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Splines and Radial Functions

G. Pittaluga - L. Sacripante - E. Venturino

A COLLOCATION METHOD FOR LINEAR FOURTH ORDER
BOUNDARY VALUE PROBLEMS

Abstract. We propose and analyze a numerical method for solving fourth
order differential equations modelling two point boundary value problems.
The scheme is based on B-splines collocation. The error analysis is carried
out and convergence rates are derived.

1. Introduction

Fourth order boundary value problems are common in applied sciences, e.g. the me-
chanics of beams. For instance, the following problem is found in [3], p. 365: The
displacement u of a loaded beam of length 2L satisfies under certain assumptions the
differential equation

d? d2u
— | EI — K
ds? ( ® dsz) K

u” (-L) u” (-L) =0,
u’(L)y = u”(@L)=0.
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where E and lg denote constants.

We wish to consider a general linear problem similar to the one just presented,
namely

qe), —-L=<s=L,

Here,

(1) LU = U™ 4+ ax)U” (x) + bx)U(x) = f(x)
for 0 < x < 1, together with some suitable boundary conditions, say
) U (0) =Ug. U'(0)=Up, U'(1)=U, U (1) = Us.

Here we assume that a,b e C9[0, 1]. In principle, the method we present could be
applied also for initial value problems, with minor changes. In such case (2) could
be replaced by suitable conditions on the function and the first three derivatives of the
unknown function at the point s = 0.
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The technique we propose here is a B—spline collocation method, consisting in
finding a function uy (x)

UN(X) = a1P1(X) + a2®P2(X) + ... + an PN (X)

solving the Nx N system of linear equations

N
©) Lun(i) =) ajLdj(xi) = f(xi), 1<i<N

j=1
where X1, X2, ..., XN are N distinct points of [0,1] at which all the terms of (3) are

defined.

In the next Section the specific method is presented. Section 3 contains its error
analysis. Finally some numerical examples are given in Section 4.

2. The method

A variety of methods for the solution of the system of differential equations exist, for
instance that are based on local Taylor expansions, see e.g. [1], [2], [6], [7]. [8], [16].
These in general would however generate the solution and its derivatives only at the
nodes. For these methods then, the need would then arise to reconstruct the solution
over the whole interval. The collocation method we are about to describe avoids this
problem, as it provides immediately a formula which gives an approximation for the
solution over the entire interval where the problem is formulated.

Letus fix n, definethenh = 1/n and set N = 4n+4; we can then consider the grid
over [0, 1] given by x; = ih,i =0, ..., n. We approximate the solution of the problem
(1) as the sum of B-splines of order 8 as follows

an+4

@ Un () = ) @B (X).
i=1

Notice that the nodes needed for the construction of the B—spline are {0, 0, 0,
0,0,0,0,0,h,h,h,h,2h,2h,2h,2h,...,(n=Dh, (n—=D)h, (n—DL)h, (n—21)h, 1,1,
1,1,1,1,1,1}.

Let us now consider 6j, j = 1,..., 4, the zeros of the Legendre polynomial of
degree 4. Under the linear map

h Xi +Xi—1 . .
T = E@j + — i=1..,n j=1..4

we construct their images 7jj € [xj_1, Xj]. This is the set of collocation nodes required
by the numerical scheme. To obtain a square system for the 4n +4 unknowns «;, the 4n
collocation equations need to be supplemented by the discretized boundary conditions

).
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Letting @ = (a1, ..., aants)t, and settingfor i =1, ...,n, j=1,....4,
F = (Uoo, Uo1, f(r10), f(112), ..., T(zij), ooy F(zn3), f(Tna), U1, Uso)",
we can write
(5) Lha = [Mg +h?M, +h*MoJo = h*F

with My € ROHx(+4 'k — 0,2 4, where the index of each matrix is related to
the order of the derivative from which it stems. The system thus obtained is highly
structured, in block bidiagonal form. Indeed, for k = 0, 2, 4, fj(k) e R¥>4 j =0,1,
AN e R, j=0,1,BF eR™ j=2,...nCMeR™, j=1..n-1,
we have explicitly

i fo(k) 024 O24 O24 O24 024 Oz4 024 |
A CF 0 O © O 0 o
o B¥ c¥ o o O o o
o 0 .. O O O O O
O O O .. O o© O O O
M=l o o o BW c® o o o
... B
o o o .. o o ..B¥ c¥ o
o o O .. o o .. o B¥® AW
L O24 024 O24 ... O24 O24 ... Oz4 O224 Tl() i

Unless otherwise stated, or when without a specific size index, each block is un-
derstood to be 4 by 4. Also, to emphasize the dimension of the zero matrix we write
Om € R™Mor O n € R™N,

Specifically, for M4 we have for Tj € R?*2, j =0, 1,

(6) To=T"=[To 0] T=T"=[0 T ]
with

h 0 —7h%  7h3
() TO_[—7h3 7h3] Tl_[ 0 h4}

Furthermore for the matrix My all blocks with same name are equal to each other
and we set

c=c’=c’=..=c?

—_R®W _p®»_ _p®
n-1- B = BZ — 83 = ... = Bn .

For the remaining blocks we explicitly find

676.898959 —2556.080843  3466.638660 —1843.444245
252.6301981 —637.2153922  206.4343097 524.0024063
30.1896807 63.1159957  —181.0553956 —258.101801

0.281162 10.18023913 107.9824229 137.5436408

®) Ao=AY =
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194.1150595 59.18676730 2.650495372  0.03514515003
©) C— —329.0767906 —47.64856975  27.10012948 3.773710141
499.494486  —120.6542168 —64.5675240  31.57877478
| —664.532755  709.1160198 —385.1831009  84.61236994
[~ 84.61236994  —385.1831008 709.1160181 —664.5327536 ]
(10) B — 3157877478  —64.56752375 —120.6542173  499.4944874
3.773710141 27.1001293 —47.648570 —329.076791
| 0.03514515003 2.6504944 59.186765 194.11506
137.5436422 107.9824252 10.1802390 0.28116115
11) A; = AG _ —258.1018004 —181.0553970  63.1159965  30.18968105
-1 524.0024040 206.4343108  —637.2153932 252.6301982
—1843.444246  3466.638661 —2556.080843 676.8989596

Two main changes hold for the matrices Mz and Mg, with respect to My; the first
lies in the top and bottom corners, where TO - 7@ = 024, Jj = 0,1. They
contain then a premultiplication by diagonal coefficient matrices. Namely letting
Ao2, Ca, By, A1 2, Di € R¥4, Dj = diag(ai1, ai2, ai3, ais), with ajj = a(tij), j =
1,2,3,4,i=1,2,...,n, we have

AY = DiAc2, AP = DnAr,

c? =DiCp i=1,2,..,n-1
B =DiBy, i=2,3,...,n
where
2030827273 —47.68275514  9.072282826  7.792345494
AL, _ | 567012435 262408902  —8.50204661 —6.772789016
02= | 016439223  1.339974467  3.602756629  1.87349900
0.00006780  0.004406270526 0.1127212947  1.392658748
© 1450129518 0.05858914701 0.001126911401 0.847135355310~5 ]
C,— | 4030410011 2533012603  0.3966407043 0.02054903207
2= | _065002448 —0.812682181  2.782318888 0.7087655468
407133215  —8.31463385  —0.93008649 3.663534093
r 3.663534003 ~0.9300864851 —8.314633880 4.071332233 ]
B, _ 0.7087655468 2782318883  —0.812682182 —9.659024508
2= 0.02054903207 0.396640665 2.53301254 4.0304199
| 0.847135355310~5  0.00112689 0.0585890 1.4501302
1.302658814  0.112721477  0.00440599  0.000067777
A, _ | 1873498986 3602756584 133007443  0.164302258
L2=1 _g 772789012 —8.502046610 2.62408899  5.670124369
7.792345496  9.072282833  —47.68275513 29.30827274



A collocation method 363

Similarly, for Ag 0, Co, Bo, A1,0, Ei € R4, Ei = diag(bi1, bi2, biz, bis), with
bij =b(zij), j=1,2,3,4,i=1,2,...,n, we have

AY = E1Ac0, AP = EnArg

C® =EiCo, i=12,..,n-1
B® = EiBo, i =2.3,....,n
with

0.604278729  0.3156064435 0.07064438205  0.008784901454
Ao — 0.060601115  0.2089471273 0.3087560066 0.2534672883
0.0 =1 0.000426270 0.006057945090 0.03689680420 0.1248474545
0.1010~7 0.7425933886 10~® 0.00002933256459 0.0006554638258

0.0006703169101 0.00001503946986 0.1853647586 106 0.9723461945 102

Co= 0.1448636180 0.02163722179  0.001674337031  0.00005328376522
0.4676572160 0.2815769859  0.07496220012 0.007575139336
0.1985435495 0.4197299375 0.3055061349 0.07553484124

0.07553484124 0.3055061345 0.4197299367 0.1985435448

By — 0.007575139336  0.07496219992 0.2815769862 0.4676572138
0= ] 0.00005328376522 0.00167433770 0.0216372202  0.144863633
0.9723461945102  0.183610°° 0.000015047 0.00067030

0.00065546187  0.00002934342  0.72976 10~ 0.7810°8
0.1248474495  0.03689679808 0.00605794290 0.0004262700
0.2534672892  0.3087560073  0.2089471283  0.0606011146

0.00878490146 0.07064438202 0.3156064438 0.6042787300

Ao =

In the next Section also some more information on some of the above matrices will
be needed, specifically we have

| A1ll2 = aj = 0.0321095,
(12) IB=1))2 = b} = 0.1022680,
p(B™1) = b} = 0.0069201.
3. Error analysis
We begin by stating two Lemmas which will be needed in what follows.

LEMMA 1. The spectral radius of any permutation matrix P is p(P) = 1 and
IPll2 = 1.
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Proof. Indeed notice that it is a unitary matrix, as it is easily verified that P~ = P* =
P, or that P*P = I, giving the second claim. Moreover, since p(P*) = p(P~1) =
p(P) = p(P)~1, we find p2(P) = 1, i.e. the first claim.

O

LEMMA 2. Let us introduce the auxiliary diagonal matrix of suitable dimension
Am =diag (1,671,872, ...,81~™) choosing § < 1 arbitrarily small. We can consider
also the vector norm defined by ||x ||, = || Ax]|2 together with the induced matrix norm
[|All«. Then, denoting by p(A) = maXi<i<n |Ai(A)| the spectral radius of the matrix A,

where Ai(A), i = 1(1)n represent its eigenvalues, we have
1Al < p(A)+0@), A7 2 =1.

Proof. The first claim is a restatement of Theorem 3, [9] p. 13. The second one is
immediate from the definition of A.
([l

Let yn be the unique B-spline of order 8 interpolating to the solution U of problem
(). If f e C*([0, 1]) then U e C8(J0, 1]) and from standard results, [4], [15] we have

(13) IDI(U — yn)lloo < ¢jh®T, j=0,....7.
We set

4n+4
(14) yNO) = Y BB ().

j=1

The function un has coefficients that are obtained by solving (5); we define the
function G as the function obtained by applying the very same operator of (5) to the
spline yn, namely

(15) G =h"*LnB =h"*[Ms +h?Mz + h*Mo]8.

Thus G differs from F in that it is obtained by a different combination of the very same
B-splines.

Let us introduce the discrepancy vector oij = G(tij) — F(7ij), i = 1(D)n, j =
1(1)4 and the error vector e = 8 —«, with componentse; = i —«j, i = 1,...,4n+4.
Subtraction of (5), from (15) leads to
(16) [Ms +h2M; + h*Mgle = h*o.

We consider at first the dominant systems arising from (5), (15), i.e.
(17) Msa = h*F, M4B = h*G.

Subtraction of these equations gives the dominant equation corresponding to (16),
namely

(18) Msé = h's, &=a-—§.
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Notice first of all, that in view of the definition of G and of the fact that yy inter-
polates on the exact data of the function, the boundary conditions are the same both for
(5) and (15). Hence o1 = 02 = 04n+3 = o4n+4 = 0. In view of the triangular structure
of Tp and Ty, it follows then that €1 = &, = €4n4+3 = €an4+4 = 0, a remark which will
be confirmed more formally later.

We define the following block matrix, corresponding to block elimination per-
formed in a peculiar fashion, so as to annihilate all but the first and last element of
the second block row of My

I> 02,4 02’4 02,4 0_2,4 02,4 02’4 (O] T
Os2 1o Q Q% .. Q72 .. Q"% Q"1 04,
} Os2 O I4 o .. o .. o 0 O4.2
R=
Os2 O @] o .. o .. Iy O O4.2
Os2 O 0] o .. (0] 0] lg O
O2 024 O24 O24 ... O24 .. O24 024 2
where Q = —CB~1. Recall once more our convention for which the indices of the

identity and of the zero matrix denote their respective dimensions and when omitted
each block is understood to be 4 by 4. Introduce the block diagonal matrix Al =
diag(lsan, Al_l). Observe then that RMs A~ = Mg, with

To O24 O24 O24 O24 024 O24
A, O O O o o Qi
(0] B C O 0] (0] O
~ (0] O B C O (0] O
My =
O 0] O 0] B C O
O 0] O o .. O B Ig
| 024 024 Oz4 Op4 .. Ops Ozs TiATT

Let us consider now the singular value decomposition of the matrix Q, Q =
V AU*, [12]. Here A = diag(A1, A2, A3, A4) is the diagonal matrix of the singular
values of Q, ordered from the largest to the smallest. Now, premultiplication of M4 by
S =diag(lz, V*, lan—2) and then by the block permutation matrix

I O24 O24n—4 O22
B _ Oa.2 l4 Os4n-4  Oas2
02,2 024 O24n-4 I2

Oan—42 Oan-a4  lan-a  Oun-s2
followed by postmultiplication by § = diag(l4n, U) and then by

. I4 ) O4,4n-4
P=| Osn-4a4 Om-44 lan-a
o l4 Os,4n-4
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gives the block matrix

- _[E Osuna
(19) E _[ 0 5 }
Here
5 To 024
(20) E=| V*Ay AN1
024 TlAl_lU
and
~ _ | O4an-s84s Oan-sas
(21) L_[ Ou U }
as well as
B C O O O O ]
O B C O O O
(22) g _ O O B C O O
O O 0O O B C
O O OO O B

It is then easily seen that

- e Ele O

In summary, we have obtained E = PSRMsA~1SP. It then follows My =
R-1S-1PEPS-LA, and in view of Lemma 1, system (18) becomes
(24) EPS1Aé = h*PSRo.
To estimate the norm of E~1 exploiting its triangular structure (19), we concen-
trate at first on (20). Recalling the earlier remark on the boundary data, we
can partition the error from (16) and the discrepancy vectors as follows: & =
(61, 62, &, €c, 6b, Bant3, €anta)', €, 6, € R% €, e R4 Define also eqyt =
(6, €b) T, Bout = (0,0, €y, 0,0)T, & = (e1, €2, 6T, € = (€b, €an3, €anta) .

Now introduce the projections Iy, [T corresponding to the top and bottom por-
tions of the matrix (19). Explicitly, they are given by the following matrices

(25) My =[lg Ogan-sa] TM2=[Osn-sg lan—s].

Consider now the left hand side of the system (24). It can be rewritten in the
following fashion

(26) nléﬁé—lAézéﬁé—lAézé[ B ]
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The matrix in its right hand side Z = IT1 P SR instead becomes

(27)
l» O24 O24 .. 02,_4 024 024 (0]}
Z = Os2 V* V*Q .. V*QI=2 .. v*Q"? v*Q"™! 04,
02 024 O24 .. 024 O2.4 024 I>

From (26) using (20), we find

~ & Toet
(28) E [ U AtleAb } = | V*Aod + AU A6
T1€p

€1 ]
oz )

= V*Agé: + AN TU* A6y

e
L €an+4

—96.42249156  409.2312351 /\rf_l 0

—162.6192900 738.3915192 0 Ag_l
264.5383512 —1216.139747 O 0 '
645.9124120 —2179.906392 0 0

Introduce now the following matrix

where the first two columns are the last two columns of V*Ag. The matrix of the
system can then be written as

. To 024 O2 | 0
E=R'Ri| Yo H Y1 [4 4}

04 U*A
O2 O24 T 4 !
I2 024
To 02,4 02 WA
=R Yo AU+Ny) Yp [P Oz24  [U*Al12 = R;'APTPS,
2 02,4
02 02,4 T1

024 [U*A1]34

where we introduced the permutation P exchanging the first two with the last two
columns of the matrix H, its inverse producing a similar operation on the rows of the
matrix to its right; we have denoted the first two rows of such matrix by [U*A1]1.2
and a similar notation has been used on the last two. Rj denotes the 8 by 8 matrix
corresponding to the elementary row operation zeroing out the element (4, 2) of H, i.e.
the element (6, 4) of E. Thus Ry H Py is upper triangular, with main diagonal given by

=diagW] 5 A0t r,s), A1 = 5179.993642 > 1, A, = 11.40188637 > 1. It can

then be written then as R1H Py = A(l + Np), with Ny upper triangular and nilpotent.
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The inverse of the above matrix A is then explicitly given by

) TO_l 024 (0]}
A= 15700+ NDPA Y (1 + NpDTTATE TN 4+ NpRATTY,
02 O24 Tl_l

where N; denotes a nilpotent upper triangular matrix.

From (20) and the discussion on the boundary conditions the top portion of this
system gives for the right hand side h*Zo = h*[0, 0, o¢, 0, 0]". Thus from A~1Zo
gives immediately 1 = €2 = ean+3 = €anya = 0 as claimed less formally earlier. The
top part of the dominant system then simplifies by removing the two top and bottom
equations, as well as the corresponding null components of the error and right hand
side vectors. Introduce also the projection matrix I13 = diag(02, l4, 02), where Oy,
denotes the null vector of dimension m. We then obtain

Bout = M3bout = h*TI3A1Zoe = h*T13SPPT(1 + N1)"*A~1R; M1 PSRo¢

from which letting AT = max()&_”, A%‘”, r—1, s = max(r—1,s71), the estimate
follows using Lemmas 1 and 2

leoutlls < h*ITIalISHIP 1P + NI ATH,
IRl T PSAATIRAA o],

h*AT (@ + 0 ) *[0(S) + O®)I[p(Ry) + O@®]|

(29) M1PSA|LIATIRAL A ol

h*AT 1+ 0@) M PSAILLI( + Rl AA ™ oc]l2

h*AT (1 + 0(8)" M1 PSAl«+/4n — 4]loc]loo

IA

IATA

as Ry is upper triangular and nilpotent. Now observe that the product PSA =
diag(D1, V*D2, D3, Ds), where each block is as follows

D; diag(L, 671, Dz =diag(s™2,873,87%,67°),
D; = diags 2,67, Ds=diags 1 ...,6743 576 5.

It follows that TT1 PSA = diag(D1, V*Dy, D3, Oan_4). Hence

ITTPSAansalls = [llidiag(lz, V*, 1) diag(D1, D2, D3)l|x
< |diag(l2, V*, o) l«||[diag(D1, D2, D3)|l«
(30) < [pWiag(l2, V¥, 12)) + O(®](L + 0(5)) < (1 + 0(8))?

since for the diagonal matrix p[diag(D1, D2, D3)] = 1 and from Lemma 1 p(V*) =
1, the matrix V being unitary. But also,

4
A 2 A 2 a 23 202i—8 A 2
18outll = | Aaout |3 = &5y AT80ut = Y _ €767 8 > [18outll%,
i=1
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i.e. |l€outllx = ll€outllco- IN sSummary combining (29) with (30) we have

N 7 7
lEoutlloe < 22271+ 0(8)°lloclloo < h220T (1 4 0(8) lloclloo
7
(31) = hzpllofle

which can be restated also as h || Eeout lloo > [;7h%]—1||eout||oo i.e. from Thm. 4.7 of
[10], p. 88, the estimate on the inverse follows

=_q 1
IE™ lloo < nn2.

Looking now at the remaining part of (18) with the bottom portion matrix of E,
see (19), we can rewrite it as B8c = oc — L&gyt. We have B = EB, with B =
diag(B,...,B)and

Il -Q 0 O O O
O 1l -Q 0O .. 0 O
32) ce_|0 o 1 -Q . o0 o0
O 0 0 O .. 1 -Q
O 0O 0 O ..O0 1

and thus B~1 = B~1E~L. Notice that E~! is a block upper triangular matrix, with
the block main diagonal containing only identity matrices, it can then be written as
E~1 = l4n_s + Ug, Ug being nilpotent (i.e. block upper triangular with zeros on the
main diagonal). Thus Lemma 2 can be applied once more. The system can then be
solved to give

&= BE"h*o — Léou].

Premultiplying this system by A~1 and taking norms, we obtain using (29),
la™ %l <hAT BT E o s + AT BT E ! Léout I«
<h*AATIBTEE Yo 2 + 1AL IB T LI E T U Bout I«
<h*IBTH20E o ll2 + [p(B™Y) + O@)I[L + OGOV 1«1 8out I«
<h*IB L 2v/an — 4IE Yol + p(B~H[L+ O(8)Pyh?
< h*b52V/AIE ollolloo + p(B DL + O@)Inhllo o
< hZ2bjel [lofloo + b3[L + O®)InhZ ol
(33) <h? [2bjer, +b3[1+ O®)1n] lollee = h? pllolloo -
On the other hand
A 8l = 1AM Ecll2 = [1Bell2 = 1Eclloo-

In summary, by recalling (12) and since ||[E ~1||s = e}, = 72.4679

~ _7
[€clloo = N 2o lco-
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Together with the former estimate (31) on ||€out |0, We then have
~ _z
[€lc < vN7 2|0 |lc0s

which implies, once again from Thm. 4.7 of ([20]), h—*|[Ms&llsc = v=2n"2[|&]lc0, i.e.
in summary we can state the result formally as follows.

THEOREM 1. The matrix My is nonsingular. The norm of its inverse matrix is
given by

(34) IM; oo < vn2.

Now, upon premultiplication of (16) by the inverse of My, letting N = M4‘1(M2 +
hZMp), we have
(35) e=h*1 +h2N)"Im, Lo

As the matrices M2 and Mg have entries which are bounded above, since they are built
using the coefficients a and b, which are continuous functions on [0, 1], i.e. themselves
bounded above, Banach’s lemma, [12] p. 431, taking h sufficiently small, allows an
estimate of the solution as follows.

h4V||O—||oon% _7
_— < yn 2 s
1—h2[Njw =V llolloo
having applied the previous estimate (34). Observe that

(36) lelloo < h*I(1 +h2N) "o IM; sl lloe <

an+4
lun = Ynlloo < llellec max >~ Bi(x) < Olleflco-
0<x<1 o

Applying again (13) to o, using the definition (5) of Ly, we findforl <k <n, j =
1(1)4, by the continuity of the functions F, G
(37) loaktj | = h*|G(wk ) — F(mic )| < & jh*.

It follows then [|o |lc < ¢h* and from (36), Jlellce < yhl_zs. Taking into account this
result, use now the triangular inequality as follows

15 15
U —Unlloo < IU — YNlloo + IyN — UNTlos < Coh® +7nyhZ <c*h?2

in view of (13) and (36). Hence, recalling that N = 4n + 4, we complete the error
analysis, stating in summary the convergence result as follows

THEOREM 2. If f € C*([0, 1]), so that U e C8([0, 1]) then the proposed B-spline
collocation method (5) converges to the solution of (1) in the Chebyshev norm; the
convergence rate is given by
(38) IU —unllso < ¢*N" .

REMARK 1. The estimates we have obtained are not sharp and in principle could
be improved.
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4. Examples

We have tested the proposed method on several problems. In the Figures we provide
the results of the following examples. They contain the semilogarithmic plots of the
error, in all cases for n = 4, i.e. h = .25. In other words, they provide the number of
correct significant digits in the solution.

ExAMPLE 1. We consider the equation
y@ —3y@ _ 4y = 4cosh(l),
with solution y = cosh(2x — 1) — cosh(1).

EXAMPLE 2. Next we consider the equation with the same operator L but with
different, variable right hand side

y@ —3y® — 4y = —6exp(—x),
with solution y = exp(—x).
ExamPLE 3. Finally we consider the variable coefficient equation

24 2X sin(x)
X+3)° (x+3)°% x+3’

y@ —xy@ +ysin) =

with solution y = ;2.
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Figure 1: Semilogarithmic graph of the relative error for Example 1.
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Figure 2: Semilogarithmic graph of the relative error for Example 2.
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Figure 3: Semilogarithmic graph of the relative error for Example 3.
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