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Splines and Radial Functions

C. Conti - L. Gori - F. Pitolli

SOME RECENT RESULTS ON A NEW CLASS OF BIVARIATE

REFINABLE FUNCTIONS

Abstract. In this paper a new class of bivariate refinable functions is pre-
sented and some of its properties are investigated. The new class is con-
structed by convolving a tensor product refinable function of special type
with χ[0,1], the characteristic function of the interval [0, 1]. As in the case
of box splines, the convolution product here used is the directional convo-
lution product.

1. Introduction

It is well know that refinable functions play a key role in different fields like, just to
mention two of the most significative, subdivision algorithms and wavelets. That is
why there is an enormous amount of literature analyzing properties and applications
of refinable functions in both the univariate and multivariate setting. In spite of their
importance in many applications, the explicit form of refinable functions known in the
literature reduces, in practice, to the two celebrated cases of B-splines and box-splines
on uniform grids and of Daubechies refinable functions (see [2], [3], [6], and [7], for
example). This is especially true in the multivariate setting where tensor product of
univariate refinable functions are mainly taken into account. The considerations above
motivated us in constructing and investigating a new family of bivariate non tensor-
product refinable functions. Thus, starting with a bivariate function which is a tensor-
product of finitely supported totally positive refinable functions, the new functions are
obtained by using the directional convolution product with the characteristic function
of the interval [0, 1]. The idea is definitely borrowed from box-splines but the bivariate
function we start with is not the characteristic function of [0, 1]2. The univariate func-
tions used to construct the tensor product belong to a large class of refinable functions
introduced in [9], [8] by the two last authors so that they will be called GP functions.
The class of GP functions contains as a particular case the cardinal B-splines with
which they share many useful properties. The differences between the B-splines and
the GP functions are mainly due to the fact that the refinement mask is characterized by
one or more extra parameters that afford additional degrees of freedom which reveals
its effectiveness in several applications.

The outline of the paper is as follows. In Section 2 we first recall the definition of
the directional convolution product of a bivariate function and a univariate function.
Then, we investigate which properties of the bivariate function are preserved after the
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directional convolution with χ[0,1], the characteristic function of [0, 1], is made. In
Section 3 the new class of bivariate refinable functions is characterized. In the closing
Section 4 a few examples are presented.

2. Directional convolution

We start this Section by recalling the definition of the directional convolution product
(see also [7] for a possible use of it).

DEFINITION 1. Let F : R2 → R, g : R → R be a bivariate and a univariate
function, respectively, and let e ∈ Z2 be a direction vector. The convolution product
between F and g along the direction e is defined as

(1) (F ∗e g)(x) :=
∫

R

F(x − et)g(t) dt, x ∈ R
2.

Next, let 8 be a bivariate refinable function that is a solution of a refinement equa-
tion of type

(2) 8(x) =
∑

α∈Z2

aα8(2x − α), x ∈ R
2,

where the set of coefficients aα forms the so called refinement mask a = {aα, α ∈
Z2}. The mask a is supposed to be of compact support and satisfying∑
α∈Z2 aα+2γ = 1 for all γ ∈ {0, 1}2. Furthermore, we assume that the Fourier trans-

form of8 satisfies 8̂(0) = 1. Here we define the Fourier transform of a given function
F as

(3) F̂(ω) :=
∫

R2
F(x)e−iω·x dx .

Using the above introduced directional convolution product we defined the bivariate
function9 : R2 → R

(4) 9(x) := (8 ∗e χ[0,1])(x) =
∫ 1

0
8(x − et) dt,

where e ∈ {−1, 0, 1}2, and χ[0,1], in the following for shortness χ , is the characteristic
function of the unit interval [0, 1].

PROPOSITION 1. Let 8 be a refinable function with refinement mask a such that∑
α∈Z2 8(· − α) = 1. Then, the function 9 defined in (4) is refinable with refinement

mask
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b = {bα = aα + aα−e

2
, α ∈ Z

2} .

Furthermore, the integer translates of9 form a partition of unity, namely
∑
α∈Z2 9(·−

α) = 1.

Proof. By the 9 definition we get

9(x) =
∫ 1

0 8(x − et) dt =
∑

α∈Z2

aα

∫ 1

0
8(2(x − et)− α)dt

= 1
2

∑

α∈Z2

aα

∫ 2

0
8(2x − et − α)dt

= 1
2

∑

α∈Z2

aα

[∫ 1

0
8(2x − et − α)dt +

∫ 1

0
8(2x − et − α − e)dt

]

= 1
2

∑

α∈Z2

aα[9(2x − α)+9(2x − α − e)]

=
∑

α∈Z2

1

2
(aα + aα−e)9(2x − α)

so that 9 is refinable with refinement mask b = {bα = aα+aα−e
2 , α ∈ Z2}.

Next, since the Fourier transform of 9 is 9̂(ω) = 8̂(ω)χ̂(e · ω) for all ω ∈ R2, from
8̂(0) = 1 it trivially follows that

∑
α∈Z2 9(· − α) = 9̂(0) = 8̂(0) = 1 which is the

partition of unity for the function9.

A theorem is now dealing with the stability of 9. We recall that the function 9 is
L2-stable if there exist two constants 0 < A ≤ B < ∞ such that

(5) 0 < A||c||2 ≤ ||
∑

α∈Z2

cα9(· − α)||2 ≤ B||c||2

for any real sequence c = {cα, α ∈ Z2} in `2(Z2).

THEOREM 1. Let {8(· − α), α ∈ Z
2} be linear independent and such that

8̂(2πk) = δ0,k , where δ0,k is the Kronecker symbol. Then, the integer translates of
9 are linearly independent. Furthermore, {9(· − α), α ∈ Z2} is a L2-stable basis.
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Proof. To prove the linear independence, it is sufficient to show that the set of the
complex periodic zeros of 9̂ is empty, that is

ZC
9 = {θ ∈ C

2|9̂(θ + 2πk) = 0, ∀k ∈ Z
2} = {∅}

(see [12] for details). Now, since

9̂(θ + 2πk) = 8̂(θ + 2πk)χ̂(e · (θ + 2πk)) ,

if θ is not a multiple of 2π , then θ + 2πk /∈ 2πZ2 and 8̂(θ + 2πk) 6= 0, χ̂(e ·
(θ + 2πk)) 6= 0, so that θ is not a periodic zero. If θ is a multiple of 2π , then
θ + 2πk ∈ 2πZ

2 and

8̂(θ + 2πk) =
{

0, if k 6= K ,
1, if k = K ,

where K := − θ
2π . Now, for k = K one has χ̂(e · (θ + 2πK )) = χ̂(0) = 1, so that θ

is not a periodic zero. It follows the set Z C
9 is empty.

We conclude with the observation that, obviously, also the set of the real periodic zeros
of 9̂ is empty, that is

Z R
9 = {θ ∈ R

2|9̂(θ + 2πk) = 0, ∀k ∈ Z
2} = {∅} ,

which implies the L2-stable stability of the system of the integer translates of 9 as
shown, again, in [12].

As a consequence of Theorem 1, the following corollary holds.

COROLLARY 1. The refinable function9 generates a multi-resolution analysis on
L2(R2).

3. A new class of bivariate refinable functions

Aim of this Section is the construction of a specific class of refinable functions having
all the properties of the 9 function discussed in the previous section. As 8 refinable
function we consider a tensor product of particular univariate functions, that is

(6) 8H1,H2(x) := ϕH1(x1)ϕ
H2(x2) ,

where H1 = (n1, h1), H2 = (n2, h2), and x = (x1, x2), and where ϕH1 , ϕH2 are uni-
variate functions belonging to the class of one parameter refinable functions introduced
in [9]. We recall that the refinement mask of a GP function of type ϕH, H = (n, h), is
supported on [0, n + 1] and has positive entries

(7) aH
α = 1

2h

[(
n + 1

α

)
+ 4(2h−n − 1)

(
n − 1

α − 1

)]
, α = 0, . . . , n + 1,
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so that, whenever n = h, the function ϕH reduces to the B-splines of degree n.

It is worthwhile to note that the real parameter h, h ≥ n ≥ 2, is an additional parameter
which turns out to be useful for getting higher flexibility in the applications.

It is easy to see that the symbol associated with the refinement mask in (7) is

(8) pH(z) = 1

2h
(1 + z)n−1(z2 + (2h−n+2 − 2)z + 1) .

For any n and h, (h ≥ n > 2), the function ϕH belongs to Cn−2(R), is centrally
symmetric and the function system {ϕH(x − α), α ∈ Z} is linearly independent, stable
and satisfies

∑
α∈Z

ϕH(x − α) = 1 for all x ∈ R. Moreover, the Fourier transform
ϕ̂H(ω) vanishes if and only if ω ∈ 2πZ \ {0}.

With the ϕH refinable functions at hand we are able to construct a new class of bivariate
refinable functions using the direction convolution product with direction e = (1, 1).
We define the function9H1,H2 as

(9)
9H1,H2(x) := (8H1,H2 ∗e χ)(x)

=
∫ 1

0 8
H1,H2(x − et) dt =

∫ 1
0 ϕ

H1(x1 − t)ϕH2(x2 − t) dt .

Note that the support of 9H1,H2 satisfies

supp(9H1,H2) ⊂ supp(8H1,H2)+ [0, 1]2 ,

where supp(8H1,H2) = [0, n1 + 1] × [0, n2 + 1]. Moreover, the function 9H1,H2 is
such that

(10) 9̂H1,H2(ω1, ω2) = ϕ̂H1(ω1)ϕ̂
H2(ω2)χ̂(ω1 + ω2) ,

and its refinement mask and associated symbol are

(11)
bH1,H2 =

{
(a

H1,H2
α +a

H1,H2
α−e )

2 , α ∈ Z2
}
,

PH1,H2(z) = pH1(z1)pH2(z2)
1
2(1 + z1z2) ,

where aH1,H2 = {aH1
α1 aH2

α2 , α = (α1, α2) ∈ Z2} is the mask of the tensor product.

Last, due to the results in Section 2, 9H1,H2 has linearly independent integer translates
and it generates a multi-resolution analysis on L2(R2).

4. Examples

In this Section we show the refinement masks and the graphs of some refinable func-
tions constructed using the directional convolution strategy.
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We start by setting H1 = H2 = (3, h), and h ≥ 3. The refinement mask a(3,h) of the
univariate refinable functions for different values of h are listed below while the graphs
of these functions, obtained by performing five steps of the subdivision algorithm, are
shown in Figure 1.

a(3,3) = 1
23 {1, 4, 6, 4, 1}, a(3,4) = 1

24 {1, 8, 14, 8, 1},

a(3,8) = 1
28 {1, 128, 254, 128, 1}.
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Figure 1: Graphs of the functions ϕ(3,3)(−), ϕ(3,4)(−−) and ϕ(3,8)(.−)

Note that ϕ(3,3) is just the cubic B-spline with uniform knots.

The bivariate refinement masks corresponding to the tensor product refinable functions
8H1,H2 we construct from the previous functions for H1 = H2 = (3, 3) and H1 =
H2 = (3, 4) are

a(3,3),(3,3) = 1

26




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



,

a(3,4),(3,4) = 1

28




1 8 14 8 1
8 64 112 64 8

14 112 196 112 14
8 64 112 64 8
1 8 14 8 1



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while for H1 = H2 = (3, 8) the refinement mask is

a(3,8),(3,8) = 1

216




1 128 254 128 1
128 16384 32512 16384 128
254 32512 64516 32512 254
128 16384 32512 16384 128

1 128 254 128 1



.

The associated refinable functions obtained by three steps of the corresponding sub-
division algorithm are shown in Fig. 2, Fig. 3 and Fig. 4 where, for shortness, the
function8H1,H2 with H1 = H2 is denoted just as 8H1 .
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Figure 2: Graph of the function8(3,3)

Finally, the refinement mask of the convolved functions for H1 = H2 = (3, 3) and
H1 = H2 = (3, 4) are

b(3,3),(3,3) = 1

27




0 1 4 6 4 1
1 8 22 28 17 4
4 22 48 52 28 6
6 28 52 48 22 4
4 17 28 22 8 1
1 4 6 4 1 0



,

b(3,4),(3,4) = 1

29




0 1 8 14 8 1
1 16 78 120 65 8
8 78 224 260 120 14

14 120 260 224 78 8
8 65 120 78 16 1
1 8 14 8 1 0






308 C. Conti - L. Gori - F. Pitolli

0
1

2
3

4
5

6
7

0

2

4

6

8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: Graph of the function8(3,4)
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Figure 4: Graph of the function8(3,8)

and for H1 = H2 = (3, 8)

b(3,8),(3,8) = 1

217




0 1 128 254 128 1
1 256 16638 32640 16385 128

128 16638 65024 80900 32640 254
254 32640 80900 65024 16638 128
128 16385 32640 16638 256 1
1 128 254 128 1 0



,
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with corresponding graphs in Fig. 5, Fig. 6 and Fig. 7 (obtained, again, by three steps
of the corresponding subdivision algorithm).
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Figure 5: Graph of the function9 (3,3)
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Figure 6: Graph of the function9 (3,4)

Applications of the new refinable functions of type 9H1,H2 are presently under inves-
tigation.
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Figure 7: Graph of the function9 (3,8)

References

[1] CAVARETTA A.S., DAHMEN W. AND MICCHELLI C.A., Stationary subdivision,
Mem. Am. Math. Soc. 93, Amer. Math. Soc., New York 1991.

[2] CHUI C.K., Multivariate splines, CBMS-NSF Series Applied Mathematics 54,
SIAM Publications, Philadelphia 1988.
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