G.H. Hakobyan

ESTIMATES OF THE HIGHER ORDER DERIVATIVES OF THE SOLUTIONS OF HYPOELLIPTIC EQUATIONS

Abstract

In this work we establish a connection between the behaviour of the higher order derivatives of the solutions of the hypoelliptic equation $P(D) u=f$ and the estimates of the derivatives of $f(x)$ in terms of multianisotropic Gevrey classes.

1. Introduction

The Gevrey classes play an important role in the theory of linear partial differential equations as intermediate spaces between the C^{∞} and the analytic functions. In particular, whenever the properties of an operator differ in the C^{∞} and in the analytic framework, it is natural to test its behaviour in the classes of the Gevrey functions and distributions. As a matter of facts, that weak solutions of the equation $P(D) u=f$ belong to C^{∞}, in particular to Gevrey classes, is important for the application of variational methods to the differential equation. A complete description of linear differential equations with constant coefficients having only C^{∞} solutions for all infinitely differentiable right-hand sides has been given by L. Hörmander [8]. Equations of this type are called hypoelliptic.

It is well known (cf. [8], Chapter 11) that the regularity of the solutions of the hypoelliptic equation $P(D) u=f$ is determined by the behaviour of the function $d_{P}(\xi)$ as $\xi \rightarrow \infty$, where $d_{P}(\xi)$ is the distance from the point $\xi \in \mathbb{R}^{n}$ to the surface $\{\zeta: \zeta \in$ $\left.\mathbb{C}^{n}, P(\zeta)=0\right\}$.

The behaviour of the function $d_{P}(\xi)$ at infinity is related to many properties of the solutions of an hypoelliptic equation $P(D) u=0$, in particular it belongs to the Gevrey class $G^{\lambda}(\Omega)$, where $\lambda \in \mathbb{R}^{n}$ is determinated by the growth of the function $d_{P}(\xi)$ if $\xi \in \mathbb{R}^{n}$ and $|\xi|$ is sufficiently large (cf. [8], Theorem 11.4.1) (for the definition of the Gevrey classes $G^{\lambda}(\Omega)$, see for example [8] Def. 11.4.11).
V. Grushin [3, 4] proved that if $P(D)$ is an hypoelliptic operator with index of hypoelliplticity equal to λ, then all the solutions of the nonhomogeneous equation $P(D) u=f$ belong to $G^{\lambda}(\Omega)$ if $f \in G^{\lambda}(\Omega)$.

In [2] L. Cattabriga derived for an hypoelliptic operator $P(D)$ the algebraic conditions ensuring that the map $P(D): G^{\lambda}\left(\mathbb{R}^{n}\right) \mapsto G^{\lambda}\left(\mathbb{R}^{n}\right)$ is an isomorphism. Such hypoelliptic operators are called G^{λ}-hypoelliptic operators. The G^{λ}-hypoelliptic operators have been studied by many authors: L.R.Volevich, B.Pini, L.Rodino, L.Zanghirati and others. Detailed references for G^{λ}-hypoelliptic operators can be found in the books

L. Rodino [12, 1].

G.Ghazaryan [9] introduced some functional characteristics, called weight of hypoellipticity, which coincides with the function $h(\xi)=|\xi|$ in the elliptic case and is specified in the general case. Moreover, more fine estimates of higher order derivatives of the solutions of an hypoelliptic equation $P(D) u=0$ are obtained.

After introducing in [5] the concept of multianisotropic Gevrey classes, it became possible to improve the above mentioned results and formulate a general theorem, establishing the relationship between the growth of the derivatives of the solutions of the hypoelliptic equation $P(D) u=f$ and the growth of the function f. We shall prove:

THEOREM 1. Let $f \in G^{B}(\Omega)$. Then any solution of the hypoelliptic equation $P(D) u=f$ belongs to $G^{B \cap A_{P}}(\Omega)$.

For a convex set $B, G^{B}(\Omega)$ is the associated multianisotropic Gevrey class, and the set A_{P} is determined by the hypoelliptic operator $P(D)$.

2. Definitions and notations

Let $P(D)=\sum_{\alpha} \gamma_{\alpha} D^{\alpha}$ be a linear differential operator with constant coefficients, and let $P(\xi)$ be its characteristic polynomial. Here the sum goes over a finite set $(P)=$ $\left\{\alpha: \alpha \in \mathbb{N}_{0}^{n}, \gamma_{\alpha} \neq 0\right\}$, where $\mathbb{N}_{0}^{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right): \alpha_{i} \in \mathbb{N}_{0}, i=1, \ldots, n\right\}$ is the set of n-dimensional multi-indices.

We denote:

$$
\begin{aligned}
& \mathbb{R}_{0}^{n}=\left\{\xi \in \mathbb{R}^{n}: \xi_{1} \ldots \xi_{n} \neq 0\right\} \\
& \mathbb{R}_{+}^{n}=\left\{\xi \in \mathbb{R}^{n}: \xi_{j} \geq 0, j=1, \ldots n\right\}
\end{aligned}
$$

Let $A=\left\{v^{k} \in \mathbb{R}_{+}^{n}, k=0, \ldots, m\right\}$.
DEFINITION 1. The characteristic polyhedron (or Newton polyhedron) (C.P.) $\mathcal{N}(A)$ of the set A is defined to be the smallest convex polyhedron in \mathbb{R}_{+}^{n} containing all the points $A \cup\{0\}$. The characteristic polyhedron (or Newton polyhedron) (C.P.) $\mathcal{N}=\mathcal{N}(P)$ of a polynomial $P(\xi)$ (or of a operator $P(D)$) is defined to be the smallest convex polyhedron in \mathbb{R}_{+}^{n} containing all the points $(P) \cup\{0\}$.

DEFINITION 2. A polyhedron \mathcal{N} is said to be completely regular (C.R.) if:
a) \mathcal{N} has vertices at the origin and on all the coordinate axes of \mathbb{N}_{0}^{n} different from the origin.
b) all the coordinates of the exterior normals to the non-coordinate $(n-1)$-dimensional faces \mathcal{N} are strictly positive.

It is well known that if $P(D)$ is an hypoelliptic operator, then C.P. of $P(D)$ is a C.R.

Let $h(\xi)=\sum_{k=0}^{m}|\xi|^{\nu^{k}}$, where $\nu^{0}=0, \nu^{k} \in \mathbb{R}_{+}^{n},|\xi|^{\nu^{k}}=\left|\xi_{1}\right|^{\nu_{1}^{k}} \cdot \ldots \cdot\left|\xi_{n}\right|^{\nu_{n}^{k}}$, and
$A_{h}=\left\{\nu^{k}\right\}_{k=0}^{m}$.
DEFINITION 3. (cf. [9]) A function $h(\xi)$ is called weight of hypoellipticity of the polynomial $P(\xi)$ (or of the operator $P(D)$) if there exists a constant $C>0$ such that:

$$
\begin{equation*}
F_{P}(\xi)=\sum_{\alpha \neq 0}\left(\frac{\left|D^{\alpha} P(\xi)\right|}{|P(\xi)|+1}\right)^{\frac{1}{\alpha \alpha}} \leq \frac{C}{h(\xi)}, \quad \forall \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

DEFINITION 4. A weight of hypoellipticity of the operator $P(D)$ is called exact weight of hypoellipticity of the operator $P(D)$ if for any $v \in \mathbb{R}_{+}^{n} \backslash \mathcal{N}\left(A_{h}\right)$:

$$
\sup _{\xi}\left|\xi^{\nu}\right| F_{P}(\xi)=+\infty
$$

By Lemma 11.1.4 of [8], for any weight of hypoellipticity of the operator $P(D)$, there exists a constant $C>0$ such that:

$$
\begin{equation*}
h(\xi) \leq C \cdot\left(1+d_{P}(\xi)\right), \quad \forall \xi \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

We denote by Λ^{n-1} the set of the exterior normals λ (relative to $\mathcal{N}(P)$) of the noncoordinate $(n-1)$ - dimensional faces $\mathcal{N}(P)$, for which $\min _{1 \leq i \leq n} \lambda_{i}=1$.

We set:

$$
\begin{aligned}
\mathcal{M}_{P} & =\left\{v: v \in \mathbb{R}_{+}^{n}, \sup _{\xi}\left|\xi^{v}\right| \cdot F_{P}(\xi)<\infty\right\}, \\
E(\mathcal{N}(P)) & =\left\{v \in \mathbb{R}_{+}^{n},(v, \lambda) \leq 1, \forall \lambda \in \Lambda^{n-1}\right\}
\end{aligned}
$$

It is well known (cf. [9], Lemma 3.5), that for any hypoelliptic operator $P(D)$ the set \mathcal{M}_{P} is included in $E(\mathcal{N}(P))$.

Lemma 1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded set, $P(D)$ be an hypoelliptic operator and $h(\xi)$ be a weight of hypoellipticity of the operator $P(D)$. Then there exists a constant $C>0$ such that for any function $V \in C_{0}^{\infty}(\Omega)$, any $\varepsilon \in(0,1)$ and any natural number l the following estimate is satisfied:

$$
\begin{aligned}
& \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(\xi)(\varepsilon h(\xi))^{l} F(V)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \leq \\
& C \sum_{\alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(\xi)(\varepsilon h(\xi))^{l-1} F(V)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2},
\end{aligned}
$$

where $F(V)$ is the Fourier transform of the function $V(x)$.
This lemma can be proved similary to Lemma 11.1.4 of [8] using the estimates (2).
For a bounded set $\Omega \subset \mathbb{R}^{n}$ and for $\varepsilon>0$, we denote $\Omega_{\varepsilon}=\{x: x \in \Omega, \rho(x, \partial \Omega)>\varepsilon\}$, where ρ is a distance in \mathbb{R}^{n}. Let $\delta \in(0,1]$, r be a natural number, $B=\{x: x \in$
$\left.\mathbb{R}^{n},\|x\|<1\right\}$ and $\varphi(x) \geq 0$ a function such that $\varphi \in C_{0}^{\infty}(B), \int \varphi(x) d x=1$. Denote by $\varphi_{r}^{\delta}(x)=\chi_{\Omega_{r \cdot \delta-\frac{\delta}{2}}} * \varphi^{\frac{\delta}{2}}(x)$, where for any $\varepsilon>0, \varphi^{\varepsilon}(x)=\varepsilon^{-n} \cdot \varphi\left(\frac{x}{\varepsilon}\right)$ and $\chi_{\Omega_{\varepsilon}}(x)$ is the characteristic function of the set Ω_{ε}.

Lemma 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded set, l be a natural number. Then there exists a constant $C_{l}=C_{l}(\Omega)>0$ such that:

$$
\sup _{x \in \Omega}\left|D^{\alpha} \varphi_{j}^{\varepsilon}\right| \leq C_{l} \cdot \varepsilon^{-|\alpha|}, \quad|\alpha| \leq l, \quad j=1,2, \ldots
$$

The proof easily follows from the following computations:

$$
\begin{aligned}
\left|D^{\alpha} \varphi_{j}^{\varepsilon}(x)\right| & =\left|\int \chi_{\Omega_{j \varepsilon-\frac{\varepsilon}{2}}}(y) \cdot D^{\alpha} \varphi^{\frac{\varepsilon}{2}}(x-y) d y\right| \\
& =\left|\left(\frac{\varepsilon}{2}\right)^{-|\alpha|} \int_{\Omega_{j \varepsilon-\frac{\varepsilon}{2}}}\left(D^{\alpha} \varphi\right)^{\frac{\varepsilon}{2}}(x-y) d y\right| \\
& \left.\leq\left(\frac{\varepsilon}{2}\right)^{-|\alpha|} \int\left|D^{\alpha} \varphi(y)\right| d y \right\rvert\, \leq C_{l} \varepsilon^{-|\alpha|}
\end{aligned}
$$

where $C_{l}=\max _{|\alpha| \leq l} 2^{-|\alpha|} \int\left|D^{\alpha} \varphi(y)\right| d y$.
Let $\lambda^{j} \in \mathbb{R}_{+}^{n} \quad(j=1, \ldots, k)$ be vectors with rational coordinates, for which $\min _{1 \leq l \leq n} \lambda_{l}^{j}=1$, and $d_{j} \quad\left(0<d_{j} \leq 1, j=1, \ldots, k\right)$ be rational numbers such that the set $A_{P}=\left\{v \in \mathbb{R}_{+}^{n}:\left(v, \lambda^{i}\right) \leq d_{i}, \quad i=1, \ldots, k\right\} \subset \mathcal{M}_{P}$ is C.R.. We denote by A_{P}^{0} the set of the vertices of the polyhedron A_{P}.

We let $h_{A_{P}}(\xi)=\sum_{\nu \in A_{P}^{0}}|\xi|^{k}$.
Lemma 3. Let $P(D)$ be an hypoelliptic operator (ord $P=m$), l be a natural number. Then there exists a constant $C>0$ such that for any $\varepsilon \in(0,1), \beta \in l A_{P} \cap \mathbb{N}_{0}^{n}$ and any function $u \in C^{\infty}(\Omega)$ the following estimate is satisfied:
(3)

$$
\begin{array}{r}
\varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|D^{\beta} P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \leq C \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon \cdot(j-1)}\right)}^{2} \\
\quad+C \sum_{i=1}^{l} \sum_{|\beta| \leq(i-1) m, \beta \in \mathbb{N}_{0}^{n}}\left\|\left(\varepsilon \cdot h_{A_{P}}(\xi)\right)^{l-i} \cdot \varepsilon^{|\beta|} F\left(D^{\beta} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(R^{n}\right)}^{2} \\
j=1,2, \ldots
\end{array}
$$

where $\omega \subset \subset \Omega$.
Proof. For some constant $C>0$ and for any $\beta \in l \cdot A_{P} \cap \mathbb{N}_{0}^{n}$ we have $|\xi|^{\beta} \leq$
$C h_{A_{P}}^{l}(\xi), \forall \xi \in \mathbb{R}^{n}$. Then by Parceval equality there is a constant $C_{1}>0$ such that:

$$
\begin{aligned}
& \varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|D^{\beta} P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \\
& \quad \leq \varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|D^{\beta} P^{(\alpha)}(D)\left(u \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad=\varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|\xi^{\beta} P^{(\alpha)}(\xi) F\left(u \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad \leq C_{1} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|} \|\left(\varepsilon \cdot h_{\left.A_{P}(\xi)\right)^{l} P^{(\alpha)}(\xi) F\left(u \varphi_{j}^{\varepsilon}\right) \|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}} .\right.
\end{aligned}
$$

By Lemma 1 there is a constant $C_{2}>0$ such that:

$$
\begin{align*}
& \varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|D^{\beta} P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \\
& \quad \leq C_{2} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|\left(\varepsilon \cdot h_{A_{P}}(\xi)\right)^{l-1} P^{(\alpha)}(\xi) F\left(u \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \tag{4}\\
& \quad+C_{2}\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} P(\xi) F\left(u \cdot \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{align*}
$$

By Newton-Leibniz formula, we can estimate the second term of the right hand side of (4) for a constant $C_{3}>0$:

$$
\begin{aligned}
& \left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} P(\xi) F\left(u \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \leq\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} F\left(\varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& +C_{3} \sum_{0 \neq \alpha}\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} F\left(P^{(\alpha)}(D) u\left(D^{\alpha} \varphi_{j}^{\varepsilon}\right)\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\|\left(\varepsilon h_{\left.A_{P}(\xi)\right)^{l-1} F\left(\varphi_{j}^{\varepsilon} P(D) u\right) \|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}}^{+C_{3} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} F\left(P^{(\alpha)}(D) u \varepsilon^{|\alpha|} D^{\alpha} \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}}\right. \\
& \leq \|\left(\varepsilon h_{\left.A_{P}(\xi)\right)^{l-1} F\left(\varphi_{j}^{\varepsilon} P(D) u\right) \|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}}^{+C_{3} \sum_{\alpha \neq 0|\beta| \leq m,} \sum_{0 \neq \beta \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} F\left(P^{(\alpha)}(D) u \varepsilon|\beta| D^{\beta} \varphi_{j}^{\varepsilon}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}} .\right.
\end{aligned}
$$

By the estimate (4) there is a constant $C_{4}>0$ such that:

$$
\begin{aligned}
& \varepsilon^{2 l} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|D^{\beta} P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \\
& \quad \leq C_{4} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|} \sum_{|\beta| \leq m}\left\|\left(\varepsilon h_{A_{P}}(\xi)\right)^{l-1} P^{(\alpha)}(\xi) \varepsilon^{|\beta|} F\left(D^{\beta} \varphi_{j}^{\varepsilon} u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad+C_{4} \cdot\left\|\left(\varepsilon \cdot h_{A_{P}}(\xi)\right)^{l-1} F\left(\varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{aligned}
$$

Going on analogously as above, since $\operatorname{supp} \varphi_{j}^{\varepsilon} \subset \omega_{\varepsilon \cdot(j-1)}$ at step $(l-1)$, then we obtain the estimate (3).

We denote by s the smallest natural number such that $s \cdot A_{P}^{0} \subset \mathbb{N}_{0}^{n}$; and for any multi-index $\alpha \in s \cdot A_{P}^{0}$, there is $\beta \in \mathbb{N}_{0}^{n}$ such that $\alpha=2 \cdot \beta$. We set $Q_{P}(\xi)=\sum_{\beta \in s A_{P}^{0}} \xi^{\beta}, q(\xi)=|Q(\xi)|^{\frac{1}{s}}$. Let $Q_{P}(D)$ be a differential operator, and $Q_{P}(\xi)$ its corresponding polynomial. In Lemma 3 we can take $q(\xi)$ in place of $h_{A_{P}}(\xi)$.

Lemma 4. Let $P(D)$ be an hypoelliptic operator (ordP=m). Then there is a constant $C>0$ such that, for any $\varepsilon \in(0,1)$, and any function $u \in C^{\infty}(\Omega)$ the following estimate is satisfied:

$$
\begin{align*}
& \varepsilon^{2 s} \cdot \sum_{0 \neq \alpha \in N_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|Q_{P}(D) P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \\
& \quad \leq C \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon(j-1)}\right)}^{2} \tag{5}\\
& \quad+C \cdot \sum_{i=1}^{s} \sum_{|\beta| \leq(i-1) \cdot m, \beta \in \mathbb{N}_{0}^{n}}\left\|(\varepsilon \cdot q(\xi))^{s-i} \cdot \varepsilon^{|\beta|} F\left(D^{\beta} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}, \\
& \quad j=1,2, \ldots
\end{align*}
$$

where $\omega \subset \subset \Omega$.
The proof follows from Lemma 3 and the definition of the polynomial $Q_{P}(\xi)$.
Lemma 5. For any couple of multi-indeces β, α such that $\beta \in s A_{P}$ and $\alpha \in$ $j A_{P} \backslash(j-1) A_{P}, \beta \geq \alpha\left(j \in \mathbb{N}_{0}^{1}, j \leq s\right)$, we have $|\beta-\alpha| \leq s-j$.

Proof. We prove it by contradiction. Let's suppose there are two multiindeces $\beta \in$ $s A_{P}$ and $\alpha \in j A_{P} \backslash(j-1) A_{P}, \beta \geq \alpha$ such that $|\beta-\alpha| \geq s-j+1$. Since $\alpha \notin(j-1) A_{P}$, then from the definition of the set A_{P}, it follows that there exists an
index $i_{0}: 1 \leq i_{0} \leq k$ such that $\left(\alpha, \lambda^{i_{0}}\right)>d_{i_{0}}(j-1)$. As $\min _{1 \leq j \leq n} \lambda_{j}^{i_{0}}=1,0<d_{i_{0}} \leq 1$, then $\left(\beta, \lambda^{i_{0}}\right)=\left(\beta-\alpha, \lambda^{i_{0}}\right)+\left(\alpha, \lambda^{i_{0}}\right) \geq|\beta-\alpha|+\left(\alpha, \lambda^{i_{0}}\right)>s-j+1+(j-1) d_{i_{0}} \geq s d_{i_{0}}$, i.e. $\beta \notin s A_{P} \cap \mathbb{N}_{0}^{n}$.

Lemma 6. Let $P(D)$ be an hypoelliptic operator $($ ord $P=m$), j be a natural number. Then there is a constant $C>0$ for which the following estimate is satisfied:
(6)

$$
\begin{aligned}
& \varepsilon^{2 s} \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|Q_{P}(D) P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \\
& \quad \leq C \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon}(j-1)\right)}^{2} \\
& \quad+C \cdot \sum_{r=0}^{s} \sum_{\beta \in\left(r A_{P} \backslash(r-1) A_{P}\right) \cap \mathbb{N}_{0}^{n}} \varepsilon^{-2 r}\left\|D^{\beta} P(D) u\right\|_{L_{2}\left(\omega_{\varepsilon}(j-1)\right)}^{2} .
\end{aligned}
$$

Proof. By Lemma 3, it is sufficient to estimate the second term of the right hand side of (5). There is a constant $C_{1}>0$ for which it holds:

$$
\begin{align*}
& \sum_{i=1}^{s} \sum_{|\gamma| \leq(i-1) m}\left\|(\varepsilon q(\xi))^{s-i} \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad \leq C_{1} \sum_{|\gamma| \leq(s-1) m}\left\|\left((\varepsilon q(\xi))^{s}+1\right) \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad=C_{1} \cdot \sum_{|\gamma| \leq(s-1) m}\left\|\left(\varepsilon^{s} \cdot Q_{P}(\xi)+1\right) \cdot \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \tag{7}\\
& \quad \leq C_{1} \varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m}\left\|Q_{P}(\xi) \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad+C_{1} \cdot \sum_{|\gamma| \leq(s-1) m}\left\|\varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{align*}
$$

Applying Parceval equality and the Newton-Leibniz formula to the first term of the right hand side of (7), we obtain:

$$
\begin{align*}
& \varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m}\left\|Q_{P}(\xi) \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m}\left\|Q_{P}(D)\left(\varepsilon^{|\gamma|} D^{\gamma} \varphi_{j}^{\varepsilon}\right) P(D) u\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \tag{8}\\
& \leq C_{1} \cdot \varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m} \sum_{\beta \in \mathbb{N}_{0}^{n}}\left\|Q_{P}^{(\beta)}\left(\varepsilon^{|\gamma|} D^{\gamma} \varphi_{j}^{\varepsilon}\right) D^{\beta}(P(D) u)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} .
\end{align*}
$$

As from Lemma 5, for any $\alpha \in s \cdot A_{P}, \beta \in r A_{P} \backslash(r-1) A_{P}, \beta \geq \alpha(s \geq r)$ $|\alpha-\beta| \leq s-r$, then by (8) there is a constant $C_{2}>0$ such that:

$$
\begin{aligned}
& \varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m}\left\|Q_{P}(\xi) \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \leq C_{1} \cdot \varepsilon^{2 s} \sum_{|\gamma| \leq(s-1) m} \sum_{r=0}^{s} \sum_{\beta \in\left(r A_{P} \backslash(r-1) A_{P}\right) \cap \mathbb{N}_{0}^{n}}\left\|Q_{P}^{(\beta)}\left(\varepsilon^{|\gamma|} D^{\gamma} \varphi_{j}^{\varepsilon}\right) D^{\beta}(P(D) u)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \leq C_{2} \cdot \sum_{|\gamma| \leq(s-1) m} \sum_{\alpha \in s A_{P}} \sum_{r=0}^{s} \sum_{\beta \in\left(r A_{P} \backslash(r-1) A_{P}\right) \cap \mathbb{N}_{0}^{n}} \varepsilon^{2 r}\left\|\varepsilon^{|\alpha-\beta+\gamma|}\left(D^{\alpha-\beta+\gamma} \varphi_{j}^{\varepsilon}\right) D^{\beta}(P(D) u)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{aligned}
$$

Then by Lemma 2 from (7), there exists a constant $C_{3}>0$ such that:

$$
\begin{aligned}
& \sum_{i=1}^{s} \sum_{|\gamma| \leq(i-1) m}\left\|(\varepsilon \cdot q(\xi))^{s-i} \cdot \varepsilon^{|\gamma|} F\left(D^{\gamma} \varphi_{j}^{\varepsilon} P(D) u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad \leq C_{3} \sum_{r=0}^{s} \sum_{\beta \in r A_{P} \cap \mathbb{N}_{0}^{n}} \varepsilon^{2 r}\left\|D^{\beta} P(D) u\right\|_{L_{2}(\omega(j-1))}^{2}
\end{aligned}
$$

From this estimate we get the proof of the Lemma.

3. Estimates for higher order derivatives

For a convex set $A \subset \mathbb{R}_{+}^{n}$ we denote:

$$
\begin{aligned}
& t \cdot A=\left\{v ; v \in \mathbb{R}_{+}^{n} ; \frac{v}{t} \in A\right\} \text { for } t>0, \\
& 0 \cdot A=0, \\
& t \cdot A=\emptyset \text { for } t<0
\end{aligned}
$$

Definition 5. (cf. [5]) Let $\Omega \subset \mathbb{R}^{n}$ be a open set. By $G^{A}(\Omega)$ we denote the set of the functions $f \in C^{\infty}(\Omega)$ such that for any compact subset $K \subset \Omega$ there exists a constant $C=C(K)$ for which:

$$
\sup _{x \in K}\left|D^{\alpha} f(x)\right| \leq C^{j+1} j^{j}, \quad \alpha \in j A, j=1,2, \ldots
$$

The class $G^{A}(\Omega)$ is called multianisotropic Gevrey class.
In [5] it was proved that if $A=\left\{v: v \in \mathbb{R}_{+}^{n} ;(v, \lambda) \leq 1\right\}$ for some $\lambda \in \mathbb{R}_{+}^{n} \cap \mathbb{R}_{0}^{n}$, $\min _{1 \leq i \leq n} \lambda_{i}=1$, then $G^{A}(\Omega)=G^{\lambda}(\Omega)$. If $\lambda=(1, \ldots, 1)$, then the class $G^{A}(\Omega)$ is the class of the analytic functions with real variables.

LEMMA 7. Let \mathcal{N} be a C.R. polyhedron, l a natural number, $\Omega^{\prime} \subset \Omega \subset \mathbb{R}^{n}$ an open set with diameter less than 2. If $f \in G^{\mathcal{N}}\left(\Omega^{\prime}\right)$, then there is a constant $C=C(l, f)>0$ such that, for any $j>l\left(j \in \mathbb{N}_{0}^{1}\right)$, and any multiindex $\alpha \in j \cdot \mathcal{N}$ and $\delta \in(0,1)$ the following estimate is satisfied:

$$
\begin{equation*}
\delta^{j} \cdot \sup _{x \in \Omega_{(j-l) \delta}^{\prime}}\left|D^{\alpha} f(x)\right| \leq C^{j+1} \tag{9}
\end{equation*}
$$

Proof. Since if $(j-l) \delta \geq 1$, then $\Omega_{(j-l) \delta}^{\prime}=\emptyset$, therefore it is sufficient to prove the estimate (9) in the case $\delta(j-l)<1$. Then

$$
\begin{aligned}
\sup _{x \in \Omega_{(j-l) \delta}^{\prime}}\left|D^{\alpha} f(x)\right| & \leq C^{j+1} \cdot j^{j}=C^{j+1} \cdot(j-l)^{j} \cdot\left(\frac{j}{j-l}\right)^{j} \\
& \leq C_{1}^{j+1} \cdot(j-l)^{j} \leq C_{1}^{j+1} \cdot\left(\frac{1}{\delta}\right)^{j}
\end{aligned}
$$

Now the proof easily follows.

THEOREM 2. Let $u(x)$ be a solution of the hypoelliptic equation $P(D) u=f$, where $f \in G^{A_{P}}(\Omega)$. Then there is a constant $K=K(u, \omega)>0(\omega \subset \subset \Omega)$ such that:

$$
\begin{equation*}
\varepsilon^{2 j s+2 m} \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|Q_{P}^{j}(D) P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{\varepsilon j}\right)}^{2} \leq K^{2(j+1)}, \quad j=1,2 \ldots \tag{10}
\end{equation*}
$$

where m denotes the order of $P(D)$.
Proof. Since any solution $u(x)$ of the hypoelliptic equation $P(D) u=f$ belongs to $C^{\infty}(\Omega)$ if $f \in C^{\infty}(\Omega)$, then there is a constant $K>0$ such that the inequality (10) is true for $j=0$. We proceed by induction. Let's suppose that the estimate (10) is true for any $j \leq l(l \geq 0)$. Then we prove it for $j=l+1$. Since $V(x)=Q_{P}^{l}(D) u(x)$ is a solution of the equation $P(D) V=Q_{P}^{l}(D) f$, then by Lemma 6 we get:

$$
\begin{align*}
\varepsilon^{2 s(l+1)+2 m} & \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|Q_{P}^{l+1}(D) P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{(l+1) \varepsilon}\right)}^{2} \tag{11}\\
= & \varepsilon^{2 s(l+1)+2 m} \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|Q_{P}(D) P^{(\alpha)}(D) Q_{P}^{l}(D) u\right\|_{L_{2}\left(\omega_{(l+1) \varepsilon}\right)}^{2} \\
& \leq C \cdot \varepsilon^{2 s l+2 m} \cdot \sum_{0 \neq \alpha \in \mathbb{N}_{0}^{n}} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(D) Q_{P}^{l}(D) u\right\|_{L_{2}\left(\omega_{l \varepsilon}\right)}^{2} \\
& +C \cdot \varepsilon^{2 s l+2 m} \cdot \sum_{r=0}^{s} \sum_{\beta \in r A \cap \mathbb{N}_{0}^{n}} \varepsilon^{2 r}\left\|D^{\beta} Q_{P}^{l}(D) f\right\|_{L_{2}\left(\omega_{l \varepsilon}\right)}^{2}
\end{align*}
$$

And by induction we have:

$$
\begin{equation*}
\varepsilon^{2 s l+2 m} \cdot \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|}\left\|P^{(\alpha)}(D) Q_{P}^{l}(D) u\right\|_{L_{2}\left(\omega_{l \varepsilon}\right)}^{2} \leq K^{2(l+1)} \tag{12}
\end{equation*}
$$

For the second term of the right hand side of the estimate (11), by Lemma 7, and as $f \in G^{A_{P}}(\Omega)$, then there is a constant $q=q(f, \omega)>0$ such that:

$$
\begin{equation*}
\varepsilon^{2 s l+2 m} \cdot \sum_{r=0}^{s} \sum_{\beta \in r A_{P} \cap} \varepsilon^{2 r}\left\|D^{\beta} Q_{P}^{l}(D) f\right\|_{L_{2}\left(\omega_{l \varepsilon}\right)}^{2} \leq q^{2(l+2)} . \tag{13}
\end{equation*}
$$

And by (12)-(13), we obtain from (11):

$$
\begin{aligned}
\varepsilon^{2 s(l+1)+2 m} \cdot \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|}\left\|Q_{P}^{l+1}(D) P^{(\alpha)}(D) u\right\|_{L_{2}\left(\omega_{(l+1) \varepsilon}\right)}^{2} & \leq C \cdot\left(K^{2(l+1)}+q^{2(l+2)}\right) \\
& \leq K^{2(l+2)}
\end{aligned}
$$

if K is sufficiently large.

THEOREM 3. Let $u(x)$ be a solution of the hypoelliptic equation $P(D) u=f$, where $f \in G^{A_{P}}(\Omega)$. Then for any $\omega \subset \subset \Omega$ there is a constant $K_{1}=K_{1}(u, \omega)>0$ such that:

$$
\left\|Q_{P}^{j}(D) u\right\|_{L_{2}(\omega)}^{2} \leq K_{1}^{2(j+1)} \cdot j^{2 s j}, \quad j=1,2, \ldots
$$

Proof. Since $\rho=\rho(\omega, \partial \Omega)>0$, then for any $\delta \in(0, \rho)$ there is $\Omega^{\prime} \subset \subset \Omega$ such that $\omega \subset \Omega_{\delta}^{\prime}$. Then for any natural number j , taking $\varepsilon=\frac{\delta}{j}$ from Theorem 2, we have:

$$
\left(\frac{\delta}{j}\right)^{2 s j}\left\|Q_{P}^{j}(D) u\right\|_{L_{2}(\omega)}^{2} \leq\left(\frac{\delta}{j}\right)^{2 s j}\left\|Q_{P}^{j}(D) u\right\|_{L_{2}\left(\Omega_{\delta}^{\prime}\right)}^{2} \leq K^{2(j+1)}
$$

It follows:

$$
\left\|Q_{P}^{j}(D) u\right\|_{L_{2}(\omega)}^{2} \leq K^{2(j+1)} \cdot\left(\frac{j}{\delta}\right)^{2 s j}=K_{1}^{2(j+1)} \cdot j^{2 s j} ; \quad j=1,2, \ldots
$$

PROPOSITION 1. For any multiindex $\alpha \notin(s-1) A_{P}$ we have $D^{\alpha} Q_{P}(\xi) \equiv$ const.
Proof. Since for any multiindex α :

$$
D^{\alpha} Q_{P}(\xi)=\sum_{\beta \in s A_{P}^{0}, \beta \geq \alpha} \frac{\beta!}{(\beta-\alpha)!} \xi^{\beta-\alpha}
$$

then it is sufficient to consider the case $\alpha \in s A_{P}$. Let $\beta_{0} \in s A_{P}^{0} \cap \mathbb{N}_{0}^{n}$ be such that $\alpha \leq \beta_{0}, \alpha \neq \beta_{0}$, then $\left|\beta_{0}-\alpha\right| \geq 1$. By the difinition of the set A_{P}, there is a natural number i_{0}, $\left(1 \leq i_{0} \leq k\right)$ such that $\left(\alpha, \lambda^{i_{0}}\right)>d_{i_{0}}(s-1)$ and $\min _{1 \leq j \leq n} \lambda_{j}^{i_{0}}=1$. So we obtain $\left(\beta_{0}, \lambda^{i_{0}}\right)=\left(\beta_{0}-\alpha, \lambda^{i_{0}}\right)+\left(\alpha, \lambda^{i_{0}}\right)>\left|\beta_{0}-\alpha\right|+d_{i_{0}}(s-1) \geq 1+d_{i_{0}}(s-1) \geq s d_{i_{0}}$. This leads to a contradiction, therefore such $\beta_{0} \in s A_{P}^{0} \cap \mathbb{N}_{0}^{n}$ can't exist. The Proposition is proved.

Lemma 8. For any $\varepsilon>0$ and any function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, there is a constant $C>0$ for which the following estimate is satisfied:
$\varepsilon^{-(s-j)}\left\|D^{\alpha} \varphi\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leq C\left(\left\|Q_{P}(D) \varphi\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}+\varepsilon^{-(s)}\|\varphi\|_{L_{2}\left(\mathbb{R}^{n}\right)}, 0 \leq j \leq s, \forall \alpha \in j A_{P}\right.$.
Proof. By the definition of the polynomial $Q_{P}(\xi)$, for any $\alpha \in j A_{P},(0 \leq j \leq s)$ there is a constant $C_{1}>0$ such that $\left|\xi^{2 \alpha}\right| \leq C_{1}\left|Q_{P}(\xi)\right|^{\frac{2 j}{s}}, \forall \xi \in \mathbb{R}^{n}$.

Multiply the latter by $\varepsilon^{-2(s-j)}$, for $\varepsilon>0$, then by Hölder's inequality there is a constant $C_{2}>0$ such that:

$$
\begin{equation*}
\varepsilon^{-2(s-j)}\left|\xi^{2 \alpha}\right| \leq C_{1} \varepsilon^{-2(s-j)}\left|Q_{P}(\xi)\right|^{\frac{2 j}{s}} \leq C_{2}\left(Q_{P}^{2}(\xi)+\varepsilon^{-2 s}\right) \tag{14}
\end{equation*}
$$

Applying Parceval equality, then for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the following is satisfied:

$$
\varepsilon^{-(s-j)}\left\|D^{\alpha} \varphi\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leq C\left(\left\|Q_{P}(D) \varphi\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}+\varepsilon^{-(s)}\|\varphi\|_{L_{2}\left(\mathbb{R}^{n}\right)}\right)
$$

Lemma 9. Let $\Omega \subset \mathbb{R}^{n}$ be an open set, j be a natural number, $0 \leq j \leq s$, $\delta \in(0,1)$. Then for any function $\varphi_{\delta} \in C_{0}^{\infty}(\Omega), 0 \leq \varphi_{\delta} \leq 1, \varphi_{\delta}=1$ on Ω_{δ}, there is a constant $C_{s}>0$ such that:

$$
\sup _{\Omega}\left|Q_{P}^{(\alpha)}(D) \varphi_{\delta}\right| \leq C_{s} \delta^{-(s-j)}, \quad \forall \alpha \in j A_{P} \backslash(j-1) A_{P}
$$

The proof easily follows from Lemma 4.1 in [7] and Proposition 1.
For any number μ, any open set $\Omega \subset \mathbb{R}^{n}$ and any function $f \in L_{2}^{\text {loc }}(\Omega)$ we write (cf. [7]):

$$
N_{\Omega, \mu}(f)=N_{\mu}(f)=\sup _{\delta>0} \delta^{\mu}\|f\|_{L_{2}\left(\Omega_{\delta}\right)} .
$$

THEOREM 4. For any multiindex $\beta \in j A_{P}\left(j \in \mathbb{N}_{0}^{1}, 0 \leq j \leq s\right)$ there is a constant $C>0$ such that:

$$
N_{j}\left(D^{\beta} u\right) \leq C\left(N_{s}\left(Q_{P}(D) u\right)+N_{0}(u)\right), \quad \forall u \in C^{\infty}(\Omega)
$$

Proof. Let $\varphi_{\delta} \in C_{0}^{\infty}(\Omega)$ be a function satisfying the condition of Lemma 9 , then by Newton-Leibniz formula, we have:

$$
\begin{align*}
Q_{P}(D)\left(\varphi_{\delta} u\right) & =\sum_{\alpha} \frac{Q_{P(D)}^{(\alpha)} \varphi_{\delta}}{\alpha!} D^{\alpha} u \tag{15}\\
& =\sum_{\alpha \notin(s-1) A_{P}} \frac{Q_{P}^{(\alpha)}(D) \varphi_{\delta}}{\alpha!} D^{\alpha} u+\sum_{\alpha \in(s-1) A_{P}} \frac{Q_{P}^{(\alpha)}(D) \varphi_{\delta}}{\alpha!} D^{\alpha} u .
\end{align*}
$$

By Proposition 1 the first term of (15) is equal to $\varphi_{\delta} Q_{P}(D) u$. Therefore:

$$
Q_{P}(D)\left(\varphi_{\delta} u\right)=\varphi_{\delta} Q_{P}(D) u+\sum_{j=0}^{s-1} \sum_{\alpha \in\left(j A_{P} \backslash(j-1) A_{P}\right)}{\frac{Q_{P}^{(\alpha)}(D) \varphi_{\delta} \alpha!}{D}}_{D} u
$$

So there is a constant $C>0$ such that:

$$
\begin{aligned}
\left\|Q_{P}(D)\left(\varphi_{\delta} u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leq & C\left\{\left\|\varphi_{\delta} Q_{P}(D) u\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}\right. \\
& \left.+\sum_{j=0}^{s-1} \sum_{\alpha \in\left(j A_{P} \backslash(j-1) A_{P}\right)}\left\|Q_{P}^{(\alpha)}(D) \varphi_{\delta} D^{\alpha} u\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}\right\}
\end{aligned}
$$

By the definition of N_{μ}, for a suitable constant $C_{1}>0$ we have:

$$
\begin{align*}
& \left\|Q_{P}(D)\left(\varphi_{\delta} u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \\
& \leq C_{1} \delta^{-s}\left\{N_{s}\left(Q_{P}(D) u\right)+\sum_{j=0}^{s-1} \sum_{\alpha \in\left(j A_{P} \backslash(j-1) A_{P}\right)} N_{j}\left(D^{\alpha} u\right)\right\} \tag{16}\\
& \leq C_{1} \delta^{-s}\left\{N_{s}\left(Q_{P}(D) u\right)+\sum_{j=0}^{s-1} \sum_{\alpha \in j A_{P}} N_{j}\left(D^{\alpha} u\right)\right\}
\end{align*}
$$

Since $\left\|\varphi_{\delta} u\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leq N_{0}(u)$, then by Lemma 8 from (16) it follows that for a constant $C_{2}>0$ we have:

$$
\begin{align*}
& \varepsilon^{-(s-j)}\left\|D^{\beta}\left(\varphi_{\delta} u\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \\
& \leq C_{2}\left\{\delta^{-s}\left\{N_{s}\left(Q_{P}(D) u\right)+\sum_{j=0}^{s-1} \sum_{\alpha \in j A_{P}} N_{j}\left(D^{\alpha} u\right)\right\}+\varepsilon^{-s} N_{0}(u)\right\} \tag{17}
\end{align*}
$$

$\forall \beta \in j A_{P}$. Taking $\varepsilon=\frac{\delta}{\sigma}, \quad \delta<\frac{\operatorname{dim} \Omega}{2}$ and multiplying by (17) δ^{s}, we get:

$$
\begin{array}{r}
\sigma^{(s-j)} N_{j}\left(D^{\beta} u\right) \leq C_{2}\left\{N_{s}\left(Q_{P}(D) u\right)+\sum_{j=0}^{s-1} \sum_{\alpha \in j A_{P}} N_{j}\left(D^{\alpha} u\right)\right\} \tag{18}\\
\forall \beta \in j A_{P}
\end{array}
$$

Taking the sum of (18) for all $j, j=0, \ldots, s$:

$$
\begin{aligned}
& \sum_{j=0}^{s} \sigma^{(s-j)} \sum_{\beta \in j A_{P}} N_{j}\left(D^{\beta} u\right) \\
& \leq(s+1) \cdot C_{2}\left\{N_{s}(Q(D) u)+\sum_{j=0}^{s-1} \sum_{\alpha \in j A_{P}} N_{j}\left(D^{\alpha} u\right)+\sigma^{s} N_{0}(u)\right\} .
\end{aligned}
$$

For sufficiently large σ, we can find a constant $C_{3}=C_{3}(\sigma)>0$ such that:

$$
\sum_{j=0}^{s} \sigma^{(s-j)} \sum_{\beta \in j A_{P}} N_{j}\left(D^{\beta} u\right) \leq C_{3}\left\{N_{s}\left(Q_{P}(D) u\right)+N_{0}(u)\right\}
$$

The proof of the Lemma follows.

THEOREM 5. Any solution of an hypoelliptic equation $P(D) u=f$ belongs to $G^{A_{P}}(\Omega)$, if $f \in G^{A_{P}}(\Omega)$.

Proof. Let $\omega \subset \subset \Omega$. By Theorem 4, for any $v \in C^{\infty}(\Omega)$, we have:

$$
\left\|D^{\beta} v\right\|_{L_{2}\left(\omega_{s+t}\right)} \leq C_{2}\left(\left\|Q_{P}(D) v\right\|_{L_{2}\left(\omega_{s}\right)}+t^{-s}\|v\|_{L_{2}\left(\omega_{s}\right)}\right)
$$

where $t>0$. Taking $t=\frac{\delta}{l}, s=\left(1-\frac{1}{l}\right) \delta$ we get:

$$
\begin{equation*}
\left\|D^{\beta} v\right\|_{L_{2}\left(\omega_{\delta}\right)} \leq C_{2}\left(\left\|Q_{P}(D) v\right\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right)}+\left(\frac{\delta}{l}\right)^{-s}\|v\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right)}\right) \tag{19}
\end{equation*}
$$

By Theorem 1.1 of [6], for the polyhedron $s A_{P}$ there is a natural number $j_{0} \geq s$ such that any multi-index $\alpha \in j A_{P}, j \geq j_{0}$, can be represented in the form $\alpha=\beta+\gamma$, where $\beta \in s A_{P} \cap \mathbb{N}_{0}^{n}, \gamma \in(j-s) A_{P} \cap \mathbb{N}_{0}^{n}$. For simplicity let $j_{0}=s$. Therefore, every multiindex α can be represented as $\alpha=\sum_{k=1}^{l} \alpha^{(k)}$, where $l=\left[\frac{j}{s}\right]$ if $\left[\frac{j}{s}\right]$ is integer, and $l=\left[\frac{j}{s}\right]+1$ otherwise, $\alpha^{(k)} \in s A_{P} \cap \mathbb{N}_{0}^{n}, k=1, . ., l$. Now let $\beta=\alpha^{1}$, then by (19) we get:

$$
\begin{align*}
& \left\|D^{\alpha^{1}}\left(D^{\alpha-\alpha^{1}}\right) u\right\|_{L_{2}\left(\omega_{\delta}\right)} \\
& \leq C_{2}\left(\left\|Q_{P}(D)\left(D^{\alpha-\alpha^{1}}\right) u\right\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right.}+\left(\frac{\delta}{l}\right)^{-s}\left\|D^{\alpha-\alpha^{1}} u\right\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right)}\right) \\
& \leq C_{2}\left(\left\|D^{\alpha^{2}} D^{\alpha-\alpha^{1}-\alpha^{2}} Q_{P}(D) u\right\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right.}\right. \tag{20}\\
& \left.\quad+\left(\frac{\delta}{l}\right)^{-s}\left\|D^{\alpha^{2}}\left(D^{\alpha-\alpha^{1}-\alpha^{2}}\right) u\right\|_{L_{2}\left(\omega_{\left(1-\frac{1}{T}\right) \delta}\right)}\right)
\end{align*}
$$

Taking the function $v=D^{\alpha-\alpha^{1}-\alpha^{2}} Q_{P}(D) u$ in the first term of the right hand side of (20) and taking $v=D^{\alpha-\alpha^{1}-\alpha^{2}} u$ in the second term of the right hand side of (20), applying to (20) the estimate (19) and working anologously to step ($l-1$), we obtain:

$$
\begin{aligned}
\left\|D^{\alpha} u\right\|_{L_{2}\left(\omega_{\delta}\right)} & \leq C_{2}^{l} \sum_{i=0}^{l} C_{l}^{i}\left(\frac{l}{\delta}\right)^{s i}\left\|Q_{P}^{(l-i)}(D) u\right\|_{L_{2}\left(\omega_{s}\right)} \\
& \leq C_{2}^{l} \sum_{i=0}^{l} C_{l}^{i}\left(\frac{l}{\delta}\right)^{s i} K^{l-i+1}(l-i)^{s(l-i)} \\
& \leq C_{3}^{l} \sum_{i=0}^{l} C_{l}^{i}\left(\frac{1}{\delta}\right)^{s i}(l)^{s l} \leq\left(C_{4}(\delta)\right)^{j+1} j^{j}
\end{aligned}
$$

i.e. $u \in G^{A_{P}}(\Omega)$.

Let $\mu \in \mathbb{R}_{+}^{n}, i=1, \ldots, n, \min _{1 \leq i \leq n} \mu_{i}=1$ and $0<\rho_{i} \leq 1, i=1, \ldots n$.
We denote by $B=\left\{v \in \mathbb{R}_{+}^{n},\left(\nu, \mu_{i}\right) \leq \rho_{i}, i=1, \ldots, n\right\}$.
THEOREM 6. Let $f \in G^{B}(\Omega)$. Then any solution of the hypoelliptic equation $P(D) u=f$ belongs to $G^{B \cap A_{P}}(\Omega)$.

The theorem was proved analogously to Theorem 2.4 with some modifications. We now present two examples clarifying the previous results.

EXAMPLE 1. Let $n=2, P\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial}{\partial y}\right)\left(\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial}{\partial x}\right)$. Using the notations $D_{1}=\frac{1}{i} \frac{\partial}{\partial x}, D_{2}=\frac{1}{i} \frac{\partial}{\partial y}$, we have:

$$
P(D)=\left(-D_{1}^{2}-i D_{2}\right)\left(-D_{2}^{2}-i D_{1}\right)=i D_{1}^{3}+i D_{2}^{3}+D_{1}^{2} D_{2}^{2}-D_{1} D_{2}
$$

and its characteristic polynomial is:

$$
P(\xi)=\left(-\xi_{1}^{2}-i \xi_{2}\right)\left(-\xi_{2}^{2}-i \xi_{1}\right)=i \xi_{1}^{3}+i \xi_{2}^{3}+\xi_{1}^{2} \xi_{2}^{2}-\xi_{1} \xi_{2}
$$

It is easy to see that $P(\xi)$ is a multi-quasi-elliptic polynomial, and therefore the set M_{P} is a C.R. polyhedron. Simple computations show that $M_{P}=\left\{v \in R_{+}^{2}, 2 v_{1}+v_{1} \leq\right.$ $\left.1 ; \nu_{1}+2 \nu_{1} \leq 1\right\}$. The exact weight hypoellipticity of the operator $P(D)$ is

$$
h(\xi)=\left|\xi_{1}\right|^{\frac{1}{2}}\left|+\left|\xi_{2}\right|^{\frac{1}{2}}\right|+\left|\xi_{1}\right|^{\frac{1}{3}}\left|\xi_{2}\right|^{\frac{1}{3}}
$$

By Hörmander Theorem (cf. 8, Theorem 11.4.1), all the solutions of the equation $P(D) u=0$ belong to the Gevrey class $G^{2,2}(\Omega)$ and this result is sharp remaining in the frame of the anisotropic Gevrey classes. However, from the hypoellipticity and the form of the operator $P(D)$, it follows that any solution can be represented in the form:

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)
$$

where $u_{1}(x, y) \in G^{1,2}(\Omega), u_{2}(x, y) \in G^{2,1}(\Omega)$. Using this fact, we can estimate $D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} u$, where $\alpha_{1}=\alpha_{2}=j, j=1,2, \ldots$ as follows: for any compact subset $K \subset \Omega$ there exist two constants $C_{1}=C_{1}\left(K, u_{1}\right)>0$ and $C_{2}=C_{2}\left(K, u_{2}\right)>0$ such that:

$$
\begin{gathered}
\sup _{x \in K}\left|D_{1}^{j} D_{2}^{j} u(x, y)\right| \leq \sup _{x \in K}\left|D_{1}^{j} D_{2}^{j} u_{1}(x, y)\right|+\sup _{x \in K}\left|D_{1}^{j} D_{2}^{j} u_{2}(x, y)\right| \\
\leq C_{1}^{2 j+1} j^{1 j} j^{2 j}+C_{2}^{2 j+1} j^{2 j} j^{1 j} \leq C_{3}^{2 j+1} j^{3},
\end{gathered}
$$

where $C_{3}=\max \left(C_{1}, C_{2}\right)$. Therefore, the classical Gevrey classes don't describe completely the behaviour of the solutions of the hypoelliptic equation $P(D) u=0$. Using the multianisotropic classes Gevrey and noticing that $(j, j) \in 3 j M_{P}$, we have:

$$
\sup _{x \in K}\left|D_{1}^{j} D_{2}^{j} u(x, y)\right| \leq C^{2 j+1} j^{3 j}
$$

Let for example $f \in G^{B}(\Omega)$, where:

$$
B=\left\{v \in R_{+}^{2}, 3 v_{1}+\frac{3}{2} v_{2} \leq 1\right\} .
$$

Then $A=M_{P} \cap B=\left\{v \in R_{+}^{2}, 3 v_{1}+\frac{3}{2} \nu_{2} \leq 1 ; v_{1}+2 \nu_{2} \leq 1\right\}$.
From Theorem 2.5 we have that all the solutions of the equation $P(D) u=f$ belong to $G^{A}(\Omega)$.

Example 2. Let $n=2$ and $P(D)$ be the operator with symbol:

$$
P(\xi)=\xi_{1}^{6}\left(\xi_{1}-\xi_{2}\right)^{6}+\xi_{1}^{8} \xi_{2}^{2}+\xi_{1}^{8}+1
$$

The polynomial $P(\xi)$ is not multi-quasi-elliptic. Simple computations show that:

$$
M_{P}=\left\{v \in R_{+}^{2}, 2 v_{1}+3 v_{2} \leq 1 ; v_{1}+v_{2} \leq \frac{2}{3}\right\}
$$

Let $P(D) u=f$, where $f \in G^{B}(\Omega), B$ for instance has the form:

$$
B=\left\{v \in R_{+}^{2}, 2 v_{1}+\frac{3}{2} \nu_{2} \leq 1\right\} .
$$

Since $B \cap M_{P}=M_{P}$, then from Theorem 2.5 it follows that $u \in G^{M_{P}} \Omega$.

References

[1] Boggiatto P., Buzano E. and Rodino L., Global hypoellipticity and spectral theory, Akademie Verlag, Berlin 1996.
[2] Cattabriga L., Solutions in Gevrey spaces of partial differential equations with constant coefficients, Asterisque 89-90 (1981), 129-151.
[3] Grushin V.V., On a class of solutions of a hypoelliptic equation, Doklady Akad. Nauk. USSR 137 (1961), 768-771.
[4] Grushin V.V., Connection between local and global properties of solutions of hypoelliptic equation with constant coefficients, Mat. Sbornik 108 (1965), 525550.
[5] Hakobyan G.H. and Margaryan V.N., On Gevrey type solutions of hypoelliptic equations, Izvestiya Akad. Nauk Armenia. Matematika 312 (1996), 33-47 (in Russian, English translation in J. of Contemp. Math. Anal., Armenian Academy of Sciences).
[6] Hakobyan G.H. and Margaryan V.N., On Gevrey class solutions of hypoelliptic equations, IIzvestiya Akad. Nauk Armenia. Matematika 331 (1998), 35-47.
[7] HÖRmander L., On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197-218.
[8] HÖRMANDER L., The analysis of linear partial differential operators, I,II,III,IV, Springer-Verlag, Berlin 1963.
[9] Kazaryan G.G., On the functional index of hypoellipticity, Mat. Sbornik 128 (1985), 339-353.
[10] Newberger E. and Zielezny Z., The growth of hypoelliptic polynomials and Gevrey classes, Proc. of the AMS 393 (1973).
[11] Pini B., Proprietà locali delle soluzioni di una classe di equazioni ipoellittiche, Rend. Sem. Mat. Padova 32 (1962), 221-238.
[12] Rodino L., Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Singapore 1993.
[13] Volevich L.R., Local regularity of the solutions of the quasi-elliptic systems, Mat. Sbornik 59 (1962), 3-52 (Russian).
[14] Zanghirati L., Iterati di una classe di operatori ipoellitici e classi generalizzate di Gevrey, Boll. Un. Mat. Ital., Suppl. 1 (1980), 177-195.

AMS Subject Classification: 35B05, 35H10.

Gagik HAKOBYAN
Department of Physics
Yerevan State University
Al. Manoogian str. 1
375025 Yerevan, ARMENIA
e-mail: gaghakob@ysu.am
Lavoro pervenuto in redazione il 10.02.2003 e, in forma definitiva, il 09.07.2003.

