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ON LINKED SURFACES IN P
4

Abstract. We give an elementary proof of a result of Katz relating invariants of
linked surfaces inP4. A similar result is proved for volumes inP5. Then we try
to connect the geometry of the curveD = S∩ S′ to the properties of the linked
surfaces, for example we show that ifD is a complete intersection, then one of the
surfaces is a complete intersection too.

1. Introduction

Let us suppose thatSandS′ are smooth surfaces inP4, linked by a complete intersection of type
( f, g). The problem is to compute the numerical invariants ofS′, supposing that those ofS are
known. We restrict the study to a particular type of liaison,which is callednice linkage, but it
would be possible to work under wider hypotheses.
In general ifSandS′ are linked by a complete intersection, it is clear thatD = S∩ S′ is a curve,
since a complete intersection is connected. It is natural then to wonder whether this curve can
tell us something about the surfaces involved in the linkage.
The problem of determining invariants of linked surfaces inP

4 also leads to think about the well
known conjecture concerning the irregularity of these surfaces.

Conjecture. There exists an integerM such that ifS ⊂ P
4 is a smooth surface, thenq(S) ≤ M.

Indeed if it were possible to compute exactly the irregularity of a surface linked to another
whose invariants are all known, this would give a tool to verify the validity of the conjecture
above.
The following section concerns numerical invariants, in particular we give an elementary proof
of a result by S. Katz (see Lemma 2), which states a relation between invariants of linked sur-
faces. The main result in the third section is Prop. 2, which links the cohomology ofS and
S′ with that of D. Then we try to see how particular properties ofD translate in terms of the
surfaces. We wonder what it would mean in terms of the surfaces if D is, respectively, a. C
.M., complete intersection of three hypersurfaces or degenerate (see 1, 3, 4). We conclude with
some considerations about the case of linked subvarieties in P

3 andP
5. In particular we stress

the result in Proposition 5 (and Remark 4), in which it becomes clear how the Rao module of a
curveC ⊂ P

3 could limit the degrees of the surfaces producing a linkage involving C.
I really would like to thank Ph. Ellia for his useful help and support during the preparation of
this work.

2. Invariants of nicely linked surfaces

DEFINITION 1. Let S and S′ be smooth surfaces inP4 of degrees respectively d, d′. We say
that S and S′ are nicely linkedif:
1. S∪ S′ is a complete intersection G∩ F, where F, G are hypersurfaces of degrees f , g
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respectively;
2. S∩ S′ is a smooth curve D;
3. G may be chosen to be smooth away from D, with finitely many nodes on D.

The following result is useful in order to grant the existence of hypersurfaces of certain
degrees nicely linkingS to S′.

PROPOSITION1. Let S be a smooth surface inP4, if IS(k) is globally generated, then for
every f, g ≥ k we can find hypersurfaces F, G nicely linking S to a smooth surface S′.

For a proof, see [1], Prop. 4.1. From now on, we assume thatS andS′ are nicely linked.
The next lemma provides a formula for the degree and the genusof the curveD, in terms of the
degrees of the hypersurfacesF andG and of the sectional genera of the surfacesSandS′.

LEMMA 1. Let S, S′ ⊂ P
4 be smooth surfaces nicely linked by a complete intersection

F ∩ G of type( f, g), D = S∩ S′, with sectional generaπ , π ′ respectively, then:

(1) deg(D) = 2 +
f g

2
( f + g − 4) − π − π ′

g(D) = 1 +
deg(D)( f + g − 5)

2
and D is a subcanonical curve withωD = OD( f + g − 5).

Proof. Let H be a general hyperplane, we setC = S∩ H , C′ = S′ ∩ H . ThusC andC′ are
two curves inP3, linked by the complete intersectionC ∪ C′ = (H ∩ F) ∩ (H ∩ G). We have
Mayer-Vietoris sequence:

0 → OC∪C′ → OC ⊕ OC′ → O0 → 0
where0 = C ∩ C′, from which we infer: pa(C ∪ C′) = π + π ′ − 1 + card(0). Obviously
card(0) = deg(D) and sinceC ∪ C′ is a complete intersection, its arithmetical genus can
be computed easily aspa(C ∪ C′) = 1 +

f g
2 ( f + g − 4), so we get the desired formula:

deg(D) = 2 +
f g
2 ( f + g − 4) − π − π ′.

In order to compute the genus, we consider the exact sequenceof liaison:
0 → IU → IS → ωS′(5 − f − g) → 0

whereU = S∪ S′. ClearlyωS′(5− f −g) = IS,U , the sheaf of functions onU which vanish on
S. Observing thatIS,U has supportS′, we getIS,U = ID,S′ = OS′(−D), sinceD is a divisor
on S′. ThusωS′ = OS′(−D + f + g−5) and by adjunctionωD = OD( f + g−5), in particular
D is a subcanonical curve. Looking at the degrees we obtain: 2g(D)− 2 = deg(D)( f + g− 5).

LEMMA 2. Let S, S′ ⊂ P
4 be smooth surfaces nicely linked by the complete intersection

U = S∪ S′ = F ∩ G, D = S∩ S′, then:

(2) pg(U) = pg(S) + pg(S′) − q(S) − q(S′) + g(D)

Proof. We consider Mayer-Vietoris sequence:
0 → OU → OS ⊕ OS′ → OD → 0

and taking cohomology we have:h2(OU ) = h2(OS)+h2(OS′)+h1(OD)+h1(OU )+h0(OS)+

h0(OS′) − h1(OS) − h1(OS′) − h0(OD) − h0(OU ).
As U is a complete intersection( f, g), its minimal free resolution is:
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0 → O(− f − g) → O(− f ) ⊕ O(−g) → IU → 0
soh1(IU ) = h2(IU ) = 0, which yieldsh0(OU ) = 1 andh1(OU ) = 0. Furthermoreh0(OS) =

h0(OS′) = h0(OD) = 1, then we conclude.

REMARK 1. (i) This lemma was proven by S. Katz in [2], Cor. 2.4
(ii) The preceeding formula holds even if we are not in a situation of nice linkage, it is enough
to haveS, S′ smooth andD equidimensional.
(iii) This lemma provides a relation between invariants of linked surfaces, however it does not
allow us to determine such invariants completely. In fact inthe general situation we are able to
compute only the difference betweenq(S′) and pg(S′). This impediment was to be expected
if we think about the conjecture mentioned formerly. In someparticular cases it is possible to
determineq(S′) or pg(S′) using different techniques and, thanks to formula (2), to compute the
remaining one. For example if one of the surfaces is arithmetically Cohen-Macaulay, sayS, then
also the other one is a. C. M.. This implies thatq(S) = q(S′) = 0 and in such a situation all
invariants ofS′ are determined by knowing those ofS. There are also examples of non a. C. M.
surfaces whose properties allow anyway to computeq and pg for a surface linked to them.

3. The curve D

PROPOSITION2. With the previous notations:

(3) h1(ID(m)) = h1(IS(m)) + h1(IS′(m))

for every m∈ Z.

Proof. Let us consider the exact sequence:
0 → IU (m) → IS(m) ⊕ IS′(m) → ID(m) → 0

taking cohomology we get:. . . → H1(IU (m)) → H1(IS(m)) ⊕ H1(IS′(m)) → H1(ID(m))

→ H2(IU (m)) → . . .

SinceU is a complete intersection:h1(IU (m)) = h2(IU (m)) = 0 and we get the desired
formula.

COROLLARY 1. 1. If S and S′ are a. C. M., then D is a. C. M. too;
2. if D is a. C. M., then S and S′ are projectively normal and q(S) = q(S′) = 0;
3. h1(ID( f + g − 5)) = q(S) + q(S′).

Proof. 1. If SandS′ are a. C. M., thenh1(IS(m)) = h1(IS′(m)) = 0 for everym ∈ Z and by
Prop. 3.1 this implies thath1(ID(m)) = 0.
2. If D is a. C. M. we haveh1(ID(m)) = 0 for everym, thenh1(IS(m)) = h1(IS′(m)) = 0
too.
3. We recall that ifS, S′ ⊂ P

4 are surfaces linked by a complete intersection( f, g) we have
h2(IS′(m)) = h1(IS( f + g − 5 − m)). Considering formula (3) in Proposition 2 we obtain:
h1(ID( f + g − 5)) = h2(IS) + h2(IS′) = q(S) + q(S′) using Serre duality.

REMARK 2. This result (part 3.) is of some interest if we consider theconjecture about
bounding the irregularity. Again it is not possible to compute q(S) but it becomes clear that the
curve D carries informations about the cohomology of the surfaces.We have already observed
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that D is a subcanonical curve. We could hope to start from a subcanonical curveD on a surface
S, such thath1(ID( f + g − 5)) − q(S) is greater than one, and try to obtainD linking S to a
smooth surfaceS′, which would haveq > 1. However this is probably an hopeless program.
Furthermore we have to deal with the following problem: given a smooth surfaceS, is it possible
to find surfacesS′, linked to S, such that every subcanonical curveD ⊂ S can be obtained as
S∩ S′? The answer to this question is negative, let us consider thefollowing counterexample.

EXAMPLE 1. Let Sbe Del Pezzo surface inP4, thenS is a rational surface of degree d=4,
with sectional genusπ = 1, complete intersection of two hyperquadrics. One can demonstrate
(see for instance [3], Theorem 10) that a divisorC on S is a smooth subcanonical curve if and
only if C is one of the following:

(a) C is a line andωC = OC(−2);

(b) C is a smooth plane conic andωC = OC(−1);

(c) C ∼ (α + 1)H andωC = OC(α), α ≥ 0, whereH is an hyperplane divisor onS;

(d) C ∼ (α + 1)H +
∑k

j =1(α + 1)L j andωC = OC(α), α ≥ 0, whereL1, . . . , Lk are
k ≥ 1 mutually skew lines.

We recall that ifC = S∩ S′, whereSandS′ are nicely linked by a complete intersection( f, g),
we haveωC = OC( f + g − 5).
It is easy to see that the first two types of subcanonical curves onS mentioned above cannot be
realized in such a way. In fact we would havef + g ≤ 4, sod′ = deg(S′) < 1, which is absurd.
For what concerns the third class of curves, as to say multiples of hyperplane divisors, we have
better hopes to find a couple of hypersurfaces producing these curves as explained before. Indeed
if C ∈ |mH|, C is a. C. M. for everym ≥ 1. Now if we consider a complete intersection
(2, m+2), we obtain that the intersection ofSwith the residual surfaceS′ is a curveD of degree
4m (using the formula (1) in Lemma 1), which is the degree ofC ∈ |mH|.
Now we come to the last type of subcanonical divisors onS. Let us considerC ∼ H + L , where
L is a line,ωC = OC andC is a non degenerate elliptic quintic, thenC is a. C. M.. If we
suppose thatC could be realized asS∩ S′, whereSandS′ are linked by a complete intersection
( f, g), we obtain thatdeg(C) = 4( f + g − 4). It is clear that the quantity 4( f + g − 4) could
never be equal to five, for anyf, g ≥ 1, soC ∼ H + L is not one of the curves we are looking
for.
We have shown with several counterexamples that not every subcanonical curve on a certain
surfaceS is given byS∩ S′, with S and S′ linked by a complete intersection, not even if we
restrict to a. C. M. curves.

Now we examinate the case in whichD is a complete intersection of three hypersurfaces
Fa, Fb, Fc of degrees respectivelya, b, c. Supposea ≤ b ≤ c. For each hypersurfaceFk we
have to deal with the following question: doesFk contain one of the surfacesS, S′?

Let us consider: 0→ H0(IS(k)) → H0(ID(k))
π
→ H0(ID,S(k)) → . . .

SupposeFk does not containS, thenFk provides a non zero element

F ′
k = π(Fk) ∈ H0(ID,S(k)).

We also have the exact sequence:

0 → H0(IU (k))
i

→ H0(IS′(k))
p

→ H0(ID,S(k)) → 0
Sincep is surjective, there exists̃Fk ∈ H0(IS′(k)) such thatp(F̃k) = F ′

k. Observe thatFk and

F̃k coincide overS, thenGk = F̃k − Fk belongs toH0(IS(k)).
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SinceFk and F̃k coincide overS, we could replaceFk with F̃k and considerD as the complete
intersectionF̃a ∩ F̃b ∩ F̃c. We could always manage to haveD = Ea ∩ Eb ∩ Ec, where the
hypersurfacesEk are such that eitherEk containsSor it containsS′. In other words we can say
that fork = a, b, c, Ek ∈ H0(IS(k)) or Ek ∈ H0(IS′(k)).

PROPOSITION3. With the notations above, let D be a complete intersection ofthree hyper-
surfaces of non decreasing degrees a≤ b ≤ c, i.e. D= Fa ∩ Fb ∩ Fc, then one of the surfaces
S, S′ is a complete intersection too.

Proof. It is clear from what said before that one of the surfacesS, S′ is contained in two of the
three hypersurfacesFk, sayS⊂ Fa ∩ Fb. In general we will have a residual surfaceS̃, such that
S∪ S̃ = Fa ∩ Fb. However, this would imply thatD = Fc ∩ (S∪ S̃) = (Fc ∩ S) ∪ (Fc ∩ S̃),
but we recall thatD is irreducible, then necessarilỹS= ∅ andS = Fa ∩ Fb.

REMARK 3. The preceeding result has this consequence: ifD is a complete intersection
then just one of the surfaces is a complete intersection too,anyway both are a. C. M. and this
implies thatq(S) = q(S′) = 0.

If we supposeD is a degenerate curve, we have the following result, which brings back to
the case in whichD is a complete intersection and allows us to apply Proposition 3.

PROPOSITION4. If D is degenerate, then D is a complete intersection.

Proof. If D is degenerate, there exists an hyperplaneH containingD, and from the previous
discussion, it follows thatH contains one of the surfacesS, S′. A degenerate surfaceS in P

4

is a. C. M., to see it just consider the coneK over S in P
4, S turns out to be the complete

intersection ofK andH . ThenSandS′ are a. C. M. and consequently alsoD is so. Moreover it
is clear that if a degenerate curve is a. C. M. inP

4, it is a. C. M. inH ' P
3 too. We recall that,

by Gherardelli’s theorem, ifD ⊂ P
3 is a subcanonical, a. C. M. curve, thenD is a complete

intersection.

4. Liaison in P
3 and P

5

In this section we consider liaison between subvarieties inP
3 and inP

5.

PROPOSITION5. Let C, C′ ⊂ P
3 be curves geometrically linked by a complete intersection

of type(a, b), and let D be the zerodimensional scheme C∩ C′, then:

h1(IC(m)) + h1(IC′(m)) ≤ h1(ID(m))

for every m∈ Z.

Proof. The proof is the same as in Proposition 2, but this timeh2(IC∪C′(m)) is not necessarily
zero, so only the inequality holds.

REMARK 4. The preceeding result is interesting even if it looks weaker than the one for
surfaces.
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We recall that for linked curves inP3 we have:h1(IC′(m)) = h1(IC(a+b−4−m)). Moreover
h1(ID(m)) ≤ deg(D), if D has dimension zero, thus we obtain the bound:h1(IC(m)) +

h1(IC(a + b − 4 − m)) ≤ deg(D). It is possible to expressdeg(D) as a function of the
invariantsa, b, d, g, whered, g are the degree and the genus ofC, and we get:deg(D) =

2 − 2g + d(a + b − 4).
In the end we can write the formula:h1(IC(m))+h1(IC(a+b−4−m)) ≤ 2−2g+d(a+b−4).
Note that just the fact of being able to make a linkage produces this bound on the cohomology
of C; conversely the knowledge of the Rao function ofC gives necessary conditions in order to
link C.

For what concerns the liaison of threefolds inP
5, we have the following result.

PROPOSITION6. Let S, S′ ⊂ P
5 be two threefolds, nicely linked by a complete intersection

(a, b), and let D be the smooth surface S∩ S′, then:

h1(IS(m)) + h1(IS′(m)) = h1(ID(m))

h2(IS(m)) + h2(IS′(m)) = h2(ID(m))

for every m∈ Z and D is a subcanonical surface withωD = OD(a + b − 6).

Proof. As in the proof of Proposition 2, we obtain the two equalitiesconsidering cohomology
of the exact sequence: 0→ IU (m) → IS(m) ⊕ IS′(m) → ID(m) → 0. IndeedU a complete
intersection and soh1(IU (m)) = h2(IU (m)) = h3(IU (m)) = 0.
Then we look at liaison exact sequence: 0→ IU → IS → ωS′(6− a − b) → 0, by adjunction
we have again thatωD = OD(a + b − 6), soD is a subcanonical surface inP5.

LEMMA 3. With the notations above:

(4) h2(OS′) − h3(OS′) = pg(D) − q(D) − h3(OU ) − h2(OS) + h3(OS)

Proof. The proof is exactly the same as in Lemma 2.3, recalling that,by Barth’s theorem,
h1(OS) = 0 for a threefold inP5.

REMARK 5. Clearly the formula (4) above still holds ifSandS′ are not nicely linked, it is
enough for example to haveS andS′ smooth andD equidimensional. To haveD subcanonical
we only needD to be a Cartier divisor on one of the threefoldsSor S′. Indeed, if so, at least one
of the threefolds is smooth and we can proceed as in the proof of Proposition 6.
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