Thus M^{\prime} is spanned, $h^{0}\left(C, M^{\prime}\right)=h^{0}(X, M)$ and $\operatorname{deg}\left(M^{\prime}\right)=\operatorname{deg}(M) / \operatorname{deg}(\alpha)$. In general the pair (C, α) is not unique, up to an automorphism of C, unless $\operatorname{deg}\left(h_{M}\right)$ is prime, but it is unique if we impose that α does not factor in a non-trivial way through a smooth curve. We assume this condition; in particular in general we do not take as C the normalization of $h_{M}(X)$. There is a push-forward map $\alpha!: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(C)$ with $\operatorname{deg}\left(\alpha_{!}(R)\right)=\operatorname{deg}(R)$ for every $R \in \operatorname{Pic}(X)$; the map $\alpha!$ is defined sending $O_{X}(P)$ into $O_{C}(\alpha(P))$ and then using additivity; the map defined in this way preserves linear equivalence of divisors because $P i c^{0}(C)$ is an abelian variety and hence there is no non-constant rational map from \mathbf{P}^{1} into $\operatorname{Pic}^{0}(C)$; hence the map between divisors defined in this way induces a map $\alpha_{!}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(C)$. Call N the subsheaf of $M \otimes L^{*}$ spanned by $H^{0}\left(X, M \otimes L^{*}\right)$. Since $H^{0}(X, N)$ may be seen as a subspace of $H^{0}(X, M), h_{N}$ factors through α, i.e. there exists $N^{\prime} \in \operatorname{Pic}(C)$ with $N \cong \alpha^{*}\left(N^{\prime}\right)$ and $\alpha^{*}\left(H^{0}\left(C, N^{\prime}\right)\right)=H^{0}(X, N)$. Thus N^{\prime}
is spanned, $h^{0}\left(C, N^{\prime}\right)=h^{0}\left(X, M \otimes L^{*}\right)$ and $\operatorname{deg}\left(N^{\prime}\right)=\operatorname{deg}(N) / \operatorname{deg}(\alpha)$.
(i) First assume that for a general $A \in|L|$ we have $\operatorname{card}(\alpha(A))=k$. For every $R \in$ $\operatorname{Pic}(X)$ we have $h^{0}(X, R) \leq h^{0}\left(C, \alpha_{!}(R)\right)$ because the map inducing $\alpha_{!}$preserves linear equivalence. If R is spanned, then $\alpha_{!}(R)$ is spanned because for every $Q \in$ C there is $D \in|R|$ not intersecting $\alpha^{-1}(Q)$. Set $L^{\prime}:=\alpha_{!}(L) \in \operatorname{Pic}^{k}(C)$. Take a general $A \in|L|$, say $A=P_{1}+\ldots+P_{k}$. Since $h^{0}\left(X, M \otimes L^{*}\right)<h^{0}(X, M)-1$, there is $D \in|M|$ containing P_{1} but not P_{2}. Since every $D \in|M|$ containing $\left\{P_{1}, P_{2}\right\}$ contains every P_{i} with $i \geq 3$ and $\alpha^{*}\left(H^{0}\left(C, M^{\prime}\right)\right)=H^{0}(X, M)$, every $D^{\prime} \in\left|M^{\prime}\right|$ containing $\left\{\alpha\left(P_{1}\right), \alpha\left(P_{2}\right)\right\}$ contains every $\alpha\left(P_{i}\right), i \geq 3$. Thus L^{\prime} is spanned and $h^{0}\left(C, M^{\prime} \otimes L^{\prime *}\right)=h^{0}\left(C, M^{\prime}\right)-2$.
(i1) Here we assume $h^{0}\left(C, L^{\prime}\right)=2$. Thus $\left(M^{\prime}, L^{\prime}\right)$ is a Maroni pair on C with $\operatorname{deg}\left(M^{\prime}\right)=\operatorname{deg}(M) / \operatorname{deg}(\alpha)$ and $\operatorname{deg}\left(L^{\prime}\right)=\operatorname{deg}(L)$. We may work on C instead of working on X.
(i2) Here we assume $h^{0}\left(C, L^{\prime}\right) \geq 3$. Fix a general $D \in|L|$ and set $\alpha(D) \in\left|L^{\prime}\right|$. Since $h^{0}(X, M)=h^{0}\left(C, M^{\prime}\right)$, we have $h^{0}(X, M(-D))=h^{0}\left(C, M^{\prime}\left(-D^{\prime}\right)\right)$. Thus $h^{0}\left(C, M^{\prime}\right)=r+1, h^{0}\left(C, M^{\prime} \otimes L^{\prime *}\right)=r-1$ and M^{\prime}, L^{\prime} are spanned. By Remark 1 we have $h^{0}\left(C, L^{\prime}\right)=3$ and there is $R \in \operatorname{Pic}(C), R$ spanned, with $h^{0}(C, R)=2, L^{\prime} \cong R^{\otimes 2}$ and $M^{\prime} \cong R^{\otimes r}$. Set $T:=\alpha^{*}(R)$. Thus $M \cong T^{\otimes r}$. Since $h^{0}(X, M)=r+1$ and $r \geq 2$ we have $h^{0}\left(X, T^{\otimes 2}\right)=3=$ $h^{0}\left(C, R^{\otimes 2}\right)$. Since $h^{0}(X, M)=h^{0}\left(C, M^{\prime}\right)$ and the morphism associated to $\left|M^{\prime}\right|$ is induced by the composition of the morphism $C \rightarrow \mathbf{P}^{1}$ induced by $|R|$ and of the degree r Veronese embedding $v_{r}: \mathbf{P}^{1} \rightarrow \mathbf{P}^{r}$, we have $h_{M}=v_{r} \circ h_{T}$. By construction for every $E \in\left|R^{\otimes 2}\right|$ we have $\alpha^{-1}(E) \in$ $\left|T^{\otimes 2}\right|$. Hence there is an effective divisor B with $L(B) \cong T^{\otimes 2}$. Since $h^{0}(X, L)=2$, we have $B \neq \emptyset$. Since L is spanned and the map induced by $\left|T^{\otimes 2}\right|$ is the composition of h_{T} and the degree 2 Veronese embedding $v_{2}: \mathbf{P}^{1} \rightarrow \mathbf{P}^{2}$, every fiber of h_{T} is a fiber of h_{L}. Since $B \neq \emptyset$, this implies $L=T$, contradicting the assumption $\operatorname{card}(\alpha(A))=k$ for a general $A \in|L|$.
(ii) Now assume that for a general $A \in|L|$ we have $\operatorname{card}(\alpha(A))<k$. Since $\operatorname{char}(\mathbf{K})=0$, by [1], Th. 4.1, the morphisms h_{M} and h_{L} factor through a common covering. Indeed, taking any such covering and then applying again the monodromy argument in [1] and the minimality condition of α, we see easily that h_{L} factors through α, i.e. we see the existence of a spanned $L^{\prime} \in \operatorname{Pic}(C)$ with $\alpha^{*}\left(L^{\prime}\right)=L$ and $\alpha^{*}\left(H^{0}\left(C, L^{\prime}\right)\right)=H^{0}(X, L)$. Hence $h^{0}\left(C, L^{\prime}\right)=2$. Thus $\left(M^{\prime}, L^{\prime}\right)$ is a Maroni pair on C with $\operatorname{deg}\left(M^{\prime}\right)=\operatorname{deg}(M) / \operatorname{deg}(\alpha)$ and $\operatorname{deg}\left(L^{\prime}\right)=$ $\operatorname{deg}(L) / \operatorname{deg}(\alpha)$. Again, we may work on C with respect to the Maroni pair ($\left.M^{\prime}, L^{\prime}\right)$.

3. Non-primitive line bundles

At the end of this section we will prove Theorem 1 and hence Corollary 1. First, we will consider the following problem. Let X be a smooth projective curve and fix $L \in \operatorname{Pic}(X)$ with L spanned and $h^{0}(X, L)=2$. Study the pairs (s, D) with s positive integer, D effective divisor on $X, h^{0}\left(X, L^{\otimes s}\right)=s+1$ and $h^{0}\left(X, L^{\otimes s}(D)\right) \geq s+2$. Taking D minimal we may (and will) even assume $h^{0}\left(X, L^{\otimes s}(D)\right)=s+2$ and that $L^{\otimes s}(D)$ is spanned. If $D \in|L|$ this is just a question on the scrollar invariants of L. If $0<\operatorname{deg}(D)<\operatorname{deg}(L)$ and X is a general k-gonal curve with $k:=\operatorname{deg}(L)$, this question
was solved in [4], Prop. 1.1, and we were inspired by that result to start our study of some more general cases.
$\left(^{\dagger \dagger}\right)$ We fix any such X, L, s and D and set $k:=\operatorname{deg}(L), b:=\operatorname{deg}(D)>0$. For all integers t with $1 \leq t \leq s$ the morphism $h_{L \otimes t}$ has degree k and $h_{L \otimes t}(X)$ is a rational normal curve of \mathbf{P}^{t}. Fix a rational normal curve A of \mathbf{P}^{s} and see \mathbf{P}^{s} as a hyperplane of \mathbf{P}^{s+1}. Fix $\mathbf{v} \in\left(\mathbf{P}^{s+1} \backslash \mathbf{P}^{s}\right)$ and let T be the cone with vertex \mathbf{v} and base A; for $s=1$ we have a degenerate (simpler) situation because $T \cong \mathbf{P}^{2}$. Set $B:=h_{L^{\otimes t}(D)}(X)$. By assumption either the morphism $h_{L^{\otimes t}(D)}$ is birational or it factors through a curve of genus $q>0$. We will always assume $h_{L{ }^{\otimes t}(D)}$ birational; the proof of $\left({ }^{\ddagger}\right)$ at page 9 may be useful when $h_{L^{\otimes t}(D)}$ is not birational. Thus $B \subset \mathbf{P}^{s+1}$ is a curve of degree $s k+b$ with $B \subset T$ and B has multiplicity b at \mathbf{v}. Let $\pi: F_{s} \rightarrow T$ be the blowing - up of T at \mathbf{v}; indeed, F_{s} is isomorphic to the Hirzebruch surface with invariant s considered in Remark 4; this is true even in the case $s=1$ in which case $T \cong \mathbf{P}^{2}$. With the notation of Remark 4 we have $A \cong \pi^{-} 1(A) \in|h+s f|$. Call C the strict transform of B in F_{s}. Thus $C \in|k h+(k s+b) f| . X$ is isomorphic to the normalization of C because we assumed that $h_{L \otimes t(D)}$ is birational. The pencil $|f|$ induces L. Viceversa, the normalization, X^{\prime}, of any integral curve $C \in|k h+(k s+b) f|$ gives a solution (X^{\prime}, L^{\prime}) with $L^{\prime} \in \operatorname{Pic}(X), \operatorname{deg}\left(L^{\prime}\right)=k$ and L^{\prime} spanned if the following three conditions are satisfied:
(C1) $h^{0}\left(X^{\prime}, L^{\prime}\right)=2$;
(C2) $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\right)=s+1$;
(C3) call D^{\prime} the degree b effective divisor of X^{\prime} induced by the length b scheme $h \cap C$; we have $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime}\right)\right)=s+2$.

Remark 12. Obviously (C2) implies (C1). Since $|k h+(k s+b) f|$ is spanned, $L^{\prime \otimes s}\left(D^{\prime}\right)$ is spanned. Thus if $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\right)=s+1$ and $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime}\right)\right)=s+2$, then for every effective divisor $D^{\prime \prime}$ strictly contained in D^{\prime} we have $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime \prime}\right)=s+1\right.$.

Remark 13. Take the set-up and notation of Remark 4 and $\left({ }^{\dagger \dagger}\right)$. By Remark 4 we have $p_{a}(C)=1+k^{2} s / 2-s k / 2-k+b k-b$. Thus $g \leq 1+k^{2} s / 2-s k / 2-k+b k-b$ and $g=1+k^{2} s / 2-s k / 2-k+b k-b$ if and only if C is smooth.

Remark 14. We use the notation of $\left.{ }^{(\dagger \dagger}\right)$. The curve $B=\pi(C)$ has multiplicity b at \mathbf{v}. Thus B may be nodal only if $b \leq 2$. If $b=0$, then $\mathbf{v} \notin B$. If $b=1$, then $\mathbf{v} \in B_{\text {reg }}$. If $b=2$ the curve B has an ordinary node at \mathbf{v} if and only if C intersects transversally h. As we will see in Remark 15, this is the general case.

Remark 15. Let $Y \subset F_{s}$ be the general union of k general curves of type $|h+s f|$ and b general fibers of the ruling. Thus Y is a nodal curve and $\operatorname{card}(\operatorname{Sing}(Y))=$ $1+k^{2} s / 2-s k / 2-k+b k-b+k+b-1$. For every irreducible component, D, of Y we have $Y \cdot \omega_{F_{s}}<0$. Hence we may apply [12], Prop. 2.11, and obtain the following result. Fix an integer g with $0 \leq g \leq 1+k^{2} s / 2-s k / 2-k+b k-b$ and $S \subset \operatorname{Sing}(Y)$ with $\operatorname{card}(S)=1+k^{2} s / 2-s k / 2-k+b k-b-g$ and such that for each irreducible component D of Y we have $(\operatorname{Sing}(Y) \backslash S) \cap D \neq \emptyset$. Then we assign the nodes in S and smooth the nodes of $\operatorname{Sing}(Y) \backslash S$. As a general such smoothing we obtain a nodal curve C with geometric genus g. Since every irreducible component of Y intersects S, C is irreducible. Thus for any admissible numerical datum (k, b, g) we may find a nodal irreducible $C \in|k h+(k s+b) f|$ whose normalization has genus g. Since Y is
transversal to h, the general partial smoothing, C, of Y is tranversal to h; if $b \geq 4$ we may even assume that $h \cap C$ is formed by b general points of $h \cong \mathbf{P}^{1}$. Thus the image $B \subset T$ of such curve has an ordinary point of multiplicity b at \mathbf{v}. Instead of Y we may take the nodal curve $T^{\prime}=T_{1} \cup \ldots \cup T_{k}$ with $T_{i} \in|h+s f|$ for $i<k, T_{k} \in|h+(s+b) f|$ and each T_{j} general.
$\left(^{*}\right)$ Here we will compute $h^{0}\left(C, O_{C}(f)\right)$ and $h^{0}\left(C, O_{C}(s f)\right)$ in most interesting cases. To study $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime}\right)\right)$ we will compute $h^{0}\left(C, O_{C}(h+s f)\right)$. Since $O_{C}(h+$ $s f) \cong \pi^{*}\left(O_{B}(1)\right), h^{0}\left(C, O_{C}(h+s f)\right)=s+2$ if and only if the morphism $C \rightarrow \mathbf{P}^{s+1}$ with image B is induced by a complete linear system of C. We are really interested to study the corresponding problem for X^{\prime} and the case of C will be only an intermediate step. Twisting by $O_{F_{s}}(f)$ (resp. $O_{F_{s}}(s f)$ the exact sequence

$$
\begin{equation*}
0 \rightarrow O_{F_{s}}(-k h-(k s+b) f) \rightarrow O_{F_{s}} \rightarrow O_{C} \rightarrow 0 \tag{2}
\end{equation*}
$$

we obtain $h^{0}\left(C, O_{C}(f)\right)=2\left(\right.$ resp. $\left.h^{0}\left(C, O_{C}(f)\right)=s+1\right)$ if and only if $h^{1}\left(F_{s}, O_{F_{s}}(-k h\right.$ $-(k s+b-1) f))=0\left(\right.$ resp. $\left.h^{1}\left(F_{s}, O_{F_{s}}(-k h-(k s+b-s) f)\right)=0\right)$. Hence by Remark 4 we obtain $h^{0}\left(C, O_{C}(f)\right)=2$ (resp. $\left.h^{0}\left(C, O_{C}(f)\right)=s+1\right)$ if and only if $k s+b-3-s-s(k-2) \geq-1$ (resp. $k s+b-2-2 s-s(k-2) \geq-1$). Thus we have $h^{0}\left(C, O_{C}(f)\right)=2$ if either $s \geq 2$ or $s=1$ and $b>0$, while $h^{0}\left(C, O_{C}(f)\right)=s+1$ if and only if $b>0$. Twisting (2) by $O_{F_{s}}(h+s f)$ and using Serre duality we obtain $h^{0}\left(C, O_{C}(h+s f)\right)=h^{0}\left(F_{s}, O_{F_{s}}(h+s f)\right)\left(\right.$ i.e. $\left.h^{0}\left(C, O_{C}(h+s f)\right)=s+2\right)$ if and only if $h^{1}\left(F_{s}, O_{F_{s}}((k-3) h+(k s+b-2-2 s) f)\right)=0$, i.e. by Remark 4 if and only if $k s+b-2-2 s \geq s(k-3)-1$. This inequality is always satisfied.
${ }^{(* *)}$ We fix the integers g, s, k and b. Take an integral nodal curve $C \subset F_{s}$ with $C \in|k h+(k s+b) f|, k \geq 3$, and normalization, X^{\prime}, of genus g. The existence of such curve follows from [12], Remark 3.2. Obviously, we need to assume $g \leq$ $p_{a}(C)$, i.e. $g \leq 1+k^{2} s / 2-s k / 2-k+b k-b$. We assume $h^{0}\left(C, O_{C}(f)\right)=\overline{2}$, $h^{0}\left(C, O_{C}(s f)\right)=s+1$ and $h^{0}\left(C, O_{C}(h+s f)\right)=s+2$, i.e. by (*) we assume $b>$ 0 . Let L^{\prime} be the degree k spanned line bundle associated to $|f|$. As in the proof of Propositions 2 and 3 we may describe when (C1), (C2) and (C3) are satisfied for the pair (X^{\prime}, L^{\prime}). For Condition (C1) (resp. (C2), resp. (C3)) we will assume $g \geq k+3$ (resp. $g \geq s k-s+1$, resp. $g \geq s k-s+b$) because we look for pairs $\left(X^{\prime}, L^{\prime}\right)$ or triples $\left(X^{\prime}, L^{\prime}, D^{\prime}\right)$ with $h^{1}\left(X^{\prime}, L^{\prime}\right) \geq 2\left(\right.$ resp. $h^{1}\left(X^{\prime}, L^{\prime \otimes s}\right)>0$, resp. $\left.h^{1}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime}\right)\right)>0\right)$. We may repeat the proof of Propositions 2 and 3 just taking $m=s, x=k s+b$ and $S:=F_{s}$. Condition (C1) (resp. (C2), resp. (C3)) is equivalent to $h^{1}\left(F_{s}, I_{\text {Sing }(C)}((k-2) h+(k s+b-3-s) f)\right)=0\left(\right.$ resp. $h^{1}\left(F_{s}, I_{\text {Sing }(C)}((k-2) h+\right.$ $(k s+b-2-2 s) f))=0$, resp. $\left.h^{1}\left(F_{s}, I_{\text {Sing }(C)}((k-3) h+(k s+b-2-2 s) f)\right)=0\right)$. Thus for (C1) (resp. (C2), resp. (C3)) it is necessary to have $\operatorname{card}(\operatorname{Sing}(C)) \leq$ $h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+b-3-s) f)\right)\left(\right.$ resp. $h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+b-2-2 s) f)\right)$, resp. $\left.h^{0}\left(F_{s}, O_{F_{s}}((k-3) h+(k s+b-2-2 s) f)\right)\right)$ and these conditions are sufficient if C is a general partial smoothing inside F_{s} of a rational nodal curve (proof of Propositions 2 and 3 and semicontinuity). We have $\operatorname{card}(\operatorname{Sing}(C))=1+k^{2} s / 2-s k / 2-k+b k-b-g$. By Remark 4 we have $h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+b-3-s) f)\right)=(k-1)(k s+2 b-4) / 2$ since $k s+b-3-s \geq s(k-2)-1$. By Remark 4 we have $h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+\right.$ $b-2-2 s) f))=(k-1)(k s+2 b-2-2 s) / 2 i f k s+b-2-2 s \geq s(k-2)-1$. By Remark 4 we have $h^{0}\left(F_{s}, O_{F_{s}}((k-3) h+(k s+b-2-2 s) f)\right)=(k-2)(k s+2 b-2-s) / 2$. Hence to have (C1) (resp. (C2), resp. (C3)) it is sufficient to assume $g \geq k+3$ $($ resp. $s k-s+2$, resp. $s k-s+3+b$). Notice that the condition $\operatorname{card}(\operatorname{Sing}(C)) \leq$
$h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+b-3-s) f)\right)=(k-1)(k s+2 b-4) / 2($ resp. $\operatorname{card}(\operatorname{Sing}(C)) \leq$ $h^{0}\left(F_{s}, O_{F_{s}}((k-2) h+(k s+b-2-2 s) f)\right)=(k-1)(k s+2 b-2-2 s) / 2$, resp. $\operatorname{card}(\operatorname{Sing}(C)) \leq h^{0}\left(F_{s}, O_{F_{s}}((k-3) h+(k s+b-2-2 s) f)\right)=(k-2)(k s+2 b-2-s) / 2$ is a necessary condition for (C1) (resp. (C2), resp. (C3)) for any integral curve with only ordinary nodes and ordinary cusps as singularities. Taking length $(\operatorname{Sing}(C))$ instead of $\operatorname{card}(\operatorname{Sing}(C))$ and a suitable scheme-structure for $\operatorname{Sing}(C)$ (the adjoint ideal as ideal sheaf) such conditions are necessary for any integral curve which is a flat limit of curves with only ordinary nodes and ordinary cusps as singularities and with the same geometric genus.

Remark 16. Take (X^{\prime}, L^{\prime}) arising as in ($\left.{ }^{\dagger \dagger}\right)$ from a curve $C \in|k h+(k s+1) f|$, i.e. with $b=1$, and satisfying Conditions (C1) and (C2). Thus $\operatorname{deg}\left(D^{\prime}\right)=1$. Since $|k h+(k s+1) f|$ is base point free, $L^{\prime \otimes s}\left(D^{\prime}\right)$ is spanned. Since D^{\prime} is effective, $\operatorname{deg}\left(D^{\prime}\right)=1$ and $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\right)=s+1\left(\right.$ Condition (C2)) we have $h^{0}\left(X^{\prime}, L^{\prime \otimes s}\left(D^{\prime}\right)\right)=s+2$, i.e. Condition (C3) holds.
Taking $b=1$ in $\left({ }^{* *}\right)$ we obtain the following existence theorem.
Corollary 2. Fix integers g, k, s with $s \geq 1, k \geq 3$ and $s k-s+2 \leq g \leq$ $k^{2} s / 2-s k / 2$. Then there exist a smooth curve X with genus g and $L \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, L)=2, h^{0}\left(X, L^{\otimes t}\right)=t+1$ for every integer t with $1 \leq t \leq s, L$ spanned and $L^{\otimes s}$ not primitive.

Proof. By $\left({ }^{* *}\right)$ we need only to check the condition $h^{1}\left(F_{s}, I_{\text {Sing }(C)}((k-3) h+(k s+\right.$ $1-2 s) f))=0$. This can be done as in the proof of Proposition 1 taking as C a partial smoothing with geometric genus g of a rational nodal curve $D \in|k h+(k s+1) f|$.

Remark 17. Take L as in Corollary 2, i.e. with $L^{\otimes s}$ is not primitive, and $P \in X$ such that $h^{0}\left(X, L^{\otimes s}(P)\right) \geq s+2$. Since $\operatorname{deg}(L)>1$ and $L^{\otimes(s+1)}$ is spanned, we have $h^{0}\left(X, L^{\otimes(s+1)}\right) \geq s+3$.

Proof of Theorem 1. We divide the proof into two steps.
Step 1). Fix an integer a with $s<a \leq 2 s+2$ and $g \leq a k-a-k+1$. Fix an integer w with $0<w<k$. Assume the existence of an integral nodal curve $Y \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$ of type (k, a) such that the set $S:=\operatorname{Sing}(Y)$ has the following properties. There are w lines of type (1,0) on $\mathbf{P}^{1} \times \mathbf{P}^{1}$, say L_{1}, \ldots, L_{w}, such that $\operatorname{card}\left(L_{i} \cap S\right)=a-1-s$, while S is "sufficiently general with this restriction"; more precisely, setting $S^{\prime \prime}:=$ $\left.S \backslash S \cap L_{1} \cup \ldots \cup L_{w}\right)$, we will need $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S^{\prime \prime}}(k-2-w, a-2-s)\right)=0$; in particular, calling g the geometric genus of Y, we need $0 \leq a k-a-k+1-g-w(a-1-s)=$ $\operatorname{card}\left(S^{\prime \prime}\right) \leq(k-1-w)(a-1-s)$, i.e. we need

$$
\begin{equation*}
w(a-1-s) \leq a k-a-k+1-g \leq(k-1)(a-1-s) . \tag{3}
\end{equation*}
$$

The second inequality in (3) is equivalent to the inequality $g \geq s(k-1)$. Hence both inequalities in (3) are assumed to be satisfied in the set-up of Theorem 1. Since no L_{i} is contained in Y, we need $2(a-1-s) \leq a$, i.e. here we use the condition $a \leq 2 s+2$. Let X be the normalization of Y. Since $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}\right)=0$, the canonical divisor of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ has type $(-2,-2)$ and Y is nodal, the complete canonical system of X is induced by $H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2)\right)$. We claim that, with the assumption for $S^{\prime \prime}$ just introduced, we have $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-y)\right)=0$ for $0 \leq y \leq s$,
but $H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-s)\right)$ has $L_{1} \cup \ldots \cup L_{w}$ as base locus. To check the first part of the claim it is sufficient to check it for $y=s$, i.e. it is sufficient to prove $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-s)\right)=0$. Since $\operatorname{card}\left(S \cap L_{i}\right)=a-1-s$, each L_{i} is in the base locus of $H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-s)\right)$ and $h^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-s)\right)=$ $H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S^{\prime \prime}}(k-2-w, a-2-s)\right)$. Since $h^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(k-2, a-2-s)\right)=$ $h^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(k-2-w, a-2-s)\right)+w(a-1-s)$ and $\operatorname{card}\left(S \backslash S^{\prime \prime}\right)=w(a-1-s)$, we have $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S}(k-2, a-2-s)\right)=h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S^{\prime \prime}}(k-2-w, a-2-s)\right)$. Obviously we need $w \leq k-1$ and $\operatorname{card}\left(S^{\prime \prime}\right) \leq(k-1-w)(a-1-s)$. Viceversa, if $\operatorname{card}\left(S^{\prime \prime}\right) \leq(k-1-w)(a-1-s)$, then for a general $S^{\prime \prime}$ we have $h^{1} \mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S^{\prime \prime}}(k-$ $2-w, a-2-s))=0$. Thus we obtain $h^{1}\left(X, L^{\otimes y}\right)=g-y k+y$ for $0 \leq y \leq s$, i.e. $h^{0}\left(X, L^{\otimes y}\right)=y+1$, but $H^{0}\left(X, \omega_{X} \otimes\left(L^{\otimes s}\right)^{*}\right)$ has base locus containing the $w(s+1)$ counterimages in X of the points $Y_{r e g} \cap\left(L_{1} \cup \ldots \cup L_{w}\right)$.
Step 2). Here we will prove the existence of an integral nodal curve Y as in Step 1 for parameters g, k, s, a and w. By [12], Remark 3.2, for every triple (α, β, γ) of integers with $\alpha>0, \beta>0$, and $0 \leq \gamma \leq \alpha \beta-\alpha-\beta+1$ there exists an irreducible nodal curve $Z \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$ of type (α, β) and with geometric genus γ, i.e. with exactly $\alpha \beta-\alpha-\beta+1-\gamma$ ordinary nodes as singularities. Furthermore we may find such curve which is transversal to $L_{1} \cup \ldots \cup L_{w}$ and to any fixed in advance reduced curve. Take smooth curves Z, W with Z of type $([k / 2],[(a+1) / 2]), W$ of type $([(k+1) / 2],[a / 2])$ and Z intersecting transversally W. We assume that both Z and W intersect transversally L_{1}, \ldots, L_{w} but that they have exactly $a-1-s$ common points on each $L_{i}, 1 \leq i \leq w$; we will discuss at the end of the proof when this is possible. Let $\mu: \Pi \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ be the blowing - up of the $w(a-1-s)$ points $Z \cap W \cap L_{1} \cup \ldots \cup L_{w}$) and let Z^{\prime} (resp. W^{\prime}) be the strict transform of Z (resp. $W)$ in Π. Call $E_{j}, 1 \leq j \leq w(a-1-s)$, the exceptional divisors of μ. Since $a \leq 2 s+2$ and $w<k$, we have $w(a-1-s)<[k / 2][a / 2]+[(k+1) / 2][(a+1) / 2]$. Since $\operatorname{card}(Z \cap W)=[k / 2][a / 2]+[(k+1) / 2][(a+1) / 2]>w(a-1-s), Z^{\prime} \cup W^{\prime}$ is a connected nodal curve with $\operatorname{Sing}\left(Z^{\prime} \cup W^{\prime}\right)=Z^{\prime} \cap W^{\prime}$. We take a partial smoothing of $Z^{\prime} \cup W^{\prime}$ in which we smooth $a k-a-k-g-w(a-1-s)$ nodes of $Z^{\prime} \cup W^{\prime}$ and call Y^{\prime} the general such curve obtained in this way; here we use $\operatorname{card}\left(\operatorname{Sing}\left(Z^{\prime} \cap W^{\prime}\right)\right)>$ $a k-a-k-g-w(a-1-s)$, i.e. $[k / 2][a / 2]+[(k+1) / 2][(a+1) / 2]>a k-a-k-g$, to obtain a connected curve; this inequality is satisfied under the assumptions of Theorem 1 because $a \leq 2 s+2$ and $g \geq s(k-1)$; here to apply [12], 2.11, we need $\omega_{\Pi} \cdot Z^{\prime}<0$ and $\omega_{\Pi} \cdot W^{\prime}<0$, i.e. $\omega_{\mathbf{P}^{1} \times \mathbf{P}^{1}} \cdot Z<-w(a-1-s)$ and $\omega_{\mathbf{P}^{1} \times \mathbf{P}^{1}} \cdot W<-w(a-1-s)$, i.e. $2\left([(k+a) / 2]>w(a-1-s)\right.$. Set $Y:=\mu\left(Y^{\prime}\right)$. Since $Y^{\prime} \cdot E_{j}=2$ for every j and Y^{\prime} intersects transversally every exceptional divisor E_{j} (for general Y^{\prime} near $Z^{\prime} \cup W^{\prime}$), Y^{\prime} has exactly $a k-a-k+1-g$ ordinary nodes and $\left.Z \cap W \cap L_{1} \cup \ldots \cup L_{w}\right) \subseteq \operatorname{Sing}(Y)$.

Now we discuss the condition " $\left.\operatorname{card}\left(Z \cap W \cap L_{i}\right)\right)=a-1-s$ for all integers i with $1 \leq i \leq w "$. Take Z as above and intersecting transversally $L_{1} \cup \ldots \cup L_{w}$. We fix a set $S \subset Z \cap\left(L_{1} \cup \ldots \cup L_{w}\right)$ with $\operatorname{card}\left(S \cap L_{i}\right)=a-1-s$ for every i. Call (α, β) the type of Z; we have $\alpha=[k / 2]$, but to handle W we will need to consider also the che case $\alpha=[(k+1) / 2]$. Since $O_{Z}(Z) \cong O_{Z}(\alpha, \beta)$ is the normal bundle of Z in $\mathbf{P}^{1} \times \mathbf{P}^{1}$, the subscheme $\operatorname{Hilb}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, S\right)$ of the Hilbert scheme $\operatorname{Hilb}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ formed by the curves containing S has tangent space $H^{0}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)$ at Z and $\operatorname{Hilb}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, S\right)$ is smooth at Z if $H^{1}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)=0([10], 1.4)$. The exact sequence

$$
\begin{equation*}
0 \rightarrow O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(-t, 0) O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(\alpha-t, \beta) \rightarrow O_{Z}(\alpha-t, \beta) \rightarrow 0 \tag{4}
\end{equation*}
$$

shows that we have

$$
h^{0}\left(Z, O_{Z}(\alpha-t, \beta)\right)=h^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(\alpha-t, \beta)\right)=h^{0}\left(Z, O_{Z}(\alpha, \beta)\right)-t(\beta+1)
$$

and

$$
h^{1}\left(Z, O_{Z}(\alpha-t, \beta)\right)=0
$$

if $0<t \leq \alpha+1$. Since $S \subset L_{1} \cup \ldots \cup L_{w}$, we have $H^{1}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)=0$ if $w \leq \alpha+1$, i.e. if $w \leq[k / 2]+1$. Furthermore, if $H^{1}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)=0$, then moving the curve Z in $\operatorname{Hilb}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ we obtains curves near Z which intersect $L_{1} \cup \ldots \cup L_{w}$ in a subset near S and formed by $a-1-s$ general points of each L_{i}; we stress: if $H^{1}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)=0$ we obtain in this way $w(a-1-s)$ general points of $L_{1} \cup \ldots \cup L_{w}$ with the only restriction that each L_{i} contains $a-1-s$ of these general points. We just checked that the condition $H^{1}\left(Z, O_{Z}(\alpha, \beta)(-S)\right)=0$ is satisfied if $w \leq[k / 2]+1$. We do the same for W. Since we just checked that $H^{1}\left(Z, O_{Z}(Z)(-S)\right)=H^{1}\left(Z, O_{W}(W)(-S)\right)=0$ if $w \leq[k / 2]+1$, we obtain Z and W with $\left.\operatorname{card}\left(Z \cap W \cap L_{i}\right)\right)=a-1-w$ for all integers i with $1 \leq i \leq w$. Furthermore, again by [10], 1.5, we find such S, Z and W with Z transversal to W. Remember that to prove Theorem 1 it is sufficient to show the existence of C as in Step 1 with $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{S^{\prime \prime}}(k-2-w, a-2-s)\right)=0$. We may work in Π and hence use again [12], §2, i.e. Severi theory of partial smoothing with assigned and unassigned nodes because $\omega_{\Pi} \cdot Z^{\prime}<0$ and $\omega_{\Pi} \cdot W^{\prime}<0$. Hence by semicontinuity it is sufficient to show the existence of $B \subseteq\left(Z \cap\left(W \backslash\left(L_{1} \cup \ldots \cup L_{w}\right)\right)\right.$ with $\operatorname{card}(B)=a k-a-k+1-w(a-1-s)-g$ and $h^{1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{B}(k-2-w, a-2-s)\right)=0$. Now we fix W but not Z. The restriction map $\left.\left.H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, O_{\mathbf{P}^{1} \times \mathbf{P}^{1}}([(k+1) / 2],[a / 2])\right)\right) \rightarrow H^{0}\left(W, O_{W}([(k+1) / 2],[a / 2])\right)\right)$ is surjective and hence for every integer $b<([k / 2]+1)([(a+1) / 2]+1)-w(a-1-s)$ and any general $B \subset W$ with $\operatorname{card}(B)=b$ there is Z containing $B \cup S$. Since W is not in the base locus of $H^{0}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}, I_{B}(k-2-w, a-2-s)\right)$, we conclude.

Remark 18. We believe that the assumption $a k-a-k+1-g<([k / 2]+$ 1) $([(a+1) / 2]+1)$ in the statement of Theorem 1 can be weakend with small variations of our construction. This was not necessary to obtain Corollary 1 (and hence the ubiquity of non-primitive linear series) because in Corollary 1 there is the assumption $g \geq s(k-1)+1$ which by Riemann - Roch is quite natural if one look for pairs (X, L) with $h^{1}\left(X, L^{\otimes s}\right) \neq 0$ and $h^{0}\left(X, L^{\otimes s}\right)=s+1$. The same types of inequalities (say $g \geq s(k-1)$ or $g \geq s(k-1)+\epsilon$ with ϵ small) are not sufficient to carry over (without any other assumptions) the last part of our proof of Theorem 1 if a is very near to $2 s+2$.

References

[1] Accola R. D. M., On Castelnuovo's inequality. I, Trans. Amer. Math. Soc. 251 (1979), 357-363.
[2] Ballico E., A remark on linear series on general k-gonal curves, Boll. UMI (7) 3 A (1989), 195-197.
[3] Coppens M., Keem C. and Martens G., Primitive linear series on curves, Manuscripta Math. 77 (1992), 237-264.
[4] Coppens M., Keem C. and Martens G., The primitive length of a general k-gonal curve, Indag. Math., N. S., 5 (1994), 145-159.
[5] Coppens M. and Martens G.,, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55.
[6] Coppens M. and Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999), 347-361.
[7] Eisenbud D., Linear sections of determinantal varieties, Am. J. Math. 110 (1988), 541-575.
[8] Hartshorne R., Algebraic Geometry, Springer-Verlag, 1977.
[9] Martens G. and Schreyer F. O., Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 169-189.
[10] Perrin D., Courbes passant par m points généraux de \mathbf{P}^{3}, Bull. Soc. Math. France Mem., 28-29 (1987).
[11] Schreyer F. O., Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.
[12] Tannenbaum A., Families of algebraic curves with nodes, Compositio Math. 41 (1980), 107-126.

AMS Subject Classification: 14H10, 14H51, 14C20.

Edoardo BALLICO
Dipartimento di Matematica
Politecnico di Trento
38050 Povo (TN), ITALIA
e-mail: ballico@science.unitn.it
Lavoro pervenuto in redazione il 27.10.1999 e, in forma definitiva, il 27.03.2001.

[^0]: *We want to thank the referee for several important remarks and some fundamental contributions: the present statement and proof of Theorem 1.16 is due to the referee. This research was partially supported by MURST (Italy).

