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Splines and Radial Functions

G. Micula∗

A VARIATIONAL APPROACH TO SPLINE FUNCTIONS

THEORY

Abstract. Spline functions have proved to be very useful in numerical
analysis, in numerical treatment of differential, integral and partial dif-
ferential equations, in statistics, and have found applications in science,
engineering, economics, biology, medicine, etc. It is well known that in-
terpolating polynomial splines can be derived as the solution of certain
variational problems. This lecture presents a variational approach to spline
interpolation. By considering quite general variational problems in ab-
stract Hilbert spaces setting, we derive the concept of “abstract splines”.
The aim of this leture is to present a sequence of theorems and results
starting with Holladay’s classical results concerning the variational prop-
erty of natural cubic splines and culminating in some general variational
approach in abstract splines results. The whole exposition of this lecture
is based on the papers of Champion, Lenard and Mills [24], [25].

1. Introduction

It is more than 50 years since I. J. Schoenberg ([56], 1946) introduced “spline func-
tions” to the mathematical literature. Since then, splines, have proved to be enormously
important in various brances of mathematics such as approximation theory, numerical
analysis, numerical treatment of differential, integral and partial differential equations,
and statistics. Also, they have become useful tools in field of applications, especially
CAGD in manufacturing, in animation, in tomography, even in surgery.

Our aim is to draw attention to a variational approach to spline functions and to un-
derline how a beautiful theory has evolved from a simple classical interpolation prob-
lem. As we will show, the variational approach gives a new way of thinking about
splines and opens up directions for theoretical developments and new applications.

Despite of so many results, this topics is not mentioned in many relevant texts on
numerical analysis or approximation theory: even books on splines tend to mention the
variational approach only tangentially or not at all.

Even though, there are recently published a few papers which underline the vari-
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pion, C. T. Lenard and T. M. Mills for the kindness to send him the papers [24] and [25] on which basis this
lecture has been preparated.
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ational aspects of splines, and we mention the papers of Champion, Lenard and Mills
([25], 2000, [24], 1996) and of Beshaev and Vasilenko ([17], 1993).

The contain of this lecture is a completation of the excellent expository paper of
Champion, Lenard and Mills [25]. We shall keep also the definitions and the notation
from these papers.

The theorems and results of increasing generality or complexity which culminate
in some general and elegant abstract results are not necessarily chronological.

2. Preliminaries

Notations:

R – the set of real numbers

I : [a, b] ⊂ R

Pm := {p ∈ R → R, p is real polynomial of degree ≤ m, m ∈ N}
H m(I ) := {x : I → R, x (m−1) abs. cont. on I, x (m) ∈ L2(I ), m ∈ N, given}

If we define an inner product on H m(I ) by

(x1, x2) :=
∫

I

m∑

j=0

x ( j)
1 (t)x ( j)

2 (t)dt

then H m(I ) becomes a Hilbert space.

If X is a linear space, then θX will denote the zero element of X .

DEFINITION 1. Let a = t0 < t1 < · · · < tn < tn+1 = b be a partition of I . The
function s : I → R is a polynomial spline of degree m with respect to this partition if

• s ∈ Cm−1(I )

• for each i ∈ {0, 1, . . . , n}, s|[ti ,ti+ j ] ∈ Pm

The interior points {t1, t2, . . . , tn} are known as “knots”.

Natural cubic splines

Suppose that t1 < t2 < · · · < tn and {z1, z2, . . . , zn} ⊂ R are given. The classical
problem of interpolation is to find a “suitable” function 8 which interpolates the data
point (ti , zi ), 1 ≤ i ≤ n, that is:

8(ti) = zi , 1 ≤ i ≤ n.

Classical approaches developed by Lagrange, Hermite, Cauchy and others rely on
choosing 8 to be some suitable polynomial. But are there better functions for solving
this interpolation problem? The first answer to this question can be found in a result
which was proved by Holladay [38] in 1957.
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THEOREM 1 (HOLLADAY, 1957). If

• X := H 2(I ),

• a ≤ t1 < · · · < tn ≤ b; n ≥ 2,

• {z1, z2, . . . , zn} ⊂ R, and

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n},

then ∃! σ ∈ In such that

(1)
∫

I
[σ (2)(t)]2dt = min

{∫

I
[x (2)(t)]2dt : x ∈ In

}

Furthermore,

• σ ∈ C2(I ),

• σ |[ti ,ti+1] ∈ P3 for 1 ≤ i ≤ n − 1,

• σ |[a,t1] ∈ P1 and σ |[tn,b] ∈ P1.

From (1) we conclude that σ is an optimal interpolating function – “optimal”, in

the sense that it minimize the functional
∫

I
[x (2)(t)]2dt over all functions in In . The

theorem goes on to state that σ is a cubic spline function in the meaning of Schoenberg
definition (1946). As σ is linear outside [t1, tn] it is called “natural cubic spline”.

So, in a technical sense, we have found functions which are better than polynomials
for solving the interpolation problem. Holladay’s theorem is most surprising not only
because its proof is quite elementary, relying on nothing more complicated than inte-
gration by parts, but it shows the intrinsec aspect of splines as solution of a variational
problem (1) that has been a starting point to develop a variational approach to splines.

It is natural to ask: “Why would one choose to minimize
∫

I
[x (2)(t)]2dt?”

For three reasons:

i) The curvature of function σ is σ (2)/(1 + σ ′2)3/2 and so the natural cubic spline
is the best in the sense that it approximates the interpolating function with mini-
mum total curvature if σ ′ is small.

ii) The second justification is that the natural cubic spline approximates the solution
of a problem in physics, in which a uniform, thin, elastic, linear bar is deformed
to interpolate the knots specified in absence of external forces. This shape of
such a bar is governed by a minimum energy in this case minimum elastic po-
tential energy. The first order approximation to this energy is proportional to the
functional (1). Hence the term natural spline is borrowed the term “spline” from
the drafting instrument also known as a spline.
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iii) When presented with a set of data points (ti , zi ), 1 ≤ i ≤ n, a statistician
can find a regression line which is the line of best fit in the least squares sense.
This line is close to the data points Holladay’s theorem shows that σ minimizes∫

I
[x (2)(t)]2dt while still interpolating the data. We could say that σ is an in-

terpolating function which is “close to a straight lines” in that it minimizes this
integral.

Thus, linear regression gives us

a straight line passing close to the points

whereas Holladay’s result gives a curve σ which is

close to a straight line but passing through the points.

3. More splines

As we shall see, the Holladay’s theorem was the starting point in developing the varia-
tional approach to splines. In what follows we shall describe a few of the many impor-
tant generalizations and extensions of Holladay’s theorem.

Dm-splines

The next step was taken in 1963 by Carl de Boor [18] with the following result.

THEOREM 2 (C. DE BOOR, 1963). If

• X := H m(I ),

• a ≤ t1 < t2 < · · · < tn ≤ b; n ≥ m,

• {z1, z2, . . . , zn} ⊂ R and

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n}

then ∃! σ ∈ In such that

∫

I
[σ (m)(t)]2dt = min

{∫

I
[x (m)(t)]2dt : x ∈ In

}

Furthermore,

• σ ∈ C2m−2(I ),

• σ |[ti ,ti+1] ∈ P2m−1, 1 ≤ i ≤ n − 1, and

• σ |[a,t1] ∈ Pm−1 and σ |[tn,b] ∈ Pm−1.
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The function σ was called Dm-spline because it minimizes
∫

I
(Dm x)2dt , as x

varies over In . The function σ is called the interpolating natural spline function of
odd degree.

Clearly if we let m = 2 in de Boor result, then we obtain Holladay result. For the
even degree splines, such result was given by P. Blaga and G. Micula in 1993 [49],
following the ideas of Laurent [44].

Trigonometric splines

In 1964, Schoenberg [57] changed the setting of the interpolation problem from the
interval [a, b] to the unit circle: that is, from a non-periodic setting to a periodic setting.

Similarly, let H k
2π([0, 2π)) denote the following space of 2π-periodic functions:

H k
2π([0, 2π)) := {x : [0, 2π) → R : x − 2π − periodic,

x (k−1) abs. cont. on [0, 2π), x (k) ∈ L2
2π ([0, 2π))}.

THEOREM 3 (SCHOENBERG, 1964). If

• X := H 2m+1
2π ([0, 2π))

• 0 ≤ t1 < t2 < · · · < tn < 2π, n > 2m + 1

• {z1, z2, . . . , zn} ⊂ R and

• T : X → L2
2π ([0, 2π)), where T := D(D2 + 12) . . . (D2 + m2),

then ∃! σ ∈ In such that

∫ 2π

0
[T (σ )(t)]2dt = min

{∫ 2π

0
[T (x)(t)]2dt : x ∈ In

}
.

The optimal interpolating function σ is called the trigonometric spline. Schoenberg
defined a trigonometric spline as a smooth function which in a particular piecewise
trigonometric polynomial manner. He shows that trigonometric splines, so defined,
provide the solution of this variational problem.

Note that the differential operator T has as K er T all the trigonometric polynomials
of order m, that is, of the form:

x(t) = a0 +
m∑

j=1

(a j cos j t + b j sin j t).
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g-splines

Just over 200 years ago in 1870 Lagrange has constructed the polynomial of minimal
degree such that the polynomial assumed prescribed values at given nodes and the
derivatives of certain orders of the polynomial also assumed prescribed values at the
nodes.

In 1968, Schoenberg [58] extended the idea of Hermite for splines. To specify that
the orders of the derivatives specified may vary from node to node we introduce an
incidence matrix E . As usual, let I := [a, b] be an interval partitioned by the nodes
a ≤ t1 < t2 < · · · < tn ≤ b. Let l be the maximum of the orders of the derivatives to
be specified at the nodes. The incidence matrix E is defined by:

E := (e(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ l) =: (e(i, j))

where each e(i, j) is 0 or 1. Assume also that each row of E and the last column of E
contain a 1.

DEFINITION 2. If m ≥ 1 is an integer, we will say that the incidence matrix E =
(e(i, j)) is m-poised with respect to t1 < t2 < · · · < tn if

• P ∈ Pm−1 and

• e(i, j) = 1 ⇒ P( j)(ti) = 0

together imply that P ≡ 0.

Now we can state Schoenberg’s result.

THEOREM 4 (SCHOENBERG, 1968). If

• X := H m(I )

• a ≤ t1 < t2 < · · · < tn ≤ b

• E is an m-poised incidence matrix of dimension n × (l + 1)

• l < m ≤
∑

i
∑

j e(i, j)

• {zi j : e(i, j) = 1} ⊂ R and

• In := {x ∈ X : x ( j)(ti) = zi j if e(i, j) = 1}

then ∃! σ ∈ In such that
∫

I
[σ (m)(t)]2dt = min

{∫

I
[x (m)(t)]2dt : x ∈ In

}
.

Schoenberg called the function σ as g-spline from “generalized-splines”. Better
may have been H-splines after Hermite or HB-splines after Hermite and Birkhoff.

Again, Schoenberg has defined g-splines as smooth piecewise polynomials where
the smoothness is governed by E and then he proved that g-splines solves the above
variational problem.
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L-splines

In 1967, Schultz and Varga [59] gave a major extension of the Dm-splines. Instead
of the m-order derivative, operator Dm they considered a linear differential operator L
creating a theory of so called L-splines. We shall state only one simple consequence of
the many results of Schultz and Varga.

THEOREM 5 (SCHULTZ AND VARGA, 1967). If

• X := H m(I )

• a ≤ t1 < t2 < · · · < tn ≤ b; n ≥ m

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n}

• L : X → L2(I ), so that L[x](t) :=
m∑

j=0

a j (t)D
j x(t), where a j ∈ C j (I ),

0 ≤ j ≤ m, and ∃ ω > 0 such that am(t) ≥ ω > 0 on I and

• L has Pólya’s property W on I

then ∃! σ ∈ In such that
∫

I
[L[σ ](t)]2dt = min

{∫

I
[L[x](t)]2dt : x ∈ In

}
.

Clearly complexity is increasing with generality.

We note that L has Pólya’s property W on I if L[x] = 0 has m solutions
x1, x2, . . . , xm such that, for all t ∈ I and for all k ∈ {1, 2, . . . ,m}

det




x1(t) x2(t) . . . xm(t)
Dx1(t) Dx2(t) . . . Dxm(t)
. . . . . . . . . . . .

Dk−1x1(t) Dk−1x2(t) . . . Dk−1xm(t)


 6= 0.

The relevance of Pólya’s property W is contained in the following sentence. To say
that L has Pólya’s property W on I implies that, if L[x] = 0 and x has m or more zeros
on I , then x ≡ 0.

The optimal function σ is known as an L-spline.

If L ≡ Dm we obtain the Dm-spline: so this is a major extension of previously
stated results.

Schultz and Varga have defined an L-spline to be a smooth function constructed in a
piecewise manner, where each piece is a solution of the differential equation L∗Lx = 0
where L∗ is the formal adjoint of the operator L.

A consequence of their paper is that L-spline provide a solution of the above vari-
ational problem.
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REMARK 1. - The result of Schultz and Varga was proved in 1964 by Ahlberg,
Nilson and Walsh [2]. They called σ a “generalized splines”.

- The above result also follows from a paper of de Boor and Lynch [20] published
in 1966.

- Perhaps the first paper along these lines of replacing the operator Dm by a more
general differential operator was given by Greville [36] also in 1964. Unfortu-
nately this often cited technical report was never published. Greville illustrates
his method with an application to the classical numerical problem of interpo-
lating mortality tables. Schultz and Varga applied their ideas to the numerical
analysis of nonlinear two-point boundary value problems.

- Prenter [53] and Micula [50] are two of the few text books which touch this topic.

Lg-splines

Schoenberg extended the concept of Dm -splines to allow interpolation conditions of
the Hermite type: this leads to g-splines. Schultz and Varga (and others) extended
the concept of Dm -spline in a different direction by replacing the differential operator
Dm by a more general operator: this leads to L-splines. The question is if one could
combine both these extensions. In 1969 Jerome and Schumaker [31] combined these
two extensions together in a very effective manner. One of their results is the following:

THEOREM 6 (JEROME AND SCHUMAKER, 1969). If

• X := H m(I )

• {λ1, λ2, . . . , λn} is a set of linearly independent, continuous linear functionals
on X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n}

• L : X → L2(I ) so that L[x](t) =
m∑

j=0

a j(t)D
j x(t), a j ∈ C j (I ), 0 ≤ j ≤ m,

and ∃ ω > 0 such that am(t) ≥ ω > 0 on I and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}

then ∃! σ ∈ In such that

∫

I
[L[σ ](t)]2dt = min

{∫

I
[L[x](t)]2dt : x ∈ In

}
.
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The optimal function σ is called the Lg-spline. The hypothesis about Pólya’s prop-
erty W in Theorem 5 has with the more functional-analytic flavour. Jerome and Schu-
maker allow interpolation conditions for the more general form λi (x) = zi , 1 ≤ i ≤ n,
where λi (1 ≤ i ≤ n) are continuous linear functionals on X . This idea could cover

also others conditions like
∫ ti+1

ti
x(t)dt = zi , 1 ≤ i ≤ n. We note also that they and

Laurent [44], pp. 225-226 replace the conditions λi (x) = zi by zi ≤ λi (x) ≤ zi , where
zi and zi (i = 1, 2, . . . , n) are given real numbers with z i ≤ zi .

pLg-splines

For 1 < p < ∞ we define the space H m(I p) of functions by:

H m,p(I ) := {x : I → R : x (m−1) abs. cont., x (m) ∈ L p(I )}

With a norm on H m,p(I ) defined by:

‖x‖m,p :=
m∑

j=0

|x ( j)(a)| +
(∫

I
|x (m)(t)|pdt

)1/p

the H m,p(I ) is a Hilbert space.

In 1978 Copley and Schumaker [26] established the following result:

THEOREM 7 (COPLEY AND SCHUMAKER, 1978). If

• X := H m,p(I ), p > 1

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear functionals on
X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n} 6= ∅

• L : X → L p(I ) so that L[x](t) =
m∑

j=0

a j (t)D
j x(t), a j ∈ C j (I ), 0 ≤ j ≤ m

and ∃ ω > 0 such that am(t) ≥ ω > 0 on I , and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}

then ∃! σ ∈ In such that:

∫

I
|L[σ ](t)|pdt = min

{∫

I
|L[x](t)|pdt : x ∈ In

}
.
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The optimal function σ is called a pLg-spline. For the first time, in this paper
Copley and Schumaker have defined a pLg-spline to be a solution of the variational
interpolation problem. One of the main problems that they investigated is to determine
the structure of such splines. Can they be constructed in a piecewise manner? The com-
plexity of their answer compensates the simplicity of their definition on a pLg-spline.
In fact, Copley and Schumaker investigated more general interpolation problems. For
example, they consider sets of linear functionals {λα : α ∈ A} where the index set A
may be infinite, and also many extremly important examples.

Vector-valued Lg-splines

The following extension have come from researches in electrical engineering. In 1979
Sidhu and Weinert [60] consider the problem of simultaneous interpolation, that is, a
method by which one could interpolate several functions at once.

THEOREM 8 (SIDHU AND WEINERT, 1979). If

• r ≥ 1, n1 ≥ 0, . . . , nr ≥ 0 are fixed integers

• X := H n1(I )× H n2(I )× · · · × H nr (I )

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear functionals on
X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi (x) = zi , 1 ≤ i ≤ n}
• L : X → L2(I )× · · · × L2(I ) (an r-fold product), where

L[x](t) :=




r∑

j=1

L i j [x j ](t) : i = 1, 2, . . . , r




′

,

L i j :=
n j∑

k=0

ai j k(t)D
k ; ai jn j = δi j ; ai j k ∈ Ck(I ), 0 ≤ k ≤ n j , and

• ker L ∩ {x ∈ X : λi (x) = 0, 1 ≤ i ≤ n} = {θX}
then ∃! σ ∈ X such that:∫

I
(L[σ ](t))′L[σ ](t)dt = min

{∫

I
(L[x](t))′L[x](t)dt : x ∈ In

}
.

(Here A′ indicates the transpose of the matrix or vector A.)

The optimal interpolating vector σ is known as a vector-valued Lg-spline. The
authors have defined a vector-valued Lg-spline to be the solution of a variational in-
terpolation problem, proved the existence-uniqueness theorem and then discussed an
algorithm for calculating such splines in the special case that the functional λi are of
extended Hermite-Birkhoff type.
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Thin plate splines

So far we have been considering the problem of interpolating functions of a single
variable. In 1976, Jean Duchon [29], [23] - [27] - [28] developed a variational approach
to interpolating functions of several variables. We will state his result only for functions
of two variables. We denote an arbitrary element of R2 by t = (ξ1, ξ2), ‖t‖2 := ξ2

1 +ξ2
2

and the set of linear polynomials by:

P1 := {p1(t) = a0 + a1ξ1 + a2ξ2 : {a0, a1, a2} ⊂ R}.

THEOREM 9 (DUCHON, 1976). If

• X := H 2(R2),

• {t1, t2, . . . , tn} ⊂ R2 such that if p1 ∈ P1 and p1(t1) = · · · = p1(tn) = 0, then
p1 ≡ 0,

• {z1, z2, . . . , zn} ⊂ R,

• In := {x ∈ X : x(ti) = zi , 1 ≤ i ≤ n} and

• J : X → R such that

J (x) :=
∫∫

R2



(
∂2x

∂ξ2
1

)
+ 2

(
∂2x

∂ξ1∂ξ2

)2

+
(
∂2x

∂ξ2
2

)
 dξ1dξ2

then ∃! σ ∈ In such that

J (σ ) = min{J (x) : x ∈ In}.

Furthermore, ∀ t ∈ R2

σ(t) =
n∑

j=1

µi‖t − ti‖2 ln ‖t − ti‖ + p1(t)

where p1 ∈ P1 and (∀ q ∈ P1),

(
n∑

i=1

µiq(ti) = 0

)
.

The optimal function σ is known as a “thin plate spline”. The dramatic aspect of
this result is the form of the spline σ : it is no a piecewise polynomial function.

This two-dimensional result appeared almost 20 years after Holladay’s one-
dimensional result. The delay is not so surprising. Holladay’s proof involves noth-
ing more complicated than integration by parts whereas Duchon’s paper uses tempered
distribution, Radon measure and other tools from functional analysis.

REMARK 2. i) A more elementary approach to Duchon’s result is outlined in
Powell [52].
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ii) Duchon was not the first person to investigate the multivariate problem. In 1972
the work of two aircraft engineers Harder and Desmarais [37] approached this
problem from an applied point of view. In 1974 Fisher and Jerome [32] ad-
dressed the multivariate problem. In 1970, J. Thomann [62] in his doctoral thesis
considered a variational approach to interpolation on a rectangle or on a disk in
R2. The book by Ahlberg, Nilson and Walsh [3] also deals with multivariate
problems, but from a point of view which is essentially univariate.

Yet more splines

The overture of splines could be continued. There are other many splines associated
with some variational interpolation problems and for each case we could state a theo-
rem similar to those above. We shall only nominate they:

3-splines (1972, Jerome and Pierce [41])

LMg-splines (1979, R. J. P. de Figueiredo [30])

ARMA-splines (1979, Weinert, Sesai and Sidhu [67])

Spherical splines (1981, Freeden, Scheiner and Franke [33])

PDLg-splines (1990, R. J. P. de Figueiredo and Chen [31])

Polyharmonic splines (1990, C. Rabut [54])

Vector splines (1991, Amodei and Benbourhim [5])

Hyperspherical splines (1994, Taijeron, Gibson and Chandler [61]).

4. Abstract splines

The statements of the above theorems were becoming quite long and complicated.
But, there is a general abstract result which captures the essence of most of them.
The following result is attributed to M. Atteia [10], [11],[12] - [15], and it relates to
following diagram:

X

A
��

T
// Y

Z

THEOREM 10 (ATTEIA, 1992). If

• X, Y, Z are Hilbert spaces,

• T, A are continuous linear surjections,

• z ∈ Z

• ker T + ker A is closed in X,

• ker T ∩ ker A = {θX} and
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• I (z) = {x ∈ X : Ax = z}

then ∃! σ ∈ I (z) such that:

‖Tσ‖Y = min{‖T x‖Y : x ∈ I (z)}.

The optimal σ is known as a variational interpolating spline.

To illustrate that this theorem reflects the essence of the most above results, let us
see how it generalizes Theorem 1 of Holladay. Put X = H 2(I ), Y = L2(I ), Z = Rn ,
T x := x (2), Ax := (x(t1), x(t2), . . . , x(tn)). All the hypotheses of Atteia’s theorem
are satisfied. Atteia’s theorem does not cover all the above results, e.g. Theorem 7
which deals with pLg-splines.

- An equivalent result to Atteia’s theorem is found in the often cited, but unfortu-
nately never published, report by Golomb [34] in 1967.

- The essential ideas also can be found in Anselone and Laurent [6] in 1968 and in
the classic book by Laurent [44], entitled Approximation et Optimisation (Her-
man, Paris, 1972).

There are important remarks to be made about this theorem.

1. The role of the condition about ker T + ker A is to ensure the existence of σ
whereas the role of the condition ker T ∩ ker A is to ensure the uniqueness of σ .
This separation was made clear by Jerome and Schumaker [42] in 1969.

2. The challenge of any abstract theory is to generalize a wide variety of particular
cases, and simultaneously, preserve as much of the detail as possible. To a large
extent, Atteia and others have, over many years, being doing this in the case that
X is a reproducing kernel Hilbert space. Details of this theory can be found in the
excellent monographs of Atteia ([11], 1992) and Bezhaev and Vasilenko ([17],
1993). The origins of this program can be found in 1959 paper by Golomb and
Weinberger [35], in Habilitation Thesis of Atteia ([10], 1966) and in 1966 paper
by de Boor and Lynch [20].

3. The above general theorem can itself be generalized in many directions.

One generalization enables us to consider constrained interpolation problems which
are very important in contemporary mathematics. It is due to Atteia [10] and Utreras,
[63] in 1987 and relates to the following diagram

C ⊂ X

A
��

T
// Y

z ∈ Z
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THEOREM 11 (UTRERAS, 1987). If

• X, Y, Z are Hilbert spaces,

• C is a closed, convex subset of X,

• z ∈ Z

• A, T are continuous, linear surjections,

• w ∈ I (C, z) := {x ∈ C : Ax = z}

• ker T + (ker A ∩ (C − w)) is closed in X and

• ker A ∩ ker T = {θX}

then ∃! σ ∈ I (C, z) such that

‖Tσ‖Y = min{‖T x‖Y : x ∈ I (C, z)}.

If we put C = X then we obtain Theorem 10 of Atteia. Utreras’ theorem is useful
if, for example, we want to interpolate positive data by positive functions. In this case
we have X = H m(I ) and C is the set of positive function in X .

Other generalizations have extended Atteia’s theorem to Banach spaces settings,
rather than Hilbert spaces. So that are known the following new splines in Banach
spaces:

R-splines (1972, Holmes [40])

M-splines (1972, Lucas [47], 1985 Abraham [1])

Lf-splines (1983, Pai [51])

Tf-splines (1993, Benbourhim and Gaches [16]).

A key work in the Banach space setting is the 1975 paper of Fischer and Jerome
[32], where the perfect splines are very important in this contex.

5. Conclusions and comments

The book of Laurent ([44], 1972) was perhaps the first book which emphasized the
variational approach to splines.

Atteia’s book ([11], 1992) is the key work in this area, especially for those inter-
ested in functional analysis.

Whaba ([66], 1990) is the first book describing applications of these ideas (in
smoothing rather the interpolation) to statistics.

Bezhaev and Vasilenko ([17], 1993) published in Novosibirsk entitled “Variational
Spline Theory” contains the most abstracts and rigorous results in this field.

To close this presentation there are three conclusions to be underlined.
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1. Splines may be defined as solution of variational problems rather than functions
constructed in some piecewise manner. We have seen that these variational prob-
lems have become increasingly abstract and hence the concept of “splines” has
became increasingly abstract. This may not be everyone’s liking, at least, ini-
tially. For example, in 1966 in [20] de Boor and Lynch have written: “in order
not to dilute the notion of spline functions too much, we prefer to follow Gre-
ville’s definition of a general spline function” – which is based on a piecewise,
constructive approach. In any case, the variational theory gives us a new appre-
ciation of the concept of a “spline”.

2. The variational approach facilitates a natural, attractive way to extend the clas-
sical theory of interpolating splines, especially to multivariate situations. The
works of Duchon [29], [23] - [27] - [28], in 1976 and Whaba [65] in 1981 illus-
trate this conclusion. More recently, in 1993, de Boor [19] changing his earlier
opinion wrote: “I am convinced that the variational approach to splines will
play a much greater role in multivariate spline theory that it did or should have
in univariate theory”.

3. The theory of variational splines demonstrates the power of functional analysis
to yield a unified approach to computational problems in interpolation. As S.
Sobolev [45], one year before his dead has been quoted: “It is impossible to
image the theory of computations with no Banach spaces”.
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