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Splines and Radial Functions

F. Caliò - E. Marchetti - R. Pavani

ABOUT THE DEFICIENT SPLINE COLLOCATION METHOD

FOR PARTICULAR DIFFERENTIAL AND INTEGRAL

EQUATIONS WITH DELAY

Abstract. The aim of this paper is to present the application of a particu-
lar collocation method (recently developed by the authors) to numerically
solve some differential and Volterra integral equations with constant delay.
The unknown function is approximated by using deficient spline functions.
The existence and uniqueness of the numerical solution are studied; some
aspects of the problem related to the estimation of the errors as well as the
convergence properties are presented. Numerical examples are provided.

1. Introduction

In recent years a great deal of dynamical processes has been described and investi-
gated by differential and integral equations with deviating arguments. It is well known
that the versatility of such equations in modelling processes in various applications,
especially in physics, engineering, biomathematics, medical sciences, economics, etc.,
provides the best, and sometimes the only, realistic simulation of observed phenomena.

Since solutions of such equations in general are not found explicitly, methods for
their approximate solutions reveal very useful.

Recently we have proposed a deficient spline collocation method to approximate
the solution of the first and second order delay differential equations (DDEs) [2] also
in the neutral case (NDDEs) [3], [4], [5] and the solution of Volterra integral equations
with delay (VDIEs) [6].

More precisely, we deal with the numerical solutions by combining two classic
Numerical Analysis methodologies: approximation through the spline functional class
and determination of the approximating function by a collocation method. In literature
the two techniques are frequently used separately, but they are rarely combined to solve
delay differential and integral equations. For instance in [1] they are applied in the
numerical solution of first order delay differential equation, in [8] they are extended in
the numerical solution of second order differential equations with delay, in [10] they are
proposed in the case of Volterra integral equations. In all those works some advantages
of that technique are outlined.

In any case, from those works one can draw the conclusion that spline methods
are characterized by a large application spectrum, thanks to their weak convergence
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requirements, but they are affected by serious stability problems when their order in-
creases. This explains why spline collocation techniques are not so often used.

In our works [2], [3], [4], [5], [6] taking into account that the phenomena described
by the delay equations are very irregular, we proposed the following ideas:

i) the use of low order splines, in order to guarantee stability;

ii) the weakness of the continuity requirements at connecting points, so that lowly
regular functions can be satisfactorily dealt with.

Therefore we propose the collocation using deficient splines (as defined in the next
section), namely splines pertaining to class Cm−2 (deficiency 1), where m ∈ N, m ≥ 2,
is the spline degree.

Consequently we can use the advantages of the two (collocation and deficient
spline) aspects.

The collocation methods provide the global spline expression, therefore they are
selected:

i) in the case of DDE and NDDE, to eliminate the problems due to high-order
interpolation, in the continuous extension

ii) in the case of VDIE, to use the expression of the spline in the evaluation of
integrals in intervals preceding the current one

iii) to allow the use of variable intervals and spline degrees

iv) to state numerical models such that existence and unicity of the solution can be
proved

v) to implement a simple and efficient algorithm.

About the deficient spline of polynomial degree m ≥ 2 :

i) we choose a classical convenient expression of the spline

ii) we choose low polynomial degree spline to maintain stability of the method and
to deal with weakly regular solution

iii) weakening the spline regularity in the linking points, we can adapt the continuity
class of the spline approximating to solutions at very low regularity.

As the equations with delay argument concerning the modelling processes are very
often linear and with constant delay, in this paper we study the application of the nu-
merical method proposed to these cases. We refer to works [2] to [6] for non linear
cases.

In the second section we study the numerical model both for differential and
Volterra integral equations. In the third section we give some numerical examples.
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2. The description of spline collocation method

In this section we study the application of the numerical method to some linear DDE,
NDDE and VDIE with constant delay.

2.1. The case of delay differential equations

We consider the following second order delay differential equation (DDE):

(1)
y′′(x) = k1y(x)+ k2y′(x)+ f (x, y(g(x)), y ′(g(x))), x ∈ [a, b]

y(x) = ϕ(x), y ′(x) = ϕ′(x), x ∈ [α, a], α ≤ a, α = In f (g(x))
x∈[a,b]

α ≤ g(x) ≤ x, x ∈ [α, b], ϕ ∈ Cm−2[α, a], m > 2, k1, k2 ∈ R

f : [a, b] × C1[α, b] × C[α, b] → R.

We suppose verified the hypotheses so that the problem (1) has a unique solution
y ∈ C2[a, b] ∩ C1[α, b] (see [7]).

As it is known (see [7]) jump discontinuities can occur in various higher order
derivatives of the solution y even if f, g, ϕ are analytic in their arguments. Such jump
discontinuities are caused by the delay function g and propagate from the point a,
moving ahead with the increasing order of derivatives.

If we denote the jump discontinuities by {ξ j }, it is also known that ξ j are the roots of
equation g(ξ j ) = ξ j−1 [7]; ξ0 = a is a jump discontinuity of ϕ (or of its derivatives).
Since in (1) the delay function g does not depend on y (no state depending argument),
we can consider the jump discontinuities for sufficiently high order derivatives to be
such that ξ0 < ξ1 < ... < ξk−1 < ξk < ... < ξM .

In the following we will consider g(x) := x−τ (τ ∈ R, τ > 0 ) so that ξ j = a+ jτ
( j = 0, 1, ...,M) and α = a − τ.

We shall construct for the problem (1) a deficient polynomial spline approximating
function of degree m ≥ 3, denoted by s : [a, b] → R, s ∈ Sm, s ∈ Cm−2, which
will be defined on each interval [ξ j , ξ j+1] ( j = 0, 1, ...,M − 1). For this construction
we shall use successively the collocation methods as in [8]. Let us consider the first
interval [ξ0, ξ1] which is [a, ξ1]. Let us define a uniform partition ξ0 = t0 < t1 < ... <

tk−1 < tk < ... < tN = ξ1 where t j := t0 + jh ( j = 0, 1, ..., N), h = (ξ1 − ξ0)/N .
On the first interval [t0, t1] the spline component is defined by

s0(t) : = ϕ(t0)+ ϕ′(t0)(t − t0)+ ϕ′′(t0)(t − t0)
2/2 + ...+(2)

+ϕ(m−2)(t0)(t − t0)
m−2/(m − 2)! +

+a0/(m − 1)!(t − t0)
m−1 + b0/m!(t − t0)

m

with a0, b0 to be determined by the following system of collocation conditions:




s′′
0 (t0 + h/2) = k1s0(t0 + h/2)+ k2s′

0(t0 + h/2)+
+ f (t0 + h/2, ϕ(t0 + h/2 − τ), ϕ′(t0 + h/2 − τ))

s′′
0 (t1) = k1s0(t1)+ k2s′

0(t1)+ f (t1, ϕ(t1 − τ), ϕ′(t1 − τ))
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Once determined the polynomial (2), on the next interval [t1, t2], we define

(3) s1(t) :=
m−2∑

j=0

s( j)
0 (t1)(t − t1)

j/j ! + a1/(m − 1)!(t − t1)
m−1 + b1/m!(t − t1)

m

where s( j)
0 (t1), 0 ≤ j ≤ m − 2, are left-hand limits of derivative as t → t1 of the seg-

ment of s defined on [t0, t1] and a1, b1 are determined from the following collocation
conditions:





s′′
1 (t1 + h/2) = k1s1(t1 + h/2)+ k2s′

1(t1 + h/2)+
+ f (t1 + h/2, ϕ(t1 + h/2 − τ), ϕ′(t1 + h/2 − τ))

s′′
1 (t2) = k1s1(t2)+ k2s′

1(t2)+ f (t2, ϕ(t2 − τ), ϕ′(t2 − τ))

We remark that the peculiarity of these collocation conditions is the fact that they take
into account the historical behaviour of the approximating spline, which is relevant for
the delay nature of the considered equation.

Analogously for t ∈ [tk, tk+1] we have

(4) sk(t) :=
m−2∑

j=0

s( j)
k−1(tk)(t − tk)

j/j ! + ak/(m − 1)!(t − tk)
m−1 + bk/m!(t − tk)

m

where s( j)
k−1(tk) = lim

t→tk
s( j)

k−1(t), t ∈ [tk−1, tk ] and ak, bk are determined from

(5)





s′′
k (tk + h

2 ) = k1sk(tk + h/2)+ k2s′
k(tk + h/2)+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

s′′
k (tk+1) = k1sk(tk+1)+ k2s′

k(tk+1)+
+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

In general the spline function s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) approximating
the solution of (1) on the interval Ii := [ξi , ξi+1] (i = 0, 1, ...,M − 1) is defined in
[tk, tk+1] where tk := t0 + kh, k = 0, 1, ..., N − 1; t0 := ξi , tN = ξi+1, h := ξi+1−ξi

N
as:

(6) sk/Ii (t) :=
m−2∑

j=0

s( j)
k−1/Ii

(tk)(t − tk)
j/j ! + ak

(m − 1)!
(t − tk)

m−1 + bk

m!
(t − tk)

m

with ak, bk determined, as in (5) by

(7)





s′′
k/Ii
(tk + h

2 ) = k1sk/Ii (tk + h/2)+ k2s′
k/Ii
(tk + h/2)+

+ f (tk + h
2 , sIi−1 (tk + h

2 − τ), s ′
Ii−1
(tk + h

2 − τ))

s′′
k/Ii
(tk+1) = k1sk/Ii (tk+1)+ k2s′

k/Ii
(tk+1)+

+ f (tk+1, sIi−1 (tk+1 − τ), s ′
Ii−1
(tk+1 − τ))

where sIi−1 ∈ Sm, sIi−1 ∈ Cm−2 is the spline approximating the solution of (1) on the
interval Ii−1.
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In the following, to simplify the notations, the theoretical results will be related
only to (5); their generalization to (7) is immediate.

If we set

(8) Ak(t) =
m−2∑

j=0

s( j)
k−1(tk)(t − tk)

j/j !

then (5) becomes:

(9)





ak
(m−3)!

(
1 − h

2(m−2)

(
k1

h
2(m−1) + k2

)) ( h
2

)m−3 +
+ bk
(m−2)!

(
1 − h

2(m−1)

(
k1

h
2m + k2

))
( h

2 )
m−2 =

−A′′
k (tk + h

2 )+ k1 Ak(tk + h
2 )+ k2 A′

k(tk + h
2 )+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

ak
(m−3)!

(
1 − h

m−2

(
k1

h
m−1 + k2

))
hm−3+

+ bk
(m−2)!

(
1 − h

m−1

(
k1

h
m + k2

))
hm−2 =

−A′′
k (tk+1)+ k1 Ak(tk+1)+ k2 A′

k(tk+1)+
+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

It remains to find under what conditions on h, the parameters ak, bk , 0 ≤ k ≤ N − 1
can be uniquely determined from (9).

It is easy to prove the following:

THEOREM 1. Let us consider the delay differential problems in (1). Under the
hypotheses of existence and uniqueness of the analytic solution, there exists a unique
spline approximation solution s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) of (1) given by the
above construction for h 6= 0 if and only if the following condition is satisfied:

∣∣∣∣∣∣
1 − h

2(m−2)

(
k1

h
2(m−1) + k2

)
1
2

(
1 − h

2(m−1)

(
k1

h
2m + k2

))

1 − h
m−2

(
k1

h
m−1 + k2

)
1 − h

m−1

(
k1

h
m + k2

)

∣∣∣∣∣∣
6= 0

COROLLARY 1. If k1 = k2 = 0 and m ≥ 3 the condition is satisfied ∀h (h 6= 0).

COROLLARY 2. If k1 = 0 , k2 6= 0 and 3 ≤ m < 10 the condition is satisfied ∀h
(h 6= 0).

COROLLARY 3. If k1 6= 0, k2 = 0 and 3 ≤ m < 10 the condition is satisfied ∀h
(h 6= 0).

We can tackle by the same method also the following neutral delay differential
equation (NDDE):

(10)

y′(x) = k1y(x)+ f (x, y(g(x)), y ′(g(x))), x ∈ [a, b]
y(x) = ϕ(x), x ∈ [α, a], α ≤ a, α = In f (g(x))

x∈[a,b]

α ≤ g(x) ≤ x , x ∈ [α, b]
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Let us assume that: f : [a, b]×C1[α, b]×C[α, b] → R, g ∈ C[α, b], α ≤ g(x) ≤
x, x ∈ [α, b], ϕ ∈ Cm−1[α, a], m ≥ 1, m ∈ N , k1 ∈ R.

We suppose verified the hypotheses so that the problem (10) has a unique solution
y ∈ C1[a, b] ∩ C[α, b] (see [7]).

Analogously to (1), we consider g(x) := x − τ ( τ ∈ R, τ > 0) and the jump
discontinuities ξ j = a + jτ ( j = 0, 1, ...,M), α = a − τ . In each interval Ii =
[ξi , ξi+1] (i = 0, 1, ...,M − 1) we shall construct for the problem (10) a polynomial
spline approximating function (6) of degree m ≥ 2 and deficiency 1 and we determine
the coefficients ak, bk through the following collocation system:





s′
k/Ii
(tk + h

2 ) = k1sk/Ii (tk + h/2)+
+ f (tk + h

2 , sIi−1 (tk + h
2 − τ), s ′

Ii−1
(tk + h

2 − τ))

s′
k/Ii
(tk+1) = k1sk/Ii (tk+1)+

+ f (tk+1, sIi−1 (tk+1 − τ), s ′
Ii−1
(tk+1 − τ))

It follows that in the first interval [ξ0, ξ1] (the generalization to Ii , i = 1, ...,M −1
is immediate) assuming Ak(t) as in (8):

(11)





ak
(m−2)!

(
1 − k1

h
2(m−1)

) ( h
2

)m−2 + bk
(m−1)!

(
1 − k1

h
2m

)
( h

2 )
m−1 =

−A′
k(tk + h

2 )+ k1 Ak(tk + h
2 )+

+ f (tk + h
2 , ϕ(tk + h

2 − τ), ϕ′(tk + h
2 − τ))

ak
(m−2)!

(
1 − k1

h
m−1

)
hm−2 + bk

(m−1)!

(
1 − k1

h
m

)
hm−1 =

−A′
k(tk+1)+ k1 Ak(tk+1)+

+ f (tk+1, ϕ(tk+1 − τ), ϕ′(tk+1 − τ))

It is easy to prove the following:

THEOREM 2. Let us consider the delay neutral differential problems in (10). Un-
der the hypotheses of existence and uniqueness of the analytic solution, there exists a
unique spline approximation solution s : [a, b] → R, (s ∈ Sm, s ∈ Cm−2) of (10)
given by the above construction for h 6= 0, if and only if the following condition is
satisfied: ∣∣∣∣∣

1 − k1
h

2(m−1)
1
2

(
1 − k1

h
2m

)

1 − k1
h

m−1 1 − k1
h
m

∣∣∣∣∣ 6= 0

COROLLARY 4. If k1 = 0 and m ≥ 2 the condition is satisfied ∀h (h 6= 0).

COROLLARY 5. If k1 6= 0 and 2 ≤ m < 9 the condition is satisfied ∀h (h 6= 0).

REMARK 1. As the condition of the Theorem provides the non singularity of the
coefficient matrix of system (11), its extension to a linear system of n delay differential
equations of first order is immediate.
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REMARK 2. For the consistency and convergence of the numerical solutions of
(1) and (10) we can take into account the results obtained in more general cases. In
[2] , [5] it is shown that the spline collocation method appears as (m–1)step-method.
Consequently for m = 3 and m = 4 the cubic and quartic approximating splines yield
the same values of the solution of (1) in the knots as discrete 2-step and 3-step method
respectively. Analogously for m = 2 and m = 3 the trapezoidal and the Simpson’s
rule give the same discrete solutions of (10) as quadratic and cubic spline respectively.
Consequently it is possible to prove consistency and convergence of the method. The
numerical stability of the method is not guaranteed (see [2], [5]) when m > 4 for (1)
and when m > 3 for (10).

2.2. The case of Volterra integral equations

Let us use the same method for the following Volterra integral equation with positive
and constant delay (VDIE):

(12) y(x) =
∫ x

0
k1 y(t)dt +

∫ x−τ

0
K2(x, t, y(t))dt + g(x), x ∈ J = [0, T ]

with k1 ∈ R, the delay τ ∈ R, τ > 0, y(x) = φ(x) for x ∈ [−τ, 0).

We assume that the given functions φ : [−τ, 0] → R, g : J → R, K2 :
�τ × R → R (�τ := J × [−τ, T − τ ]) are at least continuous on their domains such
that (12) possesses a unique solution y ∈ C(J ).

If K2 = 0 equation (12) reduces to Volterra integral equation (VIE).

We suppose that T = Mτ for some M ∈ N. For N ∈ N (which satisfies N/M
∈ N), let h = T/N and r = τ/h ∈ N.

Chosen ti = ih (i = −r, ..., 0, 1, ..., N; t−r = −τ, tN = T ), the coefficients
ak, bk of sk(t) defined in [tk, tk+1] (k = 0, ..., N − 1) with τ ≤ tk < T are determined
through the following collocation system:

(13)





sk(tk + h
2 ) =

∑k−1
j=0

∫ ( j+1)h
jh k1 s j (t)dt +

∫ kh+ h
2

kh k1sk(t)dt+
+
∑k−1−r

j=0

∫ ( j+1)h
jh K2(tk + h

2 , t, s j (t))dt+

+
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, sk−r (t))dt + g(tk + h
2 )

sk(tk+1) =
∑k

j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∑k−r

j=0

∫ ( j+1)h
jh K2(tk+1, t, s j (t))dt + g(tk+1)

and if 0 ≤ tk < τ from

(14)





sk(tk + h
2 ) =

∑k−1
j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∫ kh+ h

2
kh k1sk(t)dt +

∑−1
j=k−r

∫ ( j+1)h
jh K2(tk + h

2 , t, s j (t))dt+

−
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, sk−r (t))dt + g(tk + h
2 )

sk(tk+1) =
∑k

j=0

∫ ( j+1)h
jh k1 s j (t)dt+

+
∑−1

j=k−r+1

∫ ( j+1)h
jh K2(tk+1, t, s j (t))dt + g(tk+1)
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provided that sk(t) = φ(t) in [tk, tk+1] (k = −r, ...,−1).

Consequently (13), with Ak(t) as in (8), becomes:




ak
(m−1)!(

h
2 )

m−1
(
1 − k1

h
2m

)
+ bk

m! (
h
2 )

m
(

1 − k1
h

2(m+1)

)
=

−Ak(tk + h
2 )+

∫ kh+ h
2

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j(t)

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑k−1−r

j=0

∫ ( j+1)h
jh K2(tk + h

2 , t, A j (t)+ a j
(m−1)!(t − t j )

m−1+
+ b j

m! (t − t j )
m)dt+

+
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, Ak−r (t)+ ak−r
(m−1)!(t − tk−r )

m−1+
+ bk−r

m! (t − tk−r )
m)dt + g(tk + h

2 )

ak
(m−1)! hm−1

(
1 − k1

h
m

)
+ bk

m! hm
(

1 − k1
h

m+1

)
=

−Ak(tk+1)+
∫ (k+1)h

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j(t)+

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑k−r

j=0

∫ ( j+1)h
jh K2(tk+1, t, A j (t)+ a j

(m−1)!(t − t j )
m−1+

+ b j
m! (t − t j )

m)dt + g(tk+1)

Analogously (14) becomes:




ak
(m−1)!(

h
2 )

m−1
(
1 − k1

h
2m

)
+ bk

m! (
h
2 )

m
(

1 − k1
h

2(m+1)

)
=

−Ak(tk + h
2 )+

∫ kh+ h
2

kh k1 Ak(t)dt+
+
∑k−1

j=0

∫ ( j+1)h
jh k1(A j (t)+ a j

(m−1)!(t − t j )
m−1 + b j

m! (t − t j )
m)dt+

+
∑−1

j=k−r

∫ ( j+1)h
jh K2(tk + h

2 , t, A j (t)+ a j
(m−1)!(t − t j )

m−1+
+ b j

m! (t − t j )
m)dt+

−
∫ (k−r)h+ h

2
(k−r)h K2(tk + h

2 , t, Ak−r (t)+ ak−r
(m−1)!(t − tk−r )

m−1+
+ bk−r

m! (t − tk−r )
m)dt + g(tk + h

2 )

ak
(m−1)! hm−1

(
1 − k1

h
m

)
+ bk

m! hm
(

1 − k1
h

m+1

)
=

−Ak(tk+1)+
∫ (k+1)h

kh k1 Ak(t)dt +
∑k−1

j=0

∫ ( j+1)h
jh k1(A j (t)+

+ a j
(m−1)!(t − t j )

m−1 + b j
m! (t − t j )

m)dt+
+
∑−1

j=k−r+1

∫ ( j+1)h
jh K2(tk+1, t, A j (t)+ a j

(m−1)!(t − t j )
m−1+

+ b j
m! (t − t j )

m)dt + g(tk+1)

It is easy to prove the following:

THEOREM 3. Let us consider equation (12). Under the hypotheses of existence
and uniqueness of the analytic solution, there exists a unique spline approximation
solution s : [0, T ] → R, (s ∈ Sm, s ∈ Cm−2) of (12) given by the above construction
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for h 6= 0 if and only if the following condition is satisfied:

∣∣∣∣∣
1 − k1

h
2m

1
2(1 − k1

h
2(m+1))

1 − k1
h
m 1 − k1

h
m+1

∣∣∣∣∣ 6= 0

COROLLARY 6. If k1 = 0 and m ≥ 2 the condition is satisfied ∀h (h 6= 0).

COROLLARY 7. If k1 6= 0 and 2 ≤ m < 8 the condition is satisfied ∀h (h 6= 0).

REMARK 3. About the convergence and the numerical stability of the method ap-
plied to (12) we refer to [9].

3. Numerical examples

In the following we present some numerical results to enlighten the features of the pre-
sented numerical method. We emphasize that we will show examples just for cases
with exact solutions belonging to a low regularity class, because our method is ded-
icated just to these cases. In all the examples the existence and uniqueness of the
numerical solution is guaranteed for any value of the integration step h.

Our computer programs are written in MATLAB5.3, which has a machine precision
ε ' 10−16.

Our first example refers to the following second order DDE

y′′(t) =
∣∣∣∣t − 1

2

∣∣∣∣+ y ′(t − 1)

which is to be solved on [0, 1] with history y(t) = 1 for t ≤ 0.
The analytical solution is y(t) = − 1

6 t3 + 1
4 t2 + 1 in [0, 1/2], and y(t) = 1

6 t3 −
1
4 t2 + 1

4 t + 23
24 in [1/2, 1]; therefore the solution y(t) ∈ C2, so using m = 4, our

approximating deficient spline function belongs exactly to the same class of regularity
of the analytical solution. We remark that this problem is smooth, as at t = 1/2 the left
third derivative slightly differs from the right third derivative. We chose a quite large
value h = 0.1 and we get a comparison with an analogous collocation method using
classical splines. The following Table 1 reports the errors esd and esc we obtained
respectively using deficient spline sd ∈ S4, sd ∈ C2 and classical spline sc ∈ S4,
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sc ∈ C3.

t esd esc

0.1 1.0E-4 1.4E-4
0.2 3.1E-5 9.4E-5
0.3 2.7E-5 2.9E-4
0.4 6.8E-5 1.0E-3
0.5 9.1E-5 2.0E-3
0.6 1.0E-4 3.3E-3
0.7 1.4E-4 4.3E-3
0.8 1.9E-4 5.0E-3
0.9 2.5E-4 5.4E-3
1.0 3.3E-4 5.5E-3

Table 1

It is clear that deficient spline behaves better than classical spline, as it exhibits the
same class of regularity as the analytical solution, even when large integration steps
are used.

As a second example, we consider the following NDDE:

y′(t) = −500
y(t − 1)

y′(t − 1)

which is to be solved on [0, 2] with history y(t) = e−t for t ≤ 0.

The analytical solution is y(t) = 500t +1 in [0, 1], and y(t) = −250t 2 +499t +252
in [1, 2]. Therefore the solution y(t) ∈ C0[0, 2] ; so using m = 2, our approximating
deficient spline function belongs exactly to the same class of regularity as the analyt-
ical solution. We emphasize that this problem is really rough, as at t = 1 the left
first derivative and the right first derivative differ significantly: indeed y ′(1)− = 500
whereas y ′(1)+ = −1. Therefore we could expect some numerical troubles. On the
contrary our method deals very well with this kind of problems, as already pointed
out. We chose a quite large value h = 0.25; at t = 1 we obtain numerically the exact
value and at t = 2 the final absolute error is 2.6E − 4. This suffices to show how our
method is accurate and efficient and cheap. Figure 1 reports the behavior of the analyt-
ical solution (solid line) together with the numerical solution (rectangles) for the case
h = 0.25.

As a third example we consider the following system of first order DDE’s suggested as
Example 1 in [11] . The equations

y′
1(t) = y1(t − 1)

y′
2(t) = y1(t − 1)+ y2(t − 0.2)

y′
3(t) = y2(t − 1)

are to be solved on [0, 1] with history y1(t) = 1, y2(t) = 1, y3(t) = 1 for t ≤ 0.
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Figure 1: h=0.25

A comparison between the solutions computed by means of dde23 (see [11]) and by
our method (with h = 0.01) show that the three solution curves coincide and the num-
ber of required flops has the same order of magnitude; in this case using our method
no advantages occur, because the solutions are very regular. However this example is
interesting in order to show that our method works efficiently also for systems of equa-
tions and moreover that different delays are allowed and can be conveniently handled.
We remark that in this case the linear system to be solved has M equations and M
unknowns, where M = 2n with n equal to the number of given first order equations;
in this case M = 6.

About the integral equations, at first we consider the following Volterra integral
equation without delay argument. This example is reported just to show that even in
this case our method works really well, when solution exhibits low regularity.

y(x) = g(x)+
∫ x

0
y(s)ds

g(x) =
{

x3

3 − x2 + 1−x
4 0 ≤ x ≤ 1

2

−
(

x3

3 − x2 + 1−x
4

)
− 1

6
1
2 ≤ x ≤ 1

The exact solution is:

y(x) =
∣∣∣∣x2 − 1

4

∣∣∣∣

We computed our solution in x = 1. Using m = 2 , we built splines s ∈ S2, s ∈
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C0[0, 1], that is of the same class of regularity of the analytical solution. Even in
this case, we obtain very good numerical results; in particular at t = 1 our error is
comparable with the machine precision, even when large integration steps are used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: h=0.5

Figure 2 refers just to the case h = 0.5 ; there solid line shows the exact solution in
[0, 1] ; rectangles show the integration points and circles show intermediate points of
our numerical solution computed by means of spline analytical expression relating to
each integration interval. It is evident that even when a large integration step is used,
our numerical solution coincides with the analytical one.

At last we consider the following integral equation with delay arguments:

y(x) = g(x)+
∫ x

0
y(s)ds −

∫ x−τ

0
y(s)ds

τ = 1, y(x) = 0 for x ∈ [−1, 0]

g(x) =
{

100x − 50x2 for x ∈ [0, 1/2]
−400(x − 1)3 + 100(x − 1)4 − 75/4 for x ∈ [1/2, 1]

The exact solution is:

y(x) =
{

100x for x ∈ [0, 1/2]
−400(x − 1)3 for x ∈ [1/2, 1]

Even in this case the solution y(x) to be approximated belongs to class C0[0, 1]. We
used a large integration step h1 = 0.5 in [0, 1/2] and a shorter step h2 in [1/2, 1],
where the solution is not linear.
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Figure 3 refers to the case h1 = 0.5 and h2 = 0.125; there solid line shows the exact
solution in [0, 1] together with the history in [−1, 0]; rectangles show the numerical
solution in the integration points and circles show the numerical solution in the inter-
mediate points (computed by means of the analytical expression of spline).

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50
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Figure 3: h1 = 0.5, h2 = 0.125

It is evident that even in this case results are very satisfactory.

In more details, the numerical solution in x = 1 is computed with an error equal to
1.0E − 2 when h2 = 0.25 and with an error equal to 6.6E − 4 when h2 = 0.125.

References

[1] BELLEN A. AND MICULA G., Spline approximations for neutral delay differ-
ential equations, Revue d’Analyse Numer. et de Theorie de l’Approximation 23
(1994), 117–125.
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