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ON THE SOLVABILITY IN GEVREY CLASSES OF A LINEAR

OPERATOR IN TWO VARIABLES

Abstract. We show non solvability results in Gevrey spacesGs for a linear
partial differential operator with a single real characteristic of constant
multiplicity m, m ≥ 3, provideds> m/(m−2)+δ, whereδ > 0 depends
on the order of the degeneracy of a suitable lower order term.In particular,
δ → 0 as the order of the degeneracy tends to+∞.

1. Introduction

The main aim of the present paper is to study in detail the local solvability of a model
linear partial differential operator in two variables. We recall that although most of the
well known classical operators, appearing in the basic theory of PDEs and in Mathe-
matical Phisics, are solvable, non solvable operators exist, as proved first by Lewy [9],
and often of a very simple form. The example of Lewy was generalized by Hörmander
[6], who proved a necessary condition for the local solvability of partial differential
operators, given by the following

THEOREM 1. Let the linear partial differential operator P with coefficients in
C∞(�) be solvable in�, in the sense that for every f∈ C∞

0 (�) we can find a so-
lution u ∈ D′(�) of Pu = f . Then, for every compact set K⊂ � there exist a positive
constant C and an integer M≥ 0 such that

(1)
∣∣
∫

f (x)ϕ(x) dx
∣∣≤

∑

|α|≤M

sup
x∈K

|Dα f (x)|
∑

|α|≤M

sup
x∈K

|Dα t Pϕ(x)|

for all f , ϕ ∈ C∞
0 (K ).

If an operatorP is non locally solvable in the previous sense it is natural toanalyze
its behaviour in Gevrey spaces, being intermediate classesbetween the analytic and the
C∞ functions. More precisely, from now on we will refer to the following functional
setting.
Let K be a compact subset of� andC a positive fixed constant. Let us consider the
subspaceGs

0(�, K ,C), 1< s< +∞, of C∞
0 (�), given by all the functionsf (x) with

∗The author is thankful to Professor Luigi Rodino and Professor Petar Popivanov for useful discussions
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support contained inK such that, for someR ≥ 0,

(2) sup
x∈K

|∂α f (x)| ≤ R C|α|(α!)s.

Gs
0(�, K ,C) is a Banach space endowed with the norm:

(3) ‖ f ‖s,K ,C := sup
α

(
C−|α|(α!)−s sup

x∈K
|∂α f (x)|

)

or equivalently

(4) ‖ f ‖s,K ,C :=
∑

α

C−|α|(α!)−s‖∂α f ‖L p(K )

with p ≥ 1 fixed. From now on we consider (4) withp = 2.

DEFINITION 1. Gs
0(�) =

⋃
K ,C Gs

0(�, K ,C) where K and C run respectively
over the set of all the compact sets contained in� and over the set of the positive real
numbers.

Therefore it is natural to endowGs
0(�) with the inductive limit topology:

(5) ind lim
K↗�

C↗+∞

Gs
0(�, K ,C).

Similarly we defineGs(�) as the projective limit topology of the spacesGs(�, K ,C)
of all the functionsf ∈ C∞(�) for which the norm (3) of the restriction toK is finite.
The main result that we will handle in the following, concerning with the solvability
in a Gevrey frame of partial differential operators withGs coefficients, is the Gevrey
version of Theorem 1 proved by Corli [2].

THEOREM 2. Let s be a fixed real number,1 < s < +∞. Let the linear partial
differential operator P be s-solvable in�, i.e. for all f ∈ Gs

0(�) there exists u in
D′

s(�), space of the s-ultradistributions in�, solution of Pu= f . Then for every
compact subset K of�, for everyη > ε > 0, there exists a positive constant C such
that:

(6)
(
max
x∈K

| f (x)|
)2

≤ C ‖ f ‖
s,K , 1

η−ε

‖t P f ‖
s,K , 1

η−ε

for every f ∈ Gs
0(�, K , 1

η
).

The previous theorem will be used in the following manner: anoperatorP is not
s-locally solvable inx0 if the associated transposed equationt P f = 0 admits a suitable
sequence of approximated solutions which make the right hand side of (6) arbitrarily
small and let the left hand side bounded from below.
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Now let us analyze the problem we are interested in.
Let us consider the operator

(7) P = Dm
x1

− A(x1)D
m−1
x2

− B(x1)D
m−2
x2

Dx1

with m odd,m ≥ 3; A(x1), B(x1) are analytic functions ofx1, defined in a neighbor-
hood ofx1 = 0.
The operatorP is weakly hyperbolic inx1 with a single characteristic of constant mul-
tiplicity m and therefore it is always locallyGs solvable fors < m

m−1 without any
restrictions onA(x1) andB(x1). This well known fact follows from theGs well posed-
ness of the Cauchy problem forP or from more general results about theGs solvability
of linear PDEs with multiple characteristics (e.g., cf. Corollary 5.1.3 in Mascarello-
Rodino [13], see also [1], [5], [17]). Next if= m(A(x1)) vanishes of odd order at
x1 = 0, changing its sign from - to +, the results of Corli [3] implythat P is not locally
solvable inGs for s > m

m−1. We will investigate the case of= m A(x1) vanishing of
even order atx1 = 0.
Let us suppose that for some integerh > 0:

<e A(0) 6= 0,(8)

=m A(x1) = cx2h
1 + o(x2h

1 ) for x1 → 0, c 6= 0.(9)

Moreover for a fixedl > 0:

(10) =m B(x1) = dxl
1 + o(xl

1) for x1 → 0, d 6= 0.

Popivanov [14] ( see also Popivanov-Popov [15]) proved thatP is not locally solvable,
in theC∞ sense, ifh is sufficiently large with respect tol .
Moreover, if the conditions (8), (9), hold, as a particular case of Theorem 3.7 in [10] or
Theorem 3.2 in [4] we obtain that the operator (7) is s-solvable for

(11) s<
m

m − 2
.

At this point a natural question arises: what can we say aboutthe behaviour ofP for
indexess ≥ m

m−2? We get thatP is nons-solvable for

(12) s >
m

m − 2
+ θ(h),

with θ(h) → 0 for h → 0.
The proof of this result, developed in the next section, is based on Theorem 2, applied
to a function fλ(x) of the following form:

fλ(x) = v(x) · ei
(
λψ0(x)+λ

m−1
m ψ1(x)+λ

m−2
m ψ2(x)+...+λ

1
mψm−1(x)

)
.

We will choose the phase functionsψi (x) according to a standard proceeding (see [3]).
At this point, solving suitable transport equations, we areable to find an amplitude
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functionv(x) such that the approximate solutionf (x) of the homogeneous equation
t P fλ = 0 makes the right hand side of (6) arbitrarily small forλ sufficiently large and
s satisfying (12), but leaves the left hand side greater than or equal to 1. We observe
that the previous estimates need also a suitable version forthis case of the results of
Ivrii [8]. For more details we also address to [12].

2. The main result

THEOREM3. Let us suppose that A (respectively, B) satisfies(8), (9) (respectively,
(10)) and

(13) h ≥

{
2(2l + 2) if m = 3
2l + 2 if m ≥ 5.

Then P is non s-solvable at the origin for every s satisfying(12)where

θ(h) =
m(l + 1)

(m − 2)[(2m − 4)h − (m − 1)l − 1]
.

Proof. We will reason ab absurdo.
First let us observe that

t P = −(−i )m∂m
x1

− (−i )m−1A(x1)∂
m−1
x2

− (−i )m−1B(x1)∂
m−2
x2

∂x1+

− (−i )m−1B′(x1)∂
m−2
x2

.
(14)

Let us define

(15) fλ(x) := ei
(
λψ0(x)+λ

m−1
m ψ1(x)+λ

m−2
m ψ2(x)+...+λ

1
mψm−1(x)

)

wherex = (x1, x2).
1st STEP:choice of the phase functionsψi(x).
The basic idea is to apply the operatort P to fλ(x) and choose the phase functions
ψ0(x), ψ1(x),ψ2(x) in order to make equal to zero the higher powers ofλ.
Following a standard approach for constructing formal asymptotic solutions (e.g., cf.
[2], see also [5], Chapter IV) we chooseψ0 = x2 and obtain

t P fλ(x) =

(
lm−1(x)λ

m−1 + o(λm−1)

)
fλ(x), λ → +∞.

where the coefficient is given by

(16) lm−1 := −

(
∂ψ1(x)

∂x1

)m

− A(x1).

Letting lm−1 = 0, we obtainm complex solutions and we choose

(17) ψ1(x) =

∫ x

0
Ã(x1) dx1,



On the solvability in Gevrey 105

where Ã(x1) = [ A(x1)]
1
m is determined in such a way that [A(0)]

1
m is real-valued.

Note that properties (8) and (9) keep valid forÃ(x1), for a new constantc.
Then

(18) =mψ1(x) =
c

2h + 1
x2h+1

1 + o(x2h+1
1 ).

Repeating the previous arguments with this choice ofψ1(x) finally we find:

(19) ψ2 =
1

m

∫
B̃(x1) dx1 + i x2

2

with B̃(x1) satisfying again (10) for a new constantd. Therefore

(20) =mψ2(x) =
1

m

(
d

l + 1
xl+1

1 + o(xl+1
1 )

)
+ x2

2.

The other phase functions are determined recursively, according to a standard proceed-
ing, cf. [2]. We need not precise information on them, but they vanish atx1 = 0. We
then write

(21) fλ(x) = ei8(x)

where

=m8(x) = λ
m−1

m

{
c

2h + 1
x2h+1

1 + o(x2h+1
1 )

}
+ λ

m−2
m

{
1

m

(
d

l + 1
xl+1

1 +

+ o(xl+1
1 )

)
+ x2

2

}
+ λ

m−3
m o(x1).

(22)

2nd STEP:the action oft P on u(x) = fλ(x) v(x).
According to our choices we find:

t Pu(x) = fλ(x)
t Pλv(x)

setting

(23) t Pλ := λ
m−1

m

{
Q0(x, D)+

m−1∑

j =1

λ− j Q j (x, D)

}

where:

- Q0(x, D) = (−1)m
(∑

i ci (x)Di + S(x)
)
, whereci (x) are polynomial inx andS(x)

is an analytic function;

- Q j (x, D) are differential operators of order less than or equal tom, with analytic
coefficients.
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3rd STEP:minimum of=m8(x).
We follow here the arguments in Popivanov [14].
Obviously

(24) =m8(0,0) = 0.

We are interested in the solutions of the following equations:

∂=m8(x)

∂x1
= λ

m−1
m (cx2h

1 + o(x2h
1 ))+ λ

m−2
m

1

m
(dxl

1 + o(xl
1))+

+λ
m−3

m o(1) = 0,(25)

∂=m8(x)

∂x2
= 2λ

m−2
m x2 + λ

m−3
m o(x1) = 0.(26)

The second equation is solved by

(27) x2 = o(λ−
1
m x1), for x1 → 0.

Let us try to solve the first equation

λ
m−1

m
(
cx2h

1 +
1

m
dλ−

1
m xl

1 + o(x2h
1 )+ λ

−
1
m o(xl

1)+ λ
−

2
m o(1)

)
= 0

Let us begin by considering the casel odd,c > 0, d < 0, 2h ≥ 2l + 2.
Taking largeλ, in this way we have to solve

(28) cx2h
1 +

1

m
dλ−

1
m xl

1 = o(λ−
2
m ), for λ → +∞.

Let us define

(29) ε := λ
−

1
m

1
2h−l → 0 if λ → 0.

From the previous definition it follows immediately thatλ−
1
m = ε2h−l ; thus, replacing

this quantity in (28) we obtain the following equation:

(30) cx2h
1 +

1

m
dε2h−l xl

1 = o(ε2(2h−l)), ε → 0.

Let us set:

(31) x1 = (1 + y1)

(
−

d

mc

) 1
2h−l

ε;

then (30) transforms into

(1 + y1)
l {(1 + y1)

2h−l − 1} = o(ε2h−2l ).
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Now let us consider the corresponding function

(32) g(y1, ε) = (1 + yl
1){(1 + y1)

2h−l − 1} + o(ε2h−2l ).

Clearly

g(0,0) = 0,

(
∂g

∂y1

)
(0,0) = 2h − l > 0,

(
∂g

∂ε

)
(0,0) = 0.

Then, by the Implicit Function Theorem there exists a function y1 = y1(ε) ∈ C2, such
thatg(y1, ε) = 0, y1(0) = 0, y′

1(0) = 0. This implies that

y1(ε) = o(ε2) for ε → 0.

Thus

x1 = (1 + o(ε2))

(
−

d

mc

) 1
2h−l

ε =

(
−

d

mc

) 1
2h−l

ε + o(ε3).

Therefore, considering (29) and (27) we conclude that a critical point is given by

x1λ =

(
−

d

mc

) 1
2h−l

λ
−

1
m

1
2h−l + o

(
λ

−
3

m(2h−l)
)
, λ → +∞(33)

x2λ = o
(
λ

−
2h−l+1
m(2h−l)

)
, λ → +∞.(34)

Now, we may give a complete picture of the behaviour of=m8(x) varyingl and sign
of d:

1. l odd;

- d > 0: =m8(x) assumes its minimum at the origin and we have
=m8(0,0) = 0;

- d < 0: =m8(x) assumes its minimum value in(x1λ, x2λ) and, setting,

(35) C0λ
δ1 :=

(
−

d

mc

) l+1
2h−l

(
d

m

)
2h − l

(l + 1)(2h + 1)
λ

m−1
m −

2h+1
m(2h−l) ,

we have

(36) =m8(x1λ, x2λ) = C̃(λ) = C0λ
δ1 + o(λδ1).

where, being 2h ≥ 2l + 2 andm ≥ 3, we immediately get:

(37) C0 < 0, 0< δ1 =
m − 1

m
−

2h + 1

m(2h − l )
< 1.

2. l even;

- d · c < 0: the expression of the critical point(x1λ, x2λ) and the behaviour of
=m8(x) are the same described before;
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- d · c > 0: if d, c > 0 =m8(x) is an increasing function ofx1; otherwise
=m8(x) is a decreasing function ofx1.

We may limit our attention to the casel odd andd < 0 (the casel even,c > 0, d < 0
is treated in the same way. Note moreover that the change of variablex′

2 = −x2 gives
a change of sign for the constantd).
We want to apply Taylor’s formula in order to analyze the behaviour of =m8(x) near
the point(x1λ, x2λ). To this aim let us observe that:

∂2=m8(x1, x2)

∂x2
2

= 2λ
m−2

m x2 + λ
m−3

m o(x1),

∂2=m8(x1, x2)

∂x2∂x1
= λ

m−3
m o(1),

∂2=m8(x1, x2)

∂x2
1

= λ
m−1

m {2hcx2h−1
1 + 1

mdlλ−
1
m xl−1

1 + o(x2h−1
1 )+

+λ
−

1
m o(xl−1

1 )+ λ
−

2
m o(1)}.

Therefore

=m8(x) = C̃(λ)+ C′
0(x1 − x1λ)

2λδ2 + (x2 − x2λ)
2λ

m−2
m +

+

2h+1∑

j =3

(x1 − x1λ)
j λ

m−1
m −

2h+1− j
m(2h−l) + o((x2 − x2λ)

3)λ
m−1

m ,
(38)

where

C′
0 := 2c(2h − l )

(
−

d

mc

)2h−1
2h−l

> 0

and

0< δ2 :=
m − 1

m
−

2h − 1

m(2h − l )
< 1.

Now let us suppose that

|x1 − x1λ| ≤ ε1x1λ with 0< ε1 � 1.

Being:

2h+1∑

j =3

(x1 − x1λ)
j λ

m−1
m −

2h+1− j
m(2h−l) <

< (x1 − x1λ)
2λδ2{ε1x1λλ

1
m(2h−l) + (ε1x2

1λλ
2

m(2h−l) + . . .

. . .+ (ε1x1λ)
2h−1λ

2h−1
m(2h−l) }
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we get

C′
0(x1 − x1λ)

2λδ2 +

2h+1∑

j =3

(x1 − x1λ)
j λ

m−1
m −

2h+1− j
m(2h−l) =

= C′
0(x1 − x1λ)

2λδ2{1 + O(ε1)}.

(39)

Now let us define:

(40) g1(x1) :=

{
1 if x1 ∈ [1 −

ε1
2 ,1 +

ε1
2 ]

0 if x1 ∈ [1 − ε1,1 + ε1].

Let us suppose that:

- g1(x1) ∈ Gs
0(R);

- 0 ≤ g1(x1) ≤ 1, for everyx1 in R.

By definition, it follows immediately that

g1(x1x−1
1λ ) = 1 if |x1 − x1λ| ≤

ε1

2
x1λ

and
supp g1(x1x−1

1λ ) ⊂ {x1 ∈ R : |x1 − x1λ| ≤ ε1x1λ}.

Moreover

supp ∂
∂x1

g1(x1x−1
1λ ) ⊂ {x1 : (1 − ε1)x1λ ≤ |x1 − x1λ| ≤ (1 −

ε1
2 )x1λ}

⋃

{x1 : (1 +
ε1
2 )x1λ ≤ |x1 − x1λ| ≤ (1 + ε1)x1λ}.

Then onsuppg1(x1x−1
1λ ), and for|x2 − x2λ| ≤ ε1 we have

(41) =m8(x) ≥ C̃(λ)+ C′
0λ
δ2(x1 − x1,λ)

2[1 + O(ε1)] +
1

2
|x1 − x1λ|

2λ
m−2

m .

In an analogous way onsupp∂g1
∂x1

and for|x2 − x2λ| ≤ ε1 we get

(42) =m8(x) ≥ C̃(λ)+ C′′
0λ

δ1

with

(43) C′′
0 := ε2

1C′
0

(
−

d

mc

) 2
2h−l

> 0

and 0< δ1 < 1, defined as before.
Moreover let us consider:

(44) g2(x2) :=

{
1 if |x2| ≤

ε1
4

0 if |x2| ≥
ε1
2

satisfying the following conditions
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- g2(x2) ∈ Gs
0(R);

- 0 ≤ g2(x1) ≤ 1, for everyx1 in R.

Let us suppose thatx2 ∈ supp g2. Then

|x2 − x2λ| ≤
ε1
2 + |x2λ|.

Considering thatx2λ → 0 for λ → +∞, for λ sufficiently large we have

|x2 − x2λ| ≤ ε1.

Moreover, by definition we have

supp∂g2(x2)
∂x2

⊂ {
ε1
4 ≤ |x2| ≤

ε1
2 }.

Then, onsupp∂g2(x2)
∂x2

, for |x1 − x1λ| ≤ ε1x1λ and forλ sufficiently large we obtain

(45) =m8(x) ≥ C̃(λ)+ ε2
1λ

m−2
m .

4th STEP:choice ofv(x).
Let us define

(46) χ(x1, x2) := g1(x1x−1
1λ ) g2(x2).

Now let us observe that the Cauchy Kovalevsky Theorem assures us the existence of
functionsv(k)λ defined by induction as solutions of the following transportequations:

(47)





Q0(x, D)v(0)λ = 0

Q0(x, D)v(k)λ = −
∑

j
λ

−
j

m Q j (x, D)v(k− j )
λ , k ≥ 1

v
(0)
λ = 1 on x1 = x1λ

v
(k)
λ = 0 on x1 = x1λ for k ≥ 1

where in the sumj runs from 1 to min{k,m − 1}.
Let us consider:

(48) V (N)
λ :=

N∑

k=0

v
(k)
λ .

Let us define

(49) uλ(x) := χ(x)V (N)
λ (x) ei8(x)

5th STEP:the conclusion.
We want to apply the necessary condition of Corli [3] touλ(x). We recall that we want
to contradict the estimate (6) forf = uλ, λ → +∞, i.e.

(50)
(
max

K
|uλ(x)|

)2
≤ C ‖uλ‖s,K , 1

η−ε

‖t Puλ‖s,K , 1
η−ε
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whereK is a suitable small compact neighborhood of the origin.
In view of (46), we may limit our attention to

(51) K := {(x1, x2) : |x1 − x1λ| ≤ ε1x1λ, |x2| ≤
ε1
2 }.

Let us start evaluating the left hand side.
Let us observe that

(52) |uλ(x1λ, x2λ)| = e−=m8(x1λ,x2λ) = e−C̃(λ),

therefore

(53)
(
max

K
|uλ(x)|

)2
≥ e−2C̃(λ).

Now let us analyze‖uλ‖s,K , 1
η−ε

‖t Puλ‖s,K , 1
η−ε

.

Let us reason as in Ivrii [8]: there exist positive constantsB andN such that, setting

λ = 4BeL N, L ≥ 1,

the following estimate holds:

(54)
∑

|α|≤m

‖Dαv
(k)
λ ‖

s,K ,1
η

≤ Be−Lk+4M N
ν
m
, k = 0,1,2, . . .

with ν = m−1
m . Therefore

∑

|α|≤m

‖DαV (N)
λ ‖

s,K , 1
η

≤ 2Be4M N
ν
m
.

Since our choice ofv(k)λ implies

t PλV (N)
λ =

m−2∑

h=0

m−2∑

j =h

λ
−

h
m Qhv

N−m+2+ j
λ ,

from (54) it follows that

(55) ‖t PλV (N)
λ ‖

s,K ,1
η

≤ Ce−L N+4M N
ν
m
.

Now

‖uλ‖s,K , 1
η−ε

≤ ‖χ‖
s,K , 1

η+ε

‖V (N)
λ ‖

s,K , 1
η

‖ei8‖
s,K , 1

η+ε

≤ c e4M N
ν
m

‖ei8‖
s,K , 1

η+ε

.

Let us recall now a useful result about Gevrey norms ( Corli [2], [3], Marcolongo [11],
Mascarello-Rodino [13], Gramchev-Popivanov [5]):
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PROPOSITION1. Let9 be an analytic function in a neighborhood� of the origin
of R

n. Let us fix s> 1. Then for every compact K⊂ � and for everyη > 0 we get:

(56) ‖eiλ9(x)‖
s,K ,1

η

≤ Ceaλ+d(λη)
1
s+dη

1
s−1

,

where C and d are positive constants and a:= supK (−=m9(x)).

Applying the previous proposition we obtain that:

‖ei8‖
s,K , 1

η+ε

≤ Cea+dλ
1
s (η+ε)

1
s +d(η+ε)

1
s−1

with a = −C̃(λ). Thus

(57) ‖uλ‖s,K , 1
η−ε

≤ Ce4M N
ν
m −C0λ

δ1+dλ
1
s (η+ε)

1
s +d(η+ε)

1
s−1

.

Regardingt Puλ we get

‖t Puλ‖s,K , 1
η−ε

≤ C‖t PV(N)λ ‖
s,K ,1

η

‖ei8‖
s,K , 1

η

+ Cλ
m−1

m
∑

|α|≤m

‖DαV (N)
λ ‖

s,K ,1
η

‖ei8‖
s,K∩supp5χ, 1

η

.
(58)

SinceK ∩ supp5χ doesn’t contain a small neighborhood ofx2 = 0, again by Propo-
sition 1, considering also (42), we obtain that:

‖ei8‖
s,K∩supp5χ, 1

η

≤ Ce−C̃(λ)−C′′
0λ
δ1+dλ

1
s η

1
s +dη

1
s−1

.

Therefore

(59) ‖t Puλ‖s,K , 1
η−ε

≤ Ce4M N
ν
m −C̃(λ)+d(λη)

1
s+dη

1
s−1

{e−L N + λ
m−1

m e−C′′
0λ
δ1

}.

Summing up

‖uλ‖s,K , 1
η−ε

‖t Puλ‖s,K , 1
η−ε

≤ Ce8M N
ν
m −2C̃(λ){C1e−L N+dλ

1
s (η

1
s +(η+ε)

1
s )

+ C2λ
m−1

m e−C′′
0λ
δ1+dλ

1
s (η

1
s +(η+ε)

1
s )}.

whereC1 andC2 are positive constants depending ond, η, ε. But, from the previous
arguments,

‖uλ‖s,K , 1
η−ε

‖t Puλ‖s,K , 1
η−ε

≥ e−2C̃(λ),
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therefore:

1 ≤ C1e−L N+8M N
ν
m +dλ

1
s (η

1
s +(η+ε)

1
s )

+ C2λ
m−1

m e8M N
ν
m −C′′

0λ
δ1+dλ

1
s (η

1
s +(η+ε)

1
s ), ∀N.

Clearly the first addend of the right hand side tends to zero whenN → +∞.
Regarding the second addend of the right hand side, in order to let it to zero when
N → +∞, we must impose

ν

m
< δ1(60)

1

s
< δ1.(61)

Recalling that

δ1 =
m − 1

m
−

2h + 1

m(2h − l )

we get that (60) is satisfied if the hypothesis (13) is valid and (61) is equivalent to
requires > m

m−2 + θ(h). This concludes the proof.
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