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ESTIMATES OF THE HIGHER ORDER DERIVATIVES OF

THE SOLUTIONS OF HYPOELLIPTIC EQUATIONS

Abstract. In this work we establish a connection between the behaviour
of the higher order derivatives of the solutions of the hypoelliptic equa-
tion P(D)u = f and the estimates of the derivatives of f (x) in terms of
multianisotropic Gevrey classes.

1. Introduction

The Gevrey classes play an important role in the theory of linear partial differential
equations as intermediate spaces between the C∞ and the analytic functions. In par-
ticular, whenever the properties of an operator differ in the C∞ and in the analytic
framework, it is natural to test its behaviour in the classes of the Gevrey functions and
distributions. As a matter of facts, that weak solutions of the equation P(D)u = f
belong to C∞, in particular to Gevrey classes, is important for the application of varia-
tional methods to the differential equation. A complete description of linear differential
equations with constant coefficients having only C∞ solutions for all infinitely differ-
entiable right-hand sides has been given by L. Hörmander [8]. Equations of this type
are called hypoelliptic.

It is well known (cf. [8], Chapter 11) that the regularity of the solutions of the
hypoelliptic equation P(D)u = f is determined by the behaviour of the function d P(ξ)

as ξ → ∞, where dP(ξ) is the distance from the point ξ ∈ Rn to the surface {ζ : ζ ∈
Cn, P(ζ ) = 0}.

The behaviour of the function dP(ξ) at infinity is related to many properties of the
solutions of an hypoelliptic equation P(D)u = 0, in particular it belongs to the Gevrey
class Gλ(�), where λ ∈ Rn is determinated by the growth of the function dP(ξ) if
ξ ∈ Rn and |ξ | is sufficiently large (cf. [8], Theorem 11.4.1) (for the definition of the
Gevrey classes Gλ(�), see for example [8] Def. 11.4.11).

V. Grushin [3, 4] proved that if P(D) is an hypoelliptic operator with index of
hypoelliplticity equal to λ, then all the solutions of the nonhomogeneous equation
P(D)u = f belong to Gλ(�) if f ∈ Gλ(�).

In [2] L. Cattabriga derived for an hypoelliptic operator P(D) the algebraic con-
ditions ensuring that the map P(D) : Gλ(Rn) 7→ Gλ(Rn) is an isomorphism. Such
hypoelliptic operators are called Gλ-hypoelliptic operators. The Gλ-hypoelliptic oper-
ators have been studied by many authors: L.R.Volevich, B.Pini, L.Rodino, L.Zanghirati
and others. Detailed references for Gλ-hypoelliptic operators can be found in the books
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L. Rodino [12, 1].

G.Ghazaryan [9] introduced some functional characteristics, called weight of hy-
poellipticity, which coincides with the function h(ξ) = |ξ | in the elliptic case and is
specified in the general case. Moreover, more fine estimates of higher order derivatives
of the solutions of an hypoelliptic equation P(D)u = 0 are obtained.

After introducing in [5] the concept of multianisotropic Gevrey classes, it became
possible to improve the above mentioned results and formulate a general theorem, es-
tablishing the relationship between the growth of the derivatives of the solutions of the
hypoelliptic equation P(D)u = f and the growth of the function f . We shall prove:

THEOREM 1. Let f ∈ G B(�). Then any solution of the hypoelliptic equation
P(D)u = f belongs to G B∩AP (�).

For a convex set B, G B(�) is the associated multianisotropic Gevrey class, and the
set AP is determined by the hypoelliptic operator P(D).

2. Definitions and notations

Let P(D) =
∑
α

γαDα be a linear differential operator with constant coefficients, and

let P(ξ) be its characteristic polynomial . Here the sum goes over a finite set (P) =
{α : α ∈ N

n
0, γα 6= 0}, where N

n
0 = {α = (α1, . . . , αn) : αi ∈ N0, i = 1, . . . , n} is

the set of n-dimensional multi-indices.

We denote:
R

n
0 = {ξ ∈ Rn : ξ1...ξn 6= 0},

R
n
+ = {ξ ∈ Rn : ξ j ≥ 0, j = 1, ...n}.

Let A = {νk ∈ R
n
+, k = 0, ...,m}.

DEFINITION 1. The characteristic polyhedron (or Newton polyhedron) (C.P.)
N (A) of the set A is defined to be the smallest convex polyhedron in R

n
+ containing

all the points A ∪ {0}. The characteristic polyhedron (or Newton polyhedron) (C.P.)
N = N (P) of a polynomial P(ξ) (or of a operator P(D)) is defined to be the smallest
convex polyhedron in R

n
+ containing all the points (P) ∪ {0}.

DEFINITION 2. A polyhedron N is said to be completely regular (C.R.) if:

a) N has vertices at the origin and on all the coordinate axes of N
n
0 different from

the origin.

b) all the coordinates of the exterior normals to the non-coordinate (n − 1) - di-
mensional faces N are strictly positive.

It is well known that if P(D) is an hypoelliptic operator, then C.P. of P(D) is a
C.R.

Let h(ξ) =
m∑

k=0
|ξ |νk

, where ν0 = 0, νk ∈ R
n
+, |ξ |ν

k = |ξ1|ν
k
1 · ... · |ξn|ν

k
n , and
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Ah = {νk}m
k=0.

DEFINITION 3. (cf. [9]) A function h(ξ) is called weight of hypoellipticity of the
polynomial P(ξ) (or of the operator P(D)) if there exists a constant C > 0 such that:

(1) FP(ξ) =
∑

α 6=0

( |DαP(ξ)|
|P(ξ)| + 1

) 1
|α|

≤ C

h(ξ)
, ∀ξ ∈ R

n.

DEFINITION 4. A weight of hypoellipticity of the operator P(D) is called exact
weight of hypoellipticity of the operator P(D) if for any ν ∈ R

n
+\N (Ah):

sup
ξ

|ξ ν |FP(ξ) = +∞.

By Lemma 11.1.4 of [8], for any weight of hypoellipticity of the operator P(D),
there exists a constant C > 0 such that:

(2) h(ξ) ≤ C · (1 + dP(ξ)), ∀ ξ ∈ R
n.

We denote by 3n−1 the set of the exterior normals λ (relative to N (P)) of the non-
coordinate (n − 1) - dimensional faces N (P), for which min

1≤i≤n
λi = 1.

We set:

MP = {ν : ν ∈ R
n
+, sup

ξ

|ξ ν | · FP(ξ) < ∞},

E(N (P)) = {ν ∈ R
n
+, (ν, λ) ≤ 1, ∀λ ∈ 3n−1}.

It is well known (cf. [9], Lemma 3.5), that for any hypoelliptic operator P(D) the set
MP is included in E(N (P)).

LEMMA 1. Let � ⊂ Rn be a bounded set, P(D) be an hypoelliptic operator and
h(ξ) be a weight of hypoellipticity of the operator P(D). Then there exists a constant
C > 0 such that for any function V ∈ C∞

0 (�), any ε ∈ (0, 1) and any natural number
l the following estimate is satisfied:

∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(ξ)(εh(ξ))l F(V )

∣∣∣
∣∣∣
2

L2(R
n)

≤

C
∑

α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(ξ)(εh(ξ))l−1 F(V )

∣∣∣
∣∣∣
2

L2(R
n)
,

where F(V ) is the Fourier transform of the function V (x).

This lemma can be proved similary to Lemma 11.1.4 of [8] using the estimates (2).

For a bounded set� ⊂ Rn and for ε > 0, we denote�ε = {x : x ∈ �, ρ(x, ∂�) > ε},
where ρ is a distance in Rn. Let δ ∈ (0, 1], r be a natural number, B = {x : x ∈
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Rn, ||x || < 1} and ϕ(x) ≥ 0 a function such that ϕ ∈ C∞
0 (B),

∫
ϕ(x)dx = 1. Denote

by ϕδr (x) = χ�
r·δ− δ

2
∗ ϕ δ

2 (x), where for any ε > 0, ϕε(x) = ε−n · ϕ( x
ε
) and χ�ε(x) is

the characteristic function of the set �ε.

LEMMA 2. Let� ⊂ Rn be a bounded set, l be a natural number. Then there exists
a constant Cl = Cl(�) > 0 such that:

sup
x∈�

|Dαϕεj | ≤ Cl · ε−|α|, |α| ≤ l, j = 1, 2, . . . .

The proof easily follows from the following computations:

|Dαϕεj (x)| =
∣∣∣∣
∫
χ� jε− ε

2
(y) · Dαϕ

ε
2 (x − y)dy

∣∣∣∣

=

∣∣∣∣∣∣

(ε
2

)−|α| ∫

� jε− ε
2

(Dαϕ)
ε
2 (x − y)dy

∣∣∣∣∣∣

≤
(ε

2

)−|α| ∫
|Dαϕ(y)|dy| ≤ Clε

−|α|,

where Cl = max
|α|≤l

2−|α| ∫ |Dαϕ(y)|dy.

Let λ j ∈ R
n
+ ( j = 1, ..., k) be vectors with rational coordinates, for which

min
1≤l≤n

λ
j
l = 1, and d j (0 < d j ≤ 1, j = 1, ..., k) be rational numbers such that

the set AP = {ν ∈ R
n
+ : (ν, λi ) ≤ di, i = 1, ..., k} ⊂ MP is C.R.. We denote by

A0
P the set of the vertices of the polyhedron A P .

We let h AP (ξ) =
∑
ν∈A0

P

|ξ |νk
.

LEMMA 3. Let P(D) be an hypoelliptic operator (ordP=m), l be a natural number.
Then there exists a constant C > 0 such that for any ε ∈ (0, 1), β ∈ l A P ∩N

n
0 and any

function u ∈ C∞(�) the following estimate is satisfied:

ε2l
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Dβ P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε j )
≤ C

∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε·( j−1))

+C
l∑

i=1

∑

|β|≤(i−1)m, β∈N
n
0

∣∣∣
∣∣∣(ε · h AP (ξ))

l−i · ε|β| F(Dβϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(Rn)
,

j = 1, 2, ...

(3)

where ω ⊂⊂ �.

Proof. For some constant C > 0 and for any β ∈ l · A P ∩ N
n
0 we have |ξ |β ≤
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Chl
AP
(ξ), ∀ξ ∈ Rn. Then by Parceval equality there is a constant C1 > 0 such that:

ε2l
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Dβ P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε j )

≤ ε2l
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Dβ P(α)(D)(uϕεj )

∣∣∣
∣∣∣
2

L2(R
n)

= ε2l
∑

06=α∈Nn
0

ε−2|α|
∣∣∣
∣∣∣ξβ P(α)(ξ)F(uϕεj )

∣∣∣
∣∣∣
2

L2(R
n)

≤ C1

∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣(ε · h AP (ξ))

l P(α)(ξ)F(uϕεj )
∣∣∣
∣∣∣
2

L2(R
n)
.

By Lemma 1 there is a constant C2 > 0 such that:

ε2l
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Dβ P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε j )

≤ C2

∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣(ε · h AP (ξ))

l−1 P(α)(ξ)F(uϕεj )
∣∣∣
∣∣∣
2

L2(R
n)

+ C2

∣∣∣
∣∣∣(εh AP (ξ))

l−1 P(ξ)F(u · ϕεj )
∣∣∣
∣∣∣
2

L2(R
n)
.

(4)

By Newton-Leibniz formula, we can estimate the second term of the right hand side of
(4) for a constant C3 > 0:

∣∣∣
∣∣∣(εh AP (ξ))

l−1 P(ξ)F(uϕεj )
∣∣∣
∣∣∣
2

L2(R
n)

≤
∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

+ C3

∑

06=α

∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(P(α)(D)u(Dαϕεj ))

∣∣∣
∣∣∣
2

L2(R
n)

=
∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

+ C3

∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(P(α)(D)uε|α|Dαϕεj )

∣∣∣
∣∣∣
2

L2(R
n)

≤
∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

+ C3

∑

α 6=0

∑

|β|≤m, 06=β∈N
n
0

ε−2|α|
∣∣∣
∣∣∣(εh AP (ξ))

l−1 F(P(α)(D)uε|β|Dβϕεj )

∣∣∣
∣∣∣
2

L2(R
n)
.
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By the estimate (4) there is a constant C4 > 0 such that:

ε2l
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Dβ P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε j )

≤ C4

∑

06=α∈N
n
0

ε−2|α| ∑

|β|≤m

∣∣∣
∣∣∣(εh AP (ξ))

l−1 P(α)(ξ)ε|β| F(Dβϕεj u)
∣∣∣
∣∣∣
2

L2(R
n)

+ C4 ·
∣∣∣
∣∣∣(ε · h AP (ξ))

l−1 F(ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)
.

Going on analogously as above, since suppϕεj ⊂ ωε·( j−1) at step (l−1), then we obtain
the estimate (3).

We denote by s the smallest natural number such that s · A0
P ⊂ N

n
0 ; and

for any multi-index α ∈ s · A0
P, there is β ∈ N

n
0 such that α = 2 · β. We

set Q P(ξ) =
∑

β∈s A0
P

ξβ, q(ξ) = |Q(ξ)| 1
s . Let Q P(D) be a differential operator, and

Q P(ξ) its corresponding polynomial. In Lemma 3 we can take q(ξ) in place of h AP (ξ).

LEMMA 4. Let P(D) be an hypoelliptic operator (ordP=m). Then there is a con-
stant C > 0 such that, for any ε ∈ (0, 1), and any function u ∈ C∞(�) the following
estimate is satisfied:

ε2s ·
∑

06=α∈ N n
0

ε−2|α|
∣∣∣
∣∣∣Q P(D)P

(α)(D)u
∣∣∣
∣∣∣
2

L2(ωε j )

≤ C ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε( j−1))

+ C ·
s∑

i=1

∑

|β|≤(i−1)·m, β∈N
n
0

∣∣∣
∣∣∣(ε · q(ξ))s−i · ε|β| F(Dβϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)
,

j = 1, 2, ...

(5)

where ω ⊂⊂ �.

The proof follows from Lemma 3 and the definition of the polynomial Q P(ξ).

LEMMA 5. For any couple of multi-indeces β, α such that β ∈ s A P and α ∈
j AP \ ( j − 1)AP , β ≥ α ( j ∈ N

1
0, j ≤ s), we have |β − α| ≤ s − j.

Proof. We prove it by contradiction. Let’s suppose there are two multiindeces β ∈
s AP and α ∈ j AP \ ( j − 1)AP , β ≥ α such that |β − α| ≥ s − j + 1. Since
α 6∈ ( j − 1)AP, then from the definition of the set A P, it follows that there exists an
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index i0 : 1 ≤ i0 ≤ k such that (α, λi0 ) > di0( j − 1). As min
1≤ j≤n

λ
i0
j = 1, 0 < di0 ≤ 1,

then (β, λi0) = (β−α, λi0 )+(α, λi0 ) ≥ |β−α|+(α, λi0 ) > s− j+1+( j−1)di0 ≥ sdi0 ,
i.e. β 6∈ s AP ∩ N

n
0.

LEMMA 6. Let P(D) be an hypoelliptic operator (ordP=m), j be a natural num-
ber. Then there is a constant C > 0 for which the following estimate is satisfied:

ε2s
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Q P(D)P

(α)(D)u
∣∣∣
∣∣∣
2

L2(ωε j )

≤ C ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε( j−1))

+ C ·
s∑

r=0

∑

β∈(r AP \(r−1)AP )∩N
n
0

ε−2r
∣∣∣∣Dβ P(D)u

∣∣∣∣2
L2(ωε( j−1)).

(6)

Proof. By Lemma 3, it is sufficient to estimate the second term of the right hand side
of (5). There is a constant C1 > 0 for which it holds:

s∑

i=1

∑

|γ |≤(i−1)m

∣∣∣
∣∣∣(εq(ξ))s−iε|γ |F(Dγ ϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

≤ C1

∑

|γ |≤(s−1)m

∣∣∣
∣∣∣((εq(ξ))s + 1)ε|γ |F(Dγ ϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

= C1 ·
∑

|γ |≤(s−1)m

∣∣∣
∣∣∣(εs · Q P(ξ)+ 1) · ε|γ |F(Dγ ϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

≤ C1ε
2s

∑

|γ |≤(s−1)m

∣∣∣
∣∣∣Q P(ξ)ε

|γ |F(Dγ ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

+ C1 ·
∑

|γ |≤(s−1)m

∣∣∣
∣∣∣ε|γ |F(Dγ ϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

(7)

Applying Parceval equality and the Newton-Leibniz formula to the first term of the
right hand side of (7), we obtain:

ε2s
∑

|γ |≤(s−1)m

∣∣∣
∣∣∣Q P(ξ)ε

|γ | F(Dγ ϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

= ε2s
∑

|γ |≤(s−1)m

∣∣∣
∣∣∣Q P(D)(ε

|γ | Dγ ϕεj )P(D)u
∣∣∣
∣∣∣
2

L2(R
n)

≤ C1 · ε2s
∑

|γ |≤(s−1)m

∑

β∈N
n
0

∣∣∣
∣∣∣Q(β)

P (ε|γ |Dγϕεj )D
β(P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)
.

(8)
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As from Lemma 5, for any α ∈ s · A P, β ∈ r AP\(r − 1)AP, β ≥ α (s ≥ r)
|α − β| ≤ s − r , then by (8) there is a constant C2 > 0 such that:

ε2s
∑

|γ |≤(s−1)m

∣∣∣
∣∣∣Q P(ξ)ε

|γ | F(Dγϕεj P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

≤ C1 · ε2s
∑

|γ |≤(s−1)m

s∑

r=0

∑

β∈(r AP \(r−1)AP )∩N
n
0

∣∣∣
∣∣∣Q(β)

P (ε|γ |Dγϕεj )D
β(P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

≤ C2 ·
∑

|γ |≤(s−1)m

∑

α∈s AP

s∑

r=0

∑

β∈(r AP \(r−1)AP )∩N
n
0

ε2r
∣∣∣
∣∣∣ε|α−β+γ |(Dα−β+γ ϕεj )D

β(P(D)u)
∣∣∣
∣∣∣
2

L2(R
n)

Then by Lemma 2 from (7), there exists a constant C3 > 0 such that:

s∑

i=1

∑

|γ |≤(i−1)m

∣∣∣
∣∣∣(ε · q(ξ))s−i · ε|γ |F(Dγ ϕεj P(D)u)

∣∣∣
∣∣∣
2

L2(R
n)

≤ C3

s∑

r=0

∑

β∈r AP ∩N
n
0

ε2r
∣∣∣∣Dβ P(D)u

∣∣∣∣2
L2(ω( j−1)).

From this estimate we get the proof of the Lemma.

3. Estimates for higher order derivatives

For a convex set A ⊂ R
n
+ we denote:

t · A = {ν; ν ∈ R
n
+; νt ∈ A} for t > 0,

0 · A = 0,
t · A = ∅ for t < 0.

DEFINITION 5. (cf. [5]) Let � ⊂ R
n be a open set. By G A(�) we denote the set

of the functions f ∈ C∞(�) such that for any compact subset K ⊂ � there exists a
constant C = C(K ) for which:

sup
x∈K

|Dα f (x)| ≤ C j+1 j j , α ∈ j A, j = 1, 2, ...

The class G A(�) is called multianisotropic Gevrey class.

In [5] it was proved that if A = {ν : ν ∈ R
n
+; (ν, λ) ≤ 1} for some λ ∈ R

n
+ ∩ R

n
0,

min
1≤i≤n

λi = 1, then G A(�) = Gλ(�). If λ = (1, ..., 1), then the class G A(�) is the

class of the analytic functions with real variables.
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LEMMA 7. Let N be a C.R. polyhedron, l a natural number,�
′ ⊂ � ⊂ Rn an open

set with diameter less than 2. If f ∈ GN (�
′
), then there is a constant C = C(l, f ) > 0

such that, for any j > l ( j ∈ N
1
0), and any multiindex α ∈ j · N and δ ∈ (0, 1) the

following estimate is satisfied:

(9) δ j · sup
x∈�′

( j−l)δ

|Dα f (x)| ≤ C j+1.

Proof. Since if ( j − l)δ ≥ 1, then �
′
( j−l)δ = ∅, therefore it is sufficient to prove the

estimate (9) in the case δ( j − l) < 1. Then

sup
x∈�′

( j−l)δ

|Dα f (x)| ≤ C j+1 · j j = C j+1 · ( j − l) j ·
(

j

j − l

) j

≤ C j+1
1 · ( j − l) j ≤ C j+1

1 ·
(

1

δ

) j

.

Now the proof easily follows.

THEOREM 2. Let u(x) be a solution of the hypoelliptic equation P(D)u = f,
where f ∈ G AP (�). Then there is a constant K = K (u, ω) > 0 (ω ⊂⊂ �) such that:

(10) ε2 j s+2m ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Q j

P(D)P
(α)(D)u

∣∣∣
∣∣∣
2

L2(ωε j )
≤ K 2( j+1), j = 1, 2...,

where m denotes the order of P(D).

Proof. Since any solution u(x) of the hypoelliptic equation P(D)u = f belongs to
C∞(�) if f ∈ C∞(�), then there is a constant K > 0 such that the inequality (10) is
true for j = 0. We proceed by induction. Let’s suppose that the estimate (10) is true
for any j ≤ l(l ≥ 0). Then we prove it for j = l + 1. Since V (x) = Ql

P(D)u(x) is a
solution of the equation P(D)V = Ql

P(D) f, then by Lemma 6 we get:

ε2s(l+1)+2m ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Ql+1

P (D)P(α)(D)u
∣∣∣
∣∣∣
2

L2(ω(l+1)ε)

= ε2s(l+1)+2m ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣Q P(D)P

(α)(D)Ql
P(D)u

∣∣∣
∣∣∣
2

L2(ω(l+1)ε)

≤ C · ε2sl+2m ·
∑

06=α∈N
n
0

ε−2|α|
∣∣∣
∣∣∣P(α)(D)Ql

P (D)u
∣∣∣
∣∣∣
2

L2(ωlε)

+ C · ε2sl+2m ·
s∑

r=0

∑

β∈r A∩N
n
0

ε2r
∣∣∣
∣∣∣DβQl

P(D) f
∣∣∣
∣∣∣
2

L2(ωlε)
.

(11)



452 G.H. Hakobyan

And by induction we have:

(12) ε2sl+2m ·
∑

α 6=0

ε−2|α|
∣∣∣
∣∣∣P(α)(D)Ql

P (D)u
∣∣∣
∣∣∣
2

L2(ωlε)
≤ K 2(l+1).

For the second term of the right hand side of the estimate (11), by Lemma 7, and as
f ∈ G AP (�), then there is a constant q = q( f, ω) > 0 such that:

(13) ε2sl+2m ·
s∑

r=0

∑

β∈r AP ∩ N n
0

ε2r
∣∣∣
∣∣∣DβQl

P(D) f
∣∣∣
∣∣∣
2

L2(ωlε)
≤ q2(l+2).

And by (12)-(13), we obtain from (11):

ε2s(l+1)+2m ·
∑

α 6=0

ε−2|α|
∣∣∣
∣∣∣Ql+1

P (D)P(α)(D)u
∣∣∣
∣∣∣
2

L2(ω(l+1)ε)
≤ C · (K 2(l+1) + q2(l+2))

≤ K 2(l+2),

if K is sufficiently large.

THEOREM 3. Let u(x) be a solution of the hypoelliptic equation P(D)u = f,
where f ∈ G AP (�). Then for any ω ⊂⊂ � there is a constant K1 = K1(u, ω) > 0
such that: ∣∣∣

∣∣∣Q j
P(D)u

∣∣∣
∣∣∣
2

L2(ω)
≤ K 2( j+1)

1 · j2s j, j = 1, 2, ....

Proof. Since ρ = ρ(ω, ∂�) > 0, then for any δ ∈ (0, ρ) there is �
′ ⊂⊂ � such that

ω ⊂ �
′
δ . Then for any natural number j, taking ε = δ

j from Theorem 2, we have:

(
δ

j

)2s j ∣∣∣
∣∣∣Q j

P(D)u
∣∣∣
∣∣∣
2

L2(ω)
≤
(
δ

j

)2s j ∣∣∣
∣∣∣Q j

P(D)u
∣∣∣
∣∣∣
2

L2(�
′
δ)

≤ K 2( j+1).

It follows:

∣∣∣
∣∣∣Q j

P(D)u
∣∣∣
∣∣∣
2

L2(ω)
≤ K 2( j+1) ·

(
j

δ

)2s j

= K 2( j+1)
1 · j2s j ; j = 1, 2, ... .

PROPOSITION 1. For any multiindex α 6∈ (s − 1)A P we have DαQ P(ξ) ≡ const.

Proof. Since for any multiindex α:

DαQ P(ξ) =
∑

β∈s A0
P ,β≥α

β!

(β − α)!
ξβ−α,
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then it is sufficient to consider the case α ∈ s A P . Let β0 ∈ s A0
P ∩ N

n
0 be such that

α ≤ β0, α 6= β0, then |β0 − α| ≥ 1. By the difinition of the set A P, there is a natural
number i0, (1 ≤ i0 ≤ k) such that (α, λi0 ) > di0 (s−1) and min

1≤ j≤n
λ

i0
j = 1. So we obtain

(β0, λ
i0 ) = (β0−α, λi0 )+(α, λi0 ) > |β0−α|+di0(s−1) ≥ 1+di0(s−1) ≥ sdi0 . This

leads to a contradiction, therefore such β0 ∈ s A0
P ∩ N

n
0 can’t exist. The Proposition is

proved.

LEMMA 8. For any ε > 0 and any function ϕ ∈ C∞
0 (R

n), there is a constant
C > 0 for which the following estimate is satisfied:

ε−(s− j)||Dαϕ||L2(R
n) ≤ C(||Q P(D)ϕ||L2(R

n)+ε−(s)||ϕ||L2(R
n), 0 ≤ j ≤ s, ∀α ∈ j AP .

Proof. By the definition of the polynomial Q P(ξ), for any α ∈ j AP, (0 ≤ j ≤ s)

there is a constant C1 > 0 such that |ξ2α| ≤ C1|Q P(ξ)|
2 j
s , ∀ξ ∈ Rn .

Multiply the latter by ε−2(s− j), for ε > 0, then by Hölder’s inequality there is a
constant C2 > 0 such that:

(14) ε−2(s− j)|ξ2α| ≤ C1ε
−2(s− j)|Q P(ξ)|

2 j
s ≤ C2(Q

2
P(ξ)+ ε−2s).

Applying Parceval equality, then for any ϕ ∈ C∞
0 (R

n) the following is satisfied:

ε−(s− j)||Dαϕ||L2(R
n) ≤ C(||Q P(D)ϕ||L2(R

n) + ε−(s)||ϕ||L2(R
n)).

LEMMA 9. Let � ⊂ Rn be an open set, j be a natural number, 0 ≤ j ≤ s,
δ ∈ (0, 1). Then for any function ϕδ ∈ C∞

0 (�), 0 ≤ ϕδ ≤ 1, ϕδ = 1 on �δ, there is
a constant Cs > 0 such that:

sup
�

|Q(α)
P (D)ϕδ| ≤ Csδ

−(s− j), ∀α ∈ j AP \ ( j − 1)AP .

The proof easily follows from Lemma 4.1 in [7] and Proposition 1.

For any number µ, any open set � ⊂ R
n and any function f ∈ L loc

2 (�) we write
(cf. [7]):

N�,µ( f ) = Nµ( f ) = sup
δ>0

δµ|| f ||L2(�δ).

THEOREM 4. For any multiindex β ∈ j A P ( j ∈ N1
0, 0 ≤ j ≤ s) there is a

constant C > 0 such that:

N j (D
βu) ≤ C(Ns(Q P(D)u)+ N0(u)), ∀u ∈ C∞(�).
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Proof. Let ϕδ ∈ C∞
0 (�) be a function satisfying the condition of Lemma 9, then by

Newton-Leibniz formula, we have:

Q P(D)(ϕδu) =
∑

α

Q(α)
P(D)ϕδ

α!
Dαu

=
∑

α 6∈(s−1)AP

Q(α)
P (D)ϕδ
α!

Dαu +
∑

α∈(s−1)AP

Q(α)
P (D)ϕδ
α!

Dαu.

(15)

By Proposition 1 the first term of (15) is equal to ϕδQ P(D)u. Therefore:

Q P(D)(ϕδu) = ϕδQ P(D)u +
s−1∑

j=0

∑

α∈( j AP\( j−1)AP )

Q(α)
P (D)ϕδα!

D

α

u.

So there is a constant C > 0 such that:

||Q P(D)(ϕδu)||L2(R
n) ≤C{||ϕδQ P(D)u||L2(R

n)

+
s−1∑

j=0

∑

α∈( j AP\( j−1)AP)

||Q(α)
P (D)ϕδDαu||L2(R

n)}.

By the definition of Nµ, for a suitable constant C1 > 0 we have:

||Q P(D)(ϕδu)||L2(R
n)

≤ C1δ
−s



Ns(Q P(D)u)+

s−1∑

j=0

∑

α∈( j AP\( j−1)AP)

N j (D
αu)





≤ C1δ
−s



Ns(Q P(D)u)+

s−1∑

j=0

∑

α∈ j AP

N j (D
αu)



 .

(16)

Since ||ϕδu||L2(R
n) ≤ N0(u), then by Lemma 8 from (16) it follows that for a constant

C2 > 0 we have:

ε−(s− j)||Dβ(ϕδu)||L2(R
n)

≤ C2



δ

−s



Ns(Q P(D)u)+

s−1∑

j=0

∑

α∈ j AP

N j (D
αu)



+ ε−s N0(u)



 ,

(17)

∀β ∈ j AP . Taking ε = δ
σ
, δ < dim�

2 and multiplying by (17) δs, we get:

σ (s− j)N j (D
βu) ≤ C2



Ns(Q P(D)u)+

s−1∑

j=0

∑

α∈ j AP

N j (D
αu)



 ,

∀β ∈ j AP .

(18)
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Taking the sum of (18) for all j, j = 0, ..., s :

s∑

j=0

σ (s− j)
∑

β∈ j AP

N j (D
βu)

≤ (s + 1) · C2



Ns(Q(D)u) +

s−1∑

j=0

∑

α∈ j AP

N j (D
αu)+ σ s N0(u)



 .

For sufficiently large σ , we can find a constant C3 = C3(σ ) > 0 such that:

s∑

j=0

σ (s− j)
∑

β∈ j AP

N j (D
βu) ≤ C3{Ns(Q P(D)u)+ N0(u)}.

The proof of the Lemma follows.

THEOREM 5. Any solution of an hypoelliptic equation P(D)u = f belongs to
G AP (�), if f ∈ G AP (�).

Proof. Let ω ⊂⊂ �. By Theorem 4, for any v ∈ C∞(�), we have:

||Dβv||L2(ωs+t ) ≤ C2(||Q P(D)v||L2(ωs) + t−s ||v||L2(ωs )),

where t > 0. Taking t = δ
l , s = (1 − 1

l )δ we get:

(19) ||Dβv||L2(ωδ) ≤ C2

(
||Q P(D)v||L2(ω(1− 1

l )δ
) +

(
δ

l

)−s

||v||L2(ω(1− 1
l )δ
)

)
.

By Theorem 1.1 of [6], for the polyhedron s A P there is a natural number j0 ≥ s such
that any multi-index α ∈ j AP, j ≥ j0, can be represented in the form α = β + γ,

where β ∈ s AP ∩N
n
0, γ ∈ ( j − s)AP ∩N

n
0 . For simplicity let j0 = s. Therefore, every

multiindex α can be represented as α =
l∑

k=1

α(k), where l = [ j
s ] if [ j

s ] is integer, and

l = [ j
s ] + 1 otherwise, α(k) ∈ s AP ∩ N

n
0, k = 1, .., l. Now let β = α1, then by (19) we

get:

||Dα1
(Dα−α1

)u||L2(ωδ)

≤ C2

(
||Q P(D)(D

α−α1
)u||L2(ω(1− 1

l )δ
+
(
δ

l

)−s

||Dα−α1
u||L2(ω(1− 1

l )δ
)

)

≤ C2

(
||Dα2

Dα−α1−α2
Q P(D)u||L2(ω(1− 1

l )δ

+
(
δ

l

)−s

||Dα2
(Dα−α1−α2

)u||L2(ω(1− 1
l )δ
)

)
.

(20)



456 G.H. Hakobyan

Taking the function v = Dα−α1−α2
Q P(D)u in the first term of the right hand side

of (20) and taking v = Dα−α1−α2
u in the second term of the right hand side of (20),

applying to (20) the estimate (19) and working anologously to step (l − 1), we obtain:

||Dαu||L2(ωδ) ≤ C l
2

l∑

i=0

C i
l

(
l

δ

)si

||Q(l−i)
P (D)u||L2(ωs )

≤ C l
2

l∑

i=0

C i
l

(
l

δ

)si

K l−i+1(l − i)s(l−i)

≤ C l
3

l∑

i=0

C i
l

(
1

δ

)si

(l)sl ≤ (C4(δ))
j+1 j j ,

i.e. u ∈ G AP (�).

Let µ ∈ R
n
+, i = 1, ..., n, min

1≤i≤n
µi = 1 and 0 < ρi ≤ 1, i = 1, ...n .

We denote by B = {ν ∈ R
n
+, (ν, µi ) ≤ ρi , i = 1, ..., n}.

THEOREM 6. Let f ∈ G B(�). Then any solution of the hypoelliptic equation
P(D)u = f belongs to G B∩AP (�).

The theorem was proved analogously to Theorem 2.4 with some modifications. We
now present two examples clarifying the previous results.

EXAMPLE 1. Let n = 2, P( ∂
∂x ,

∂
∂y ) = ( ∂

2

∂x2 − ∂
∂y )(

∂2

∂y2 − ∂
∂x ). Using the notations

D1 = 1
i
∂
∂x , D2 = 1

i
∂
∂y , we have:

P(D) = (−D2
1 − i D2)(−D2

2 − i D1) = i D3
1 + i D3

2 + D2
1 D2

2 − D1 D2,

and its characteristic polynomial is:

P(ξ) = (−ξ2
1 − iξ2)(−ξ2

2 − iξ1) = iξ3
1 + iξ3

2 + ξ2
1 ξ

2
2 − ξ1ξ2.

It is easy to see that P(ξ) is a multi-quasi-elliptic polynomial, and therefore the set
MP is a C.R. polyhedron. Simple computations show that MP = {ν ∈ R2

+, 2ν1 + ν1 ≤
1; ν1 + 2ν1 ≤ 1}. The exact weight hypoellipticity of the operator P(D) is

h(ξ) = |ξ1|
1
2 | + |ξ2|

1
2 | + |ξ1|

1
3 |ξ2|

1
3 .

By Hörmander Theorem (cf. 8, Theorem 11.4.1), all the solutions of the equation
P(D)u = 0 belong to the Gevrey class G2,2(�) and this result is sharp remaining in
the frame of the anisotropic Gevrey classes. However, from the hypoellipticity and the
form of the operator P(D), it follows that any solution can be represented in the form:

u(x, y) = u1(x, y)+ u2(x, y),
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where u1(x, y) ∈ G1,2(�),u2(x, y) ∈ G2,1(�). Using this fact, we can estimate
Dα1

1 Dα2
2 u, where α1 = α2 = j, j = 1, 2, ... as follows: for any compact subset

K ⊂ � there exist two constants C1 = C1(K , u1) > 0 and C2 = C2(K , u2) > 0 such
that:

sup
x∈K

|D j
1 D j

2 u(x, y)| ≤ sup
x∈K

|D j
1 D j

2 u1(x, y)| + sup
x∈K

|D j
1 D j

2 u2(x, y)|

≤ C2 j+1
1 j1 j j2 j + C2 j+1

2 j2 j j1 j ≤ C2 j+1
3 j3,

where C3 = max(C1,C2). Therefore, the classical Gevrey classes don’t describe com-
pletely the behaviour of the solutions of the hypoelliptic equation P(D)u = 0. Using
the multianisotropic classes Gevrey and noticing that ( j, j) ∈ 3 j MP , we have:

sup
x∈K

|D j
1 D j

2 u(x, y)| ≤ C2 j+1 j3 j .

Let for example f ∈ G B(�), where:

B =
{
ν ∈ R2

+, 3ν1 + 3

2
ν2 ≤ 1

}
.

Then A = MP ∩ B = {ν ∈ R2
+, 3ν1 + 3

2ν2 ≤ 1; ν1 + 2ν2 ≤ 1}.
From Theorem 2.5 we have that all the solutions of the equation P(D)u = f

belong to G A(�).

EXAMPLE 2. Let n = 2 and P(D) be the operator with symbol:

P(ξ) = ξ6
1 (ξ1 − ξ2)

6 + ξ8
1 ξ

2
2 + ξ8

1 + 1.

The polynomial P(ξ) is not multi-quasi-elliptic. Simple computations show that:

MP =
{
ν ∈ R2

+, 2ν1 + 3ν2 ≤ 1; ν1 + ν2 ≤ 2

3

}
.

Let P(D)u = f , where f ∈ G B(�), B for instance has the form:

B = {ν ∈ R2
+, 2ν1 + 3

2
ν2 ≤ 1}.

Since B ∩ MP = MP , then from Theorem 2.5 it follows that u ∈ G MP�.
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