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M. J. Druetta ∗

P-SPACES OF IWASAWA TYPE AND ALGEBRAIC RANK ONE

Abstract. A Riemannian manifold is aP-space if the Jacobi operators
along the geodesics are diagonalizable by a parallel orthonormal basis.
We show that a solvable Lie group of Iwasawa type and algebraic rank
one which is aP-space is a symmetric space of noncompact type and rank
one. In particular, irreducible, non-flat homogeneous Einstein P-spaces
with nonpositive curvature and algebraic rank one, are rankone symmetric
spaces of noncompact type.

Let M be a Riemannian manifold,R its curvature tensor andRX the Jacobi operator
defined byRXY = R(Y, X)X, whereX is a unit tangent vector. Following [3], we say
thatM is aP-space if for every geodesicγ in M the associated Jacobi operatorsRγ ′(t)
are diagonalizable by a parallel orthonormal basis alongγ, condition that is satisfied
for symmetric spaces.

In this paper we study the homogeneousP-spaces of Iwasawa type and algebraic
rank one and in particular, those with nonpositive curvature which are Einstein, since
irreducible, non-flat homogeneous Einstein spaces with nonpositive curvature are rep-
resented as Lie groups of Iwasawa type (see [6]). The geometry of Lie groups of
Iwasawa type and algebraic rank one which at a first glance seems to be complicated,
becomes very simple when they areP-spaces: they are Damek–Ricci spaces whose
geometric structure is well known (Damek-Ricci spaces are defined in Section 1, fol-
lowing [2], Chapter 4).

An outline of the paper is as follows. In Sections 1 and 2, we give the basic results
concerning the Lie algebras of Iwasawa type and algebraic rank one, its geodesics in
various directions and the expression of the Jacobi operator along them. Properties of
its eigenvalues in the special case of parallel eigenvectors are obtained in Section 3. The
geometric hypothesis involving condition(P) about the eigenvalues is strongly used in
Section 4 to obtain algebraic properties of the solvable Liealgebra. This information
allows us to show that an Iwasawa type Lie group of algebraic rank one satisfying
condition (P) is a Damek-Ricci space. By applying a result from [2], we obtain the
following:

THEOREM. If S is a solvable Lie group of Iwasawa type and algebraic rankone
which is anP-space, then S is a rank one symmetric space of noncompact type.

The class of Riemannian manifolds obtained by considering Lie groups of Iwasawa
type contains as a subclass the Damek-Ricci spaces, and moregenerally the irreducible,
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non-flat homogeneous Einstein spaces with nonpositive curvature. As a consequence,
we have

COROLLARY. An irreducible, non-flat homogeneous EinsteinP-space with non-
positive curvature and algebraic rank one is a symmetric space of noncompact type
and rank one.

1. Lie algebras of Iwasawa type and algebraic rank one

A solvable Lie algebras with inner product〈, 〉 is a metric Lie algebra of Iwasawa type
if it satisfies the conditions

(i) s = n ⊕ a wheren = [s, s] anda, the orthogonal complement ofn, is abelian.

(ii) The operators adH are symmetric for allH ∈ a.

(iii) For someH0 ∈ a, adH0|n has positive eigenvalues.

The simply connected Lie groupS with Lie algebras and left invariant metric
induced by the inner product〈, 〉 will be called of Iwasawa type. The Levi Civita
connection and the curvature tensor associated to the metric can be computed by

2 〈∇XY, Z〉 = 〈[X, Y], Z〉 − 〈[Y, Z], X〉 + 〈[Z, X], Y〉 ,

R(X, Y) = [∇X,∇Y] − ∇[X,Y]

for anyX, Y, Z in s.

For each unit vectorX in s, RX, the Jacobi operator associated toX, is the sym-
metric endomorphism ofs defined byRXY = R(Y, X)X. We will say that either the
metric Lie algebras satisfies condition(P) or S is aP-space if for every geodesicγ in
S the associated Jacobi operatorRγ ′(t) can be diagonalized by a parallel orthonormal
basis ofTγ (t)S. We note that condition(P) is equivalent to the factRX ◦R′

X = R′
X ◦RX

for all X ∈ s (see Corollary 5 of [3] and note thatS is a real analyticC∞-manifold).
We recall thatS is an Einstein space if

Ric(X) = trRX = c |X|2 , c constant, for allX ∈ s.

If s = n⊕a is a metric Lie algebra of Iwasawa type, letz denote the center ofn = [s, s]
and letv be the orthogonal complement ofz with respect to the metric〈, 〉 restricted
to n. Thusn decomposes asn = z ⊕ v, and for allH ∈ a adH : z → z and hence,
adH : v → v since adH is symmetric. We recall thatn is said to be 2-step nilpotent if
[n, n] = [v, v] ⊂ z.

For anyZ ∈ z the skew-symmetric linear operatorjZ : v → v is defined by

〈 jZ X, Y〉 = 〈[X, Y], Z〉 for all X, Y ∈ v andZ ∈ z.

Equivalently, jZ X = (adX)∗Z for all X ∈ v, where(adX)∗ denotes the adjoint of adX .

The operatorsjZ coincide with the usual one in the case of a 2-step nilpotentn (see
[5]) and their properties determine the geometry ofn ands, as we will see.

We now assume thats = n⊕a is a metric Lie algebra of Iwasawa type and algebraic
rank one; that is,a = RH whereH, |H | = 1, is chosen such that all eigenvalues of
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adH |n are positive.S is called a Damek-Ricci space in the special case that adH |z = Id,
adH |v = 1

2 Id and j 2
Z = − |Z|2Id for all Z ∈ z (see [2], p. 78).

We recall that since adH |n is a symmetric operator,n has an orthogonal direct
sum decomposition into eigenspacesnµ, for all eigenvaluesµ of adH |n , which are in-
variant by adH with the property [nµ, nµ′ ] ⊂ nµ+µ′ (by the Jacobi identity), whenever
µ+µ′ is an eigenvalue of adH |n (see [7]). Moreover, sincez andv are adH -invariant, by
the same argument they also have decompositions into their eigenspaces asz =

∑

λ zλ,

andv =
∑

µ vµ.

1.1. Algebraic structure of the Lie algebras

The definition of the Lie algebra structure ons implies that, as a Lie algebra,s is
the semidirect sums = n +σ a of n and a = RH, by considering theR-algebra
homomorphismσ = ad: a →der n, H → (adH : n → n). Carrying this over to
the group level means thatS = N ×τ A is a semidirect product ofN and A = R
(considered in the canonical way), where

τ : A → AutN, τa : x → axa−1, (dτa)e = Ad(a),

is given bya expXa−1 = expn(Exp(tadH )X) for all X ∈ n, a = t, and Exp de-
notes the exponential map of matrices. Note thatS is diffeomorphic tos under the
map (X, r ) →

(

expn X, r
)

since expn : n → N , the exponential map ofN, is a
diffeomorphism.

We assume thatn is 2-step nilpotent. In this case we have that for anyZ ∈ z and
X ∈ v, if Z∗ and Y are eigenvectors of adH restricted toz andv, with associated
eigenvaluesλ andµ, respectively, then the product inS yields

(expn(Z + X), r ) · (expn(Z∗ + Y), s)

= (expn(Z + erλZ∗ +
1

2
erµ[X, Y] + X + erµY), r + s).

In fact, note that by the definition of the product inSwe have

(expn(Z + X), r ) · (expn(Z∗ + Y), s)

=
(

expn(Z + X)τr (expn(Z∗ + Y)), r + s
)

=
(

expn(Z + X) expn
(

Exp(r adH )Z∗ + Exp(r adH )Y
)

, r + s
)

=
(

expn(Z + X) expn(e
rλZ∗ + erµY), r + s

)

,

since expn X expn Y = expn(X + Y + 1
2[X, Y]) gives the multiplication law inN (see

the Campbell-Hausdorff formula in [7]).

1.2. Global coordinates inS

We introduce global coordinates inS given byϕ = (x1, ..., xk, y1, ..., ym, r ), defined
as follows. If{Z1, ..., Zk} and{X1, ..., Xm} (k = dimz, m = dimv) are orthonormal



58 M. J. Druetta

bases of eigenvectors of adH in z andv, with associated eigenvalues{λ1, ..., λk} and
{µ1, ..., µm} respectively, then

ϕ(x1, ..., xk, y1, ..., ym, r ) =
(

expn(x1Z1 + ... + xkZk + y1X1 + ... + ymXm), r
)

.

Following the same argument as the given in [2], p. 82 for Damek-Ricci spaces, we
see in the case of 2-step nilpotentn that

∂

∂xi

∣

∣

∣

∣

ϕ(x1,...,xk,y1,...,ym,r )
= e−rλi Zi (ϕ(x1, ..., xk, y1, ..., ym, r )),

∂

∂yi

∣

∣

∣

∣

ϕ(x1,...,xk,y1,...,ym,r )
= e−rµi Xi (ϕ(x1, ..., xk, y1, ..., ym, r ))

+
1

2

∑

j ,s

e−rλs y j 〈 jZs Xi , X j 〉Zs(ϕ(x1, ..., xk, y1, ..., ym, r )),

∂

∂r

∣

∣

∣

∣

ϕ(x1,...,xk,y1,...,ym,r )
= H (ϕ(x1, ..., xk, y1, ..., ym, r )),

whereZi , Xi andH on the right-hand side denote the left invariant vector fields onS
associated to the corresponding vectors ins.

1.3. Curvature formulas

By applying the connection formula given at the beginning ofthis section, one obtains
∇H = 0 and if Z, Z∗ ∈ z, X, Y ∈ v then∇Z Z∗ = ∇Z∗ Z = 〈[H, Z], Z∗〉H, ∇X Z =

∇Z X = −1
2 jZ X and

∇XY = 1
2[X, Y] + 〈[H, X], Y〉H, in case of 2-step nilpotentn. Consequently, by a

direct computation, we obtain the following formulas (see [4], Section 2):

(i) RH = −ad2
H .

(ii) If either Z ∈ zλ, |Z| = 1, or X ∈ vµ, |X| = 1,

RZ H = −λ2H andRX H = −µ2H.

(iii) If Z ∈ zλ, |Z| = 1, for anyZ∗ ∈ z andX ∈ v, we have

RZ Z∗ = λ
(

〈Z, adH Z∗〉Z − adH Z∗
)

andRZ X = −
1

4
j 2
Z(X) − λadH X.

In the case thatn is 2-step nilpotent,we obtain

(iv) If X ∈ vµ, |X| = 1, for any Z ∈ z , Y ∈ v

RX Z =
1

4
[X, jZ X] − µadH Z andRXY = −

3

4
j[X,Y] X − µadH Y.
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2. Geodesics and associated Jacobi operators

Throughout this section and the following ones,s = n ⊕ a will denote a metric Lie
algebra of Iwasawa type and algebraic rank one, wherea = RH, |H | = 1, is chosen
such that all eigenvalues of adH |n are positive, andn = z ⊕ v is expressed as in the
previous section. LetγY denote the geodesic inSsatisfyingγY(0) = e (the identity of
S) andγ ′

Y(0) = Y. For anyX ∈ s, the associated left invariant field along the geodesic
γY will be denoted byX(t) = X(γY(t)) = (dLγY(t))eX.

Next, we compute the geodesicγY with Y ∈ n, an eigenvector of adH |n .

LEMMA 1. If Y ∈ n is an eigenvector of adH |n with eigenvalueα, then

γY(t) =

(

expn

(

tanhαt

α

)

Y,−
1

α
ln(coshαt)

)

with associated tangent vector field

γ ′
Y(t) =

1

coshαt
Y(t) − tanhαt H (t).

Proof. Let S0 be the simply connected Lie group associated tos0, the Lie algebra
spanned by{Y, H }. Note thatS0 has global coordinatesϕ(x, r ) = (expn xY, r ) and it
is a totally geodesic subgroup ofSwith connection∇S0 = ∇|S0

satisfying

∇YY = αH, ∇Y H = −[H, Y] = −αY, ∇H = 0.

Since the coordinate fields associated toϕ are given by

∂

∂x

∣

∣

∣

∣

ϕ(x,r )
= e−rαY(ϕ(x, r )),

∂

∂r

∣

∣

∣

∣

ϕ(x,r )
= H (ϕ(x, r )),

the Christoffel symbols are easily computed by the formulas

∇ ∂
∂x

∂

∂x

∣

∣

∣

∣

ϕ(x,r )
= αe−2rα H (ϕ(x, r )) , ∇ ∂

∂x

∂

∂r

∣

∣

∣

∣

ϕ(x,r )
= −α

∂

∂x

∣

∣

∣

∣

ϕ(x,r )
,

∇ ∂
∂r

∂

∂r

∣

∣

∣

∣

ϕ(x,r )
= 0 = ∇ ∂

∂r

∂

∂x

∣

∣

∣

∣

ϕ(x,r )
.

Hence, we obtain the geodesicγY(t) = ϕ(x(t), r (t)), wherex(t) andr (t) are solutions
of the differential equations

x′′ − 2αx′r ′ = 0,

r ′′ + αe−2rα(x′)2 = 0.

Using thatγ ′
Y(t) = x′(t) ∂

∂x

∣

∣

γY(t) + r ′(t) ∂
∂r

∣

∣

γY(t) ,
∣

∣γ ′
Y(t)

∣

∣ = 1, with

x′(t) = e2αr (t),
∂

∂x

∣

∣

∣

∣

γY(t)
= e−αr (t)Y(t) and

∂

∂r

∣

∣

∣

∣

γY(t)
= H (t),
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we have the equivalent equations

x′(t) = e2αr (t),

r ′′(t) + α(1 − (r ′(t))2 = 0

whose solutions satisfy

x(t) =

∫ t

0
e2αr (u)du andr ′(t) = − tanhαt .

Therefore, we get

r (t) = −
1

α
ln(coshαt), x(t) =

1

α
tanhαt,

and the expression ofγY andγ ′
Y follows as claimed.

PROPOSITION1. If Z ∈ z and X ∈ v are eigenvectors of adH with associated
eigenvaluesλ andµ, respectively, then for any Y∈ v, we have

(i ) Rγ ′
Z(t)Y(t) =

1

cosh2 λt
(dLγZ(t))e

·

(

RZY − sinh2 λt ad2
H Y − sinhλt jZ

(

1

2
λ Id − adH

)

Y

)

(i i ) Rγ ′
X(t)Z(t) =

1

cosh2 µt
(dLγX(t))e

·

(

RX Z − λ2 sinh2 µt Z + (λ −
1

2
µ) sinhµt jZ X

)

(i i i ) Rγ ′
X(t)Y(t) =

1

cosh2 µt
(dLγX(t))e

·

(

RXY − sinh2 µt ad2
H Y − sinhµt

(

1

2
µId − adH

)

[X, Y]

)

in the case of2-step nilpotentn, with Y⊥X in v.

Proof. (i) Let Z ∈ z andγZ(t) be the associated geodesic. Since

γ ′
Z(t) =

1

coshλt
Z(t) − tanhλt H (t), we have that

R(Y(t), γ ′
Z(t))γ ′

Z(t) =
1

cosh2 λt
(dLγZ(t))e

·
(

RZY + sinh2 λt RH Y − sinhλt (R(Y, Z)H + R(Y, H )Z)

)

.
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Using the Bianchi identity and the connection formulas we compute

R(Y, Z)H + R(Y, H )Z = 2R(Y, H )Z − R(Z, H )Y

= 2∇[H,Y] Z − ∇[H,Z]Y

= − jZ(adH Y) +
1

2
λ jZY,

that substituted in the above expression, gives (i) as stated sinceRH = −ad2
H .

(ii)-(iii) Assume thatX ∈ v is an eigenvector of adH with eigenvalueµ, and let
Y ⊥ X in v. Using the expression ofγ ′

X(t), in the same way as (i) we get

R(Z(t), γ ′
X(t))γ ′

X(t) =
1

cosh2 µt
(dLγX(t))e

·
(

RX Z + sinh2 µt RH Z − sinhµt (R(Z, X)H + R(Z, H )X)

)

.

Hence, the expression ofRγ ′
X(t)Z(t) follows as claimed since

R(Z, X)H + R(Z, H )X = 2∇[H,Z] X − ∇[H,X] Z = 2λ∇Z X − µ∇X Z

= −(λ −
1

2
µ) jZ X.

Finally, we have

R(Y(t), γ ′
X(t))γ ′

X(t) =
1

cosh2 µt
(dLγX(t))e

·
(

RXY + sinh2 µt RH Y − sinhµt (R(Y, X)H + R(Y, H )X)

)

.

In the same way as above, in the case of 2-step nilpotentn, we compute

R(Y, X)H + R(Y, H )X = 2∇[H,Y] X − ∇[H,X]Y

= −[H, [X, Y]] +
1

2
µ[X, Y] (〈X, Y〉 = 0),

which completes the proof of the proposition.

3. Eigenvectors and eigenvalues along Jacobi operators

In this section we assume thatn = z ⊕ v is non-abelian andjZ is non-singular onv for
all Z ∈ z. Note that ifλ is an eigenvalue of adH |z andZ ∈ zλ then jZ|vµ

: vµ → vλ−µ

for any eigenvalueµ of adH |v . In fact, for X ∈ vµ andY ∈ vµ′

〈 jZ X, Y〉 = 〈[X, Y], Z〉 6= 0 ⇒ [X, Y] 6= 0,

and thusµ + µ′ = λ since [X, Y] ∈ nµ+µ′ and has non-zero component inzλ.
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Hence, for any eigenvalueµ of adH |v, λ−µ is also an eigenvalue of adH |v, λ > µ

and the symmetric operatorj 2
Z preservesvµ. Moreover, the mapZ → [X, jZ X] de-

fines a symmetric operator onz (〈[X, jZ X], Z∗〉 = 〈 jZ∗ X, jZ X〉 = 〈[X, jZ∗ X], Z〉)

such that [X, jZ X] ∈ zλ for all X ∈ vµ since 〈[X, jZ X], Z〉 = | jZ X|2 6= 0,

[X, jZ X] ∈ nλ (the Jacobi identity) andλ > µ.

Next, we describe the eigenvalues of the operatorsRγ ′
Z(t), Rγ ′

X(t) and the parallel
vector fields along the geodesicsγZ(t) andγX(t) for someZ ∈ zλ andX ∈ vµ.

LEMMA 2. Let Z ∈ zλ and X∈ vµ be unit vectors. We set Y= j Z X
| j Z X|

.

(i) If X is an eigenvector of j2Z, then Rγ ′
Z(t) has an eigenvector U(t) = x(t)X(t) +

y(t)Y(t) with x(t)2 + y(t)2 = 1 and associated eigenvalue aZ(t) satisfying

aZ(t) cosh2 λt = 〈RZY, Y〉 − (λ − µ)2 sinh2 λt − (
1

2
λ − µ) | jZ X|

x(t)

y(t)
sinhλt

whenever y(t) 6= 0.

(ii) Assume thatn is 2-step nilpotent. If X satisfies[X, jZ X] = | jZ X|2 Z, then
Rγ ′

X(t) has an eigenvector U(t) = x(t)Z(t) + y(t)Y(t), x(t)2 + y(t)2 = 1, whose
associated eigenvalue aX(t) is given by

aX(t) cosh2 µt

=
1

4
| jZ X|2 − λµ − λ2 sinh2 µt + (λ −

1

2
µ) | jZ X|

y(t)

x(t)
sinhµt or

aX(t) cosh2 µt

= −
3

4
| jZ X|2 − (λ − µ)(µ + (λ − µ) sinh2 µt ) + (λ −

1

2
µ) | jZ X|

x(t)

y(t)
sinhµt

according to x(t) 6= 0 or y(t) 6= 0, respectively.

Proof. Note that by the properties ofZ and X, the spaces span{X(t), Y(t)} and
span{Z(t), Y(t)} are invariant under the symmetric operatorsRγ ′

Z(t) and Rγ ′
X(t), re-

spectively. The assertion of the lemma follows from the expression ofRγ ′
Z(t) andRγ ′

X(t)
given in Proposition 1 and using in each case the equalities

Rγ ′
Z(t)(U(t)) = aZ(t)(U(t)) andRγ ′

X(t)(U(t)) = aX(t)U(t).

Note that in the last case,

RX Z =
1

4
| jZ X|2 Z − λµZ and RXY = −

3

4
| jZ X|2 Y − µ(λ − µ)Y

sincen is 2-step nilpotent.

PROPOSITION2. Let Z ∈ zλ be a unit vector. If X ∈ vµ, |X| = 1, is an eigenvec-
tor of j2Z, then the parallel vector field U along the geodesicγZ with U(0) = x0X+y0Y
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(Y =
j Z X

| j Z X|
), x2

0 + y2
0 = 1, is given by U(t) = x(t)X(t) + y(t)Y(t) where

x(t) = x0 coss(t) − y0 sins(t) , y(t) = x0 sins(t) + y0 coss(t), and

s(t) =
1

2
| jZ X|

∫ t

0

du

coshλu
.

Proof. We first note that(dLγZ(t))e(span{X, jZ X}) is invariant under∇γ ′
Z(t) since

γ ′
Z(t) = 1

coshλt Z(t) − tanhλt H (t), ∇Z X = −1
2 jZ X, ∇Z jZ X = 1

2 | jZ X|2 X and
∇H = 0.

Hence the parallel vector fieldU alongγZ with U(0) = x0X + y0Y is given byU(t) =

x(t)X(t) + y(t)Y(t) satisfying the equation∇γ ′
Z(t)U(t) = 0, which gives

x′(t)X + x(t)
1

coshλt
∇Z X + y′(t)Y + y(t)

1

coshλt
∇ZY = 0 for all realt

sinceX andY are left invariant. Thus,

x′(t)X − x(t)
1

2 coshλt
jZ X + y′(t)Y − y(t)

1

2 coshλt
jZY = 0,

andx(t), y(t) are solutions of the differential equations

x′(t) +
| jZ X|

2 coshλt
y(t) = 0, y′(t) −

| jZ X|

2 coshλt
x(t) = 0

since jZY = − | jZ X| X. By expressing these equations in the matrix form as
[

x′(t)
y′(t)

]

=
1

2

| jZ X|

coshλt

[

0 −1
1 0

] [

x(t)
y(t)

]

,

the solutions are given by
[

x(t)
y(t)

]

= Exps(t)J

[

x0
y0

]

, whereJ =

[

0 −1
1 0

]

,

s(t) = 1
2 | jZ X|

∫ t
0

du
coshλu (Exp denotes the exponential map of matrices). The assertion

of the proposition follows since Exps J =

[

coss − sins
sins coss

]

.

PROPOSITION3. Assume thatn is 2-step nilpotent. Let X∈ vµ and Z ∈ zλ be
unit vectors satisfying[X, jZ X] = | jZ X|2 Z. Then the parallel vector field U along
the geodesicγX with U(0) = x0Z + y0Y (Y =

j Z X
| j Z X|

) , x2
0 + y2

0 = 1, is given by
U(t) = x(t)Z(t) + y(t)Y(t) where

x(t) = x0 coss(t) − y0 sins(t) , y(t) = x0 sins(t) + y0 coss(t) and

s(t) =
1

2
| jZ X|

∫ t

0

du

coshµu
.
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Proof. Note that the parallel displacementU(t) of U(0) alongγX(t) is expressed as
U(t) = x(t)Z(t)+y(t)Y(t), since(dLγX(t))e(span{Z, jZ X}) is invariant under∇γ ′

X(t).
In the same way as in Proposition 2, the equation∇γ ′

X(t)U(t) = 0 gives

x′(t)Z − x(t)
| jZ X|

2 coshµt
Y + y′(t)Y + y(t)

| jZ X|

2 coshµt
Z = 0 for all realt .

Hence,x(t) andy(t) are solutions of the differential equations

x′(t) +
| jZ X|

2 coshµt
y(t) = 0, y′(t) −

| jZ X|

2 coshµt
x(t) = 0,

which are given by

x(t) = x0 coss(t) − y0 sins(t), y(t) = x0 sins(t) + y0 coss(t)

with s(t) = 1
2 | jZ X|

∫ t
0

du
coshµu .

4. Condition (P) on Lie algebras of Iwasawa type and rank one

In this section we will assume thats is a metric Lie algebra of Iwasawa type with
non-abeliann and algebraic rank one satisfying condition(P). We summarize in the
proposition below some properties of the algebraic structure of the Lie algebran = z⊕v

(Similar ones were obtained in [4], Proposition 1.3). The following lemma will be
useful in what follows.

LEMMA 3. If S0 is a totally geodesic subgroup of a Lie group S which is aP-
space, then S0 is a P-space. Equivalently, a totally geodesic subalgebras0 of a Lie
algebras satisfying condition(P) satisfies condition(P).

Proof. Let s ands0 denote the Lie algebras ofS andS0, respectively, with associated
curvature tensorsR andR0. Note that for a unitX ∈ s the symmetric operatorR′

X =

∇γ ′
X(t)

(

Rγ ′
X(t)

)
∣

∣

∣

t=0
is defined alongγX(t) by R′

γ ′
X(t)

= ∇γ ′
X(t)

(

Rγ ′
X(t)

)

on s(t) =

(dLγX(t))es, and for any orthonormal parallel basis{ei (t)} satisfying Rγ ′
X(t)ei (t) =

ai (t)ei (t), we have

R′
γ ′

X(t)ei (t) = ∇γ ′
X(t)

(

Rγ ′
X(t)ei (t)

)

− Rγ ′
X(t)

(

∇γ ′
X(t)ei (t)

)

= a′
i (t)ei (t).

Let X ∈ s0 be a unit vector, and note thats0 ands⊥
0 are invariant under the symmetric

operatorsRX andR′
X in s sinces0 is a totally geodesic subalgebra ofs andR0 = R|s0

.

Hence,s0 ands⊥
0 are also invariant by the skew-symmetric operatorRX◦R′

X−R′
X◦RX.

Using that condition(P) is equivalent toRX ◦ R′
X − R′

X ◦ RX = 0 for all unit vectors
X in s, it follows that R0X ◦ R′

0X − R′
0X ◦ R0X = 0 (R0X andR′

0X are the restrictions
of RX andR′

X to s0, respectively). ThusS0 is aP-space.
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PROPOSITION4. Let s = n ⊕ RH, |H | = 1, be a metric Lie algebra of Iwasawa
type that satisfies condition(P). Then

(i) adH |z = λId.

(ii) If n is non-abelian,λ > µ1, the maximum eigenvalue of adH |v. In particular
nλ = z and[nµ1, v] ⊆ z.

(iii) For any Z ∈ z the linear map jZ : v → v is an isomorphism with the properties
jZ|vµ

: vµ → vλ−µ and j2Z
∣

∣

vµ
: vµ → vµ (isomorphically). In particular, ifµ is an

eigenvalue of adH |v, thenλ − µ is also an eigenvalue of adH |v.

Proof. (i) Let s0 = z ⊕ RH be the subalgebra ofs with associated simply connected
Lie group S0. It follows from the above lemma thatS0 is a P-space sinces0 is a
totally geodesic subalgebra ofs. Moreover, if Z ⊥ Z∗ are eigenvectors of adH |z with
associated eigenvaluesλ andλ∗, respectively, the Lie algebra spanned by{Z, Z∗, H }

is a three-dimensional totally geodesic subalgebra ofs0, whose associated Lie group is
a P-space, by the previous lemma. Then we can assume thats = s0 and it is spanned
by {Z, Z∗, H }. Using Lemma 7 and the Remark on page 73 of [3], it follows that the
conditionRX ◦ R′

X − R′
X ◦ RX = 0 implies that

(∇ZRic) (Z, H ) = (∇Z∗Ric) (Z∗, H ),

where the Ricci tensor associated toS is defined by Ric(X, Y) = tr(V → R(V, X)Y).

We compute

Ric(Z, Z∗) = Ric(Z, H ) = Ric(Z∗, H ) = 0, Ric(Z, Z) = −λ(λ + λ∗),

Ric(Z∗, Z∗) = −λ∗(λ + λ∗) and Ric(H, H ) = −(λ2 + λ∗2).

As a consequence, it is easy to see that

(∇ZRic) (Z, H ) = −Ric(∇Z Z, H ) − Ric(Z,∇Z H )

= λ (Ric(Z, Z) − Ric(H, H )) = λλ∗(λ∗ − λ)

and similarly,
(∇Z∗Ric) (Z∗, H ) = λλ∗(λ − λ∗).

Henceλ∗ = λ and there is a unique eigenvalue of adH |z .

(ii) Assume thatn is non-abelian. Then we have that [nµ1, nµ] 6= 0 for some eigen-
valueµ of adH |v , which implies thatµ1 + µ = λ sinceµ1 is the maximum. Hence,
λ > µ1 ≥ µ for all eigenvaluesµ of adH in v, and it also follows that [nµ1, v] ⊆ z

from the definition ofµ1.

(iii) We recall that jZ|nµ : nµ → nλ−µ. Hence j 2
Z preservesnµ for all µ (see

the beginning of Section 3). Moreover, kerjZ is invariant by adH since the condition
jZ X = 0 implies that

〈 jZ([H, X]), Y〉 = 〈[[ H, X], Y], Z〉 = −〈[[ X, Y], H ], Z〉 − 〈[[Y, H ], X], Z〉

= 〈[X, Y], [H, Z]〉 + 〈 jZ([H, Y]), X〉

= λ〈 jZ X, Y〉 − 〈[H, Y], jZ X〉 = 0 for all Y ∈ v.
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We will show that jZ X 6= 0 for all unit Z in z and X ∈ v. If jZ X = 0, then by
the previous remark we can assume thatX ∈ nµ and |X| = 1. Thens0, the Lie
algebra spanned by{Z, X, H }, is a totally geodesic subalgebra ofs since∇Z Z = λH ,

∇X X = µH , ∇Z X = ∇X Z = 0 and∇Z H = −λZ, ∇X H = −µX, ∇H = 0. Hence,
s0 satisfies condition(P) and applying the same argument used to show thatλ = λ∗

in (i) above, we obtain thatλ = µ, contradicting (ii). Consequently,λ − µ is an
eigenvalue of adH |v wheneverµ is an eigenvalue sincejZ|nµ : nµ → nλ−µ. Assertion
(iii) follows since dimvµ ≤ dimvλ−µ ≤ dimvµ ( jZ is an isomorphism).

Next we will show that under the hypothesis of condition(P), the number of eigen-
values of adH |n can be reduced to at most two, namelyλ and 1

2λ, attained inz andv,
respectively. For any subspaceu of the Lie algebras andγX (X ∈ s) a fixed geodesic
in S, we will denote byu(t) =(dLγX(t))eu.

REMARK 1. If s0 ⊕ u is a direct sum decomposition into subspaces of the Lie
algebras such thats0(t) andu(t) are invariant under∇γ ′

X(t) and Rγ ′
X(t) for all t, then

e(t) = e1(t) + e2(t), expressed according to the decompositions0(t) ⊕ u(t), is a
parallel eigenvector ofRγ ′

X(t) alongγX if and only if e1(t) ande2(t) are also parallel
eigenvectors ofRγ ′

X(t).

In the case of an orthogonal direct sum decomposition, ifs0(t) is invariant under
∇γ ′

X(t) and Rγ ′
X(t), thenu(t) = s0(t)⊥ is also invariant under∇γ ′

X(t) and Rγ ′
X(t) since

∇γ ′
X(t) is skew-symmetric andRγ ′

X(t) is symmetric.

PROPOSITION5. If s = n⊕RH, |H | = 1, is a metric Lie algebra of Iwasawa type
with non-abelian nilpotentn satisfying condition(P), then the eigenvalues of adH |n
areλ and 1

2λ, when restricted toz andv, respectively. Thenn is 2-step nilpotent.

Proof. Note that adH |z = λId, by Proposition 4. Next we will show that adH |v =
1
2λId. For this purpose, we fix an eigenvalueµ of adH |v and assume thatµ 6= 1

2λ.

If Z ∈ z is a unit vector, it follows from the definition of∇γ ′
Z(t) and the expression of

Rγ ′
Z(t) given by Proposition 1 (i) that for any eigenvalueµ∗ of adH |v , vµ∗(t)⊕vλ−µ∗ (t)

(or v 1
2λ

(t) in caseµ∗ = 1
2λ) is invariant underRγ ′

Z(t) and∇γ ′
Z(t) sincevµ∗ ⊕ vλ−µ∗ is

RZ-invariant and∇γ ′
Z(t)X(t) = − 1

2 coshλt jZ X(t).

Assume that the condition(P) is satisfied and let{ei (t) : i = 1, ..., dims} be an or-
thonormal parallel basis that diagonalizesRγ ′

Z(t). Therefore,ei (0) has a non-zero com-
ponente ∈ vµ ⊕ vλ−µ for somei = 1, ..., dims (otherwise{ei (0) : i = 1, ..., dims}

would be a basis ofz ⊕
∑

µ∗ 6=µ,λ−µ vµ∗ ⊕ RH ). It follows from the previous remark
thate(t), the parallel displacement ofe alongγZ(t), is a parallel eigenvector ofRγ ′

Z(t)
with e(t) ∈ vµ ⊕ vλ−µ(t).

Now, we choose a basis{Xi : i = 1, ..., m = dimvµ} of vµ that diagonalizes
the symmetric operatorj 2

Z : vµ → vµ. Hence{Xi , jZ Xi : i = 1, ..., m} is an
orthogonal basis ofvµ⊕vλ−µ by Proposition 4, andvλ⊕vλ−µ = ⊕m

i=1span{Xi , jZ Xi },

where each span{Xi , jZ Xi }(t) is invariant under∇γ ′
Z(t) and Rγ ′

Z(t) (Xi and jZ Xi are
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eigenvectors ofRZ). Applying Remark 1 again, we can choose a unitX ∈ vµ such
that j 2

Z X = − | jZ X|2 X (X = Xi for somei = 1, ..., m so thate =
∑

ei , ei 6= 0)

and a parallel eigenvectorU(t) of Rγ ′
Z(t) along the geodesicγZ(t) satisfyingU(t) =

x(t)X(t) + y(t)Y(t) (Y =
j Z X

| j Z X|
), with x(t)2 + y(t)2 = 1.

We setU(0) = x0X + y0Y and letaZ(t) be the associated eigenvalue ofRγ ′
Z(t).

If x0 6= 0 andy0 6= 0, we have thatRZ X = aZ(0)X, RZY = aZ(0)Y. Therefore,
〈RZ X, X〉 = aZ(0) = 〈RZY, Y〉 and consequentlyµ = 1

2λ since

1

4
| jZ X|2 − λµ =

1

4
| jZ X|2 − λ(λ − µ).

Assume thatx0 6= 0 andy0 = 0, hencex0 = 1, y0 = 0 andaZ(0) = 〈RZ X, X〉. It
follows from Lemma 2 (applied att = 0) and Proposition 2 that

aZ(0) = 〈RZY, Y〉 − (
1

2
λ − µ) | jZ X| lim

t→0

x(t)

y(t)
sinhλt

wherex(t) = coss(t), y(t) = sins(t) with s′(t) = 1
2 | jZ X| 1

coshλt . We compute

limt→0

(

x(t)

y(t)
sinhλt

)

= limt→0

(

(sinhλt)′

(tans(t))′

)

= λlimt→0
cosh2 λt cosh2 s(t)

1
2 | jZ X|

=
2λ

| jZ X|
(s(t) → 0),

which substituted in the above expression gives

aZ(0) =
1

4
| jZ X|2 − λ(2λ − 3µ).

From the equalityaZ(0) = 〈RZ X, X〉, we obtainµ = 1
2λ and get a contradiction. The

same argument is used in the casex0 = 0, y0 = 1.

Now we observe that the conditions adH |z = λId and adH |v = 1
2λId imply that the

eigenspaces associated to adH |n arenλ = z andn 1
2λ

= v. Thus, [v, v] = [n 1
2λ

, n 1
2λ

] ⊆

nλ = z, showing thatn is 2-step nilpotent.

EXAMPLE 1. Consider the four-dimensional metric Lie algebras of Iwasawa type
and algebraic rank one with nilpotent non-abeliann = z ⊕ v. Hence,s is spanned by
an orthogonal basis{Z, X, jZ X, H } with unit vectorsZ ∈ z, X ∈ v and Lie bracket

[Z, X] = 0 = [Z, jZ X], [X, jZ X] = | jZ X|2 Z

[H, Z] = λZ, [H, X] =
1

2
λX, [H, jZ X] =

1

2
λ jZ X.

Note that j 2
Z X = − | jZ X|2 X. We show that the Lie groupS associated tos is aP-

space if and only if| jZ X| = λ. Thus, up to scaling,S is the 2-complex hyperbolic
spaceCH 2.
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For this purpose we see that

RZ+X ◦ R′
Z+X(H ) − R′

Z+X ◦ RZ+X(H ) = 0 ⇔ | jZ X| = λ.

Note that from the connection formulas,

∇Z Z = λH, ∇X X = 1
2λH, ∇ j Z X jZ X = 1

2λ | jZ X|2 H, ∇Z X = −1
2 jZ X, ∇H = 0,

we get

RZ X =
1

2

(

1

2
| jZ X|2 − λ2

)

X,

RZ( jZ X) =
1

2

(

1

2
| jZ X|2 − λ2

)

jZ X,

RX Z =
1

2

(

1

2
| jZ X|2 − λ2

)

Z,

RX jZ X = −
1

4

(

3 | jZ X|2 + λ2
)

jZ X,

Rj Z X Z =
1

2
| jZ X|2

(

1

2
| jZ X|2 − λ2

)

Z,

Rj Z X X = −
1

4
| jZ X|2

(

3 | jZ X|2 + λ2
)

X.

Hence, taking into account thatRZ+X(·) = RZ(·) + RX(·) + R(·, Z)X + R(·, X)Z, it
is a direct computation to see that

RZ+X(H ) =
1

4

(

3λ jZ X − 5λ2H
)

,(1)

RZ+X( jZ X) = −

(

1

2
| jZ X|2 +

3

4
λ2
)

jZ X +
3

4
λ | jZ X|2 H ,

RZ+X(Z − X) =

(

1

2
| jZ X|2 − λ2

)

(Z − X),

Recall that, by definition,R′
Z+X(·) =

[∇Z+X, RZ+X](·) − R(·,∇Z+X(Z + X))(Z + X) − R(·, Z + X)∇Z+X(Z + X),

and by a straightforward computation, using the connectionformulas and the definition
of R, we obtain the following expressions ofR′

Z+X

R′
Z+X(H ) =

1

2
λ

(

| jZ X|2 − λ2
)

(Z − X),(2)

R′
Z+X( jZ X) = −

1

2
| jZ X|2 (| jZ X|2 − λ2)(Z − X),

since

[∇Z+X, RZ+X](H ) = λ

(

1

2
| jZ X|2 + λ2

)

Z +
1

4
λ

(

| jZ X|2 +
7

2
λ2
)

X,
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R(H,∇Z+X(Z + X))(Z + X) = −
1

4
λ | jZ X|2 (Z − X),

R(H, Z + X)∇Z+X(Z + X) =
1

2
λ

(

(3λ2 +
1

2
| jZ X|2)Z + (

3

4
λ2 + | jZ X|2)X

)

,

and

[∇Z+X, RZ+X]( jZ X) = −
1

4
| jZ X|2

(

(| jZ X|2 +
9

2
λ2)Z + (| jZ X|2 + 3λ2)X

)

,

R( jZ X,∇Z+X(Z + X))(Z + X) = −
3

8
λ2 | jZ X|2 (Z − X),

R( jZ X, Z + X)∇Z+X(Z + X) =
1

4
| jZ X|2 (| jZ X|2 − 5λ2)Z

−
1

4
| jZ X|2 (| jZ X|2 (3 | jZ X|2 +

5

2
λ2)X.

Finally, we get

[ RZ+X, R′
Z+X](H ) =

1

8
λ
(

5 | jZ X|2 + λ2
)

(| jZ X|2 − λ2)(Z − X), since

RZ+X ◦ R′
Z+X(H ) =

1

2
λ

(

| jZ X|2 − λ2
)

(

1

2
| jZ X|2 − λ2

)

(Z − X) and

R′
Z+X ◦ RZ+X(H ) =

3

4
λR′

Z+X( jZ X) −
5

4
λ2R′

Z+X(H )

= −
1

8
λ

(

3 | jZ X|2 + 5λ2
)

(| jZ X|2 − λ2)(Z − X),

which are computed using (1) and (2) above. The assertion follows as claimed.

THEOREM 1. If S is a Lie group of Iwasawa type and algebraic rank one whichis
a P-space, then S is a rank one symmetric space of noncompact type.

Proof. Lets = n⊕RH, |H | = 1, be the metric Lie algebra of Iwasawa type associated
to S. If n is abelian, thens = z ⊕ RH with λ as unique eigenvalue of adH |z; thusS is,
up to scaling, the real hyperbolic space.

Assume thatn is non-abelian, then by Proposition 5n is 2-step nilpotent. We
show that | jZ X|2 = λ2 for unit vectors Z ∈ z and X ∈ v. For this pur-
pose letX 6= 0, |X| = 1, be a vector inv. Let {Z1, ..., Zk} be an orthonor-
mal basis ofz diagonalizing the symmetric operatorZ → [X, jZ X] on z. Hence,
〈 jZi X, jZl X〉 = δil

∣

∣ jZi X
∣

∣

2 and{ jZ1 X, ..., jZk X} is an orthogonal basis ofjzX. More-

over, since [X, jZi X] =
∣

∣ jZi X
∣

∣

2
Zi (i = 1, ..., k), it follows that Zi and jZi X are

eigenvectors ofRX|z and RX| jz X , respectively (see Section 1, 1.3), and consequently,

z ⊕ jzX = ⊕k
i=1span{Zi , jZi X} where span{Zi , jZi X}(t) is invariant underRγ ′

X(t) and
∇γ ′

X(t) for all i = 1, ..., k.
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Assume that condition(P) is satisfied and let{ej (t) : j = 1, ..., dims} be an
orthonormal parallel basis diagonalizingRγ ′

X(t). Applying the same argument as used
in the previous proposition, for eachi = 1, ..., k, we can choose 1≤ j i ≤ dims

such thatUi (t), the non-zero component ofej i (t) in span{Zi , jZi X}(t) is a parallel
eigenvector ofRγ ′

X(t) alongγX(t) by Remark 1. We setZ = Zi , Y =
j Z X

| j Z X|
, U =

Ui (0) = x0Z+y0Y with x2
0+y2

0 = 1, and note that the unitZ ∈ z satisfies [X, jZ X] =

| jZ X|2 Z. By applying Proposition 3, the parallel eigenvectorU alongγX with U(0) =

U is given byU(t) = x(t)Z(t) + y(t)Y(t), with

x(t) = x0 coss(t) − y0 sins(t), y(t) = x0 sins(t) + y0 coss(t)

and s(t) = 1
2 | jZ X| 1

cosh1
2λt

, whose associated eigenvalueaX(t) satisfiesaX(0) =

〈RXU,U〉 = x2
0〈RX Z, Z〉 + y2

0〈RXY, Y〉,

aX(t) cosh2
1

2
λt =

1

4
| jZ X|2 −

1

2
λ2 − λ2 sinh2 1

2
λt +

3

4
λ | jZ X|

y(t)

x(t)
sinh

1

2
λt

and

aX(t) cosh2
1

2
λt = −

3

4
| jZ X|2 −

1

4
λ2 cosh2

1

2
λt +

3

4
λ | jZ X|

x(t)

y(t)
sinh

1

2
λt

for all realt, by Lemma 2.

If x0 6= 0 and y0 6= 0, then aX(0) = 〈RX Z, Z〉 = 〈RXY, Y〉 (Z and Y are
eigenvectors ofRX) and we get| jZ X|2 = 1

4λ2 since

1

4
| jZ X|2 −

1

2
λ2 = −

3

4
| jZ X|2 −

1

4
λ2.

If x0 = 1 andy0 = 0, it follows from Proposition 3 thatx(t) = coss(t), y(t) =

sins(t) and in the same way that in the previous proposition,

limt→0

(

x(t)

y(t)
sinh

1

2
λt

)

=
1

2
λlimt→0





cosh1
2λt

s′(t)
cosh2 s(t)



 =
λ

| jZ X|
.

Substituting this limit in the last expression ofaX(t) above, we get

aX(0) = −
3

4
| jZ X|2 −

1

4
λ2 +

3

4
λ | jZ X| limt→0

(

x(t)

y(t)
sinh

1

2
λt

)

= −
3

4
| jZ X|2 +

1

2
λ2,

and from the equality〈RX Z, Z〉 = aX(0) it follows that| jZ X|2 = λ2.

The same condition is obtained in the casex0 = 0 andy0 = 1, since in this case
x(t) = − sins(t), y(t) = coss(t) andaX(0) = 〈RXY, Y〉 with aX(0) computed as

aX(0) =
1

4
| jZ X|2 −

1

2
λ2 −

3

4
λ | jZ X| limt→0

(

sinh1
2λt

tans(t)

)

=
1

4
| jZ X|2 −

5

4
λ2.
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Finally, using the same argument on each span{Zi , jZi X} (i = 1, ..., k), it follows
that for any unit vectorX ∈ v, an orthonormal basis{Z1, ..., Zk} can be chosen so

that [X, jZi X] =
∣

∣ jZi X
∣

∣

2
Zi and{ jZi X : i = 1, ..., k} is an orthogonal basis ofjzX

satisfying either
∣

∣ jZi X
∣

∣

2
= 1

4λ2 or
∣

∣ jZi X
∣

∣

2
= λ2 for i = 1, ..., k. Hence,

(∗)
1

4
λ2 |Z|2 ≤ | jZ X|2 ≤ λ2 |Z|2 for all Z ∈ z andX ∈ v, |X| = 1,

since jZ X =
∑k

i=1 ai jZi X is an orthogonal sum for anyZ =
∑k

i=1 ai Zi in z.

Next we show that the condition
∣

∣ jZi X
∣

∣

2
= 1

4λ2 in the above basis is not possible.
In fact, for a suchZi , it follows from(∗) above that14λ2 = −〈 j 2

Zi
X, X〉 is the minimum

eigenvalue of the symmetric operator− j 2
Zi

with X as associated eigenvector. Thus

− j 2
Zi

X = 1
4λ2X and s0, the Lie algebra spanned by{Zi , X, jZi X, H }, is a totally

geodesic subalgebra ofs. Applying Lemma 3, the associated Lie group tos0 is aP-
space, which is not possible by Example 1.

The condition
∣

∣ jZi X
∣

∣

2
= λ2 for all i = 1, ..., k, implies that| jZ X|2 = λ2 |Z|2

for all Z ∈ z and X ∈ v, |X| = 1, or equivalently j 2
Z = −λ2 |Z|2Id for all Z ∈ z.

Since adH |z = λId and adH |v = 1
2λId it follows thatS is, up to scaling of the metric,

a Damek-Ricci space. Theorem 2 of [2], Section 4.3 implies that S is a rank one
symmetric space of noncompact type.

COROLLARY 1. If M is an irreducible, non-flat homogeneous EinsteinP-space
with nonpositive curvature and algebraic rank one, then M isa symmetric space of
noncompact type and rank one.

Proof. SinceM is irreducible and non-flat, by applying Corollary 1 of [8] itfollows
that M is a simply connected homogeneous space with nonpositive curvature. Hence,
M can be represented as a solvable Lie groupSof algebraic rank one with left invariant
metric of nonpositive curvature, whose associated metric Lie algebras decomposes as
an orthogonal direct sums = n⊕a wheren = [s,s] anda is one-dimensional (see [1]).
By applying Proposition 4.9 and Theorem 4.10 of [6],S is isometric to a Lie group of
Iwasawa type and algebraic rank one. It follows from Theorem1 thatM is a symmetric
space of noncompact type and rank one.
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