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Abstract. The purpose of the present paper is to investigate the structure of distance

spheres and cut locus C(K) to a compact set K of a complete Alexandrov surface X with

curvature bounded below. The structure of distance spheres around K is almost the same

as that of the smooth case. However C(K) carries different structure from the smooth case.

As is seen in examples of Alexandrov surfaces, it is proved that the set of all end points

Ce(K) of C(K) is not necessarily countable and may possibly be a fractal set and have an

infinite length. It is proved that all the critical values of the distance function to K is closed

and of Lebesgue measure zero. This is obtained by proving a generalized Sard theorem for

one-valuable continuous functions.

Our method applies to the cut locus to a point at infinity of a noncompact X and to

Busemann functions on it. Here the structure of all co-points of asymptotic rays in the sense

of Busemann is investigated. This has not been studied in the smooth case.

Résumé. L’objet de cet article est d’étudier la structure des sphères de distance et du cut

locus C(K) d’un ensemble compact.
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INTRODUCTION

The topological structure of the cut locus C(p) to a point p on a complete,

simply connected and real analytic Riemannian 2-manifold M was first investigated

by Poincaré [P], Myers [M1], [M2] and Whitehead [W]. If such an M has positive

Gaussian curvature, then (1) Poincaré proved that C(p) is a union of arcs and does

not contain any closed curve and its endpoints are at most finite which are conjugate

to p, and (2) Myers proved that if M is compact (and hence homeomorphic to a

2-sphere), then C(p) is a tree and if M is noncompact (and hence homeomorphic to

R
2), then it is a union of trees. Here, a topological set T is by definition a tree iff

any two points on T is joined by a unique Jordan arc in T . A point x on a tree T

is by definition an endpoint iff T \ {x} is connected. Whitehead proved that if M is

not simply connected, then C(p) carries the structure of a local tree and the number

of cycles in C(p) coincides with the first Betti number of M . Here, a topological set

C is by definition a local tree iff for every point x ∈ C and for every neighborhood U

around x, there exists a smaller neighborhood T ⊂ U around x which is a tree.

The structure of geodesic parallel circles for a simple closed curve C in a real

analytic Riemannian plane M was first investigated by Fiala [F] in connection with

an isoperimetric inequality. Hartman extended Fiala’s results (and also Myers’ ones

on C(p)) to a Riemannian plane with C2-metric. Geodesic parallel coordinates for a

given simply closed C2-curve was employed in [H] to prove that there exists a closed

set E ⊂ [0,∞) of measure zero such that if t /∈ E , then

(1) the geodesic t-sphere S(C; t) := { x ∈ M ; d(x, C) = t} around C consists of a finite

disjoint union of piecewise C2-curves each component of which is homeomorphic

to a circle,

(2) the length L(t) of S(C; t) exists, and moreover dL(t)
dt also exists and is continuous

on (0,∞) \ E . Furthermore, the set E is determined by the topological structure

of the cut locus and focal locus to C.
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These results were extended to complete, open and smooth Riemannian 2-mani-

folds (finitely connected or infinitely connected) in [S], [ST1], [ST2].

The purpose of the present article is to establish almost similar results on the

structure of cut loci and geodesic spheres without assuming almost any differentiabil-

ity. In fact, a simple closed curve in a C2-Riemannian plane will be replaced in our

results by a compact set in an Alexandrov surface. From now on, let X be a connected

and complete Alexandrov space without boundary of dimension 2 whose curvature is

bounded below by a constant k. Let K ⊂ X be an arbitrary fixed compact set and

ρ : X → R the distance function to K. Let S(t) := ρ−1(t) for t > 0 be the distance

t-sphere of K. Let C(K) be the cut locus to K and Ce(K) the set of all endpoints of

C(K). With these notations our results are stated as follows.

Theorem A. — For a connected component C0(K) of C(K),

(1) C0(K) carries the structure of a local tree and any two points on it can be joined

by a rectifiable Jordan arc in it ;

(2) the inner metric topology of C0(K) is equivalent to the induced topology from

X ;

(3) there exists a class M := {m1, · · ·} of countably many rectifiable Jordan arcs
mi : Ii → C0(K), i = 1, · · ·, such that Ii is an open or closed interval and such

that

C0(K) \ Ce(K) =
∞⋃

i=1

mi(Ii) , disjoint union ;

(4) each mi has at most countably many branch points such that there are at most

countably many members in M emanating from each of them.

The above result is optimal in the sense that C(K) in Example 4 cannot be

covered by any countable union of Jordan arcs.

We see from (3) and (4) in Theorem A that C(K) has, roughly speaking, a self

similarity. The cut locus C0(K) is a fractal set iff the Hausdorff dimension of C0(K)

in X is not an integer. Example 4 in §1 suggests that C0(K) will be a fractal set,

where Ce(K) is uncountable.

Theorem B. — There exists a set E ⊂ (0,∞) of measure zero with the following

properties. For every t /∈ E ,
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(1) S(t) consists of a disjoint union of finitely many simply closed curves.

(2) S(t) is rectifiable.

(3) Every point x ∈ S(t)∩C(K) is joined to K by at most two distinct geodesics

of the same length t. Furthermore, if x ∈ C(K) ∩ S(t) is joined to K by a

unique geodesic, then x ∈ Ce(K).

(4) There exists at most countably many points in S(t)∩C(K) which are joined

to K by two distinct geodesics.

It should be noted that in contrast with the Riemannian case, the set E is not

always closed. In fact, X admits a singular set Sing(X) and E contains ρ(Sing(X)).

Example 2 in §1 provides the case where ρ(Sing(X)) is a dense set on (0, diamX).

In due course of the proof we obtain a generalized Sard theorem on the set of

all critical values of a continuous (not necessarily of bounded variation) function, see

Lemma 3.2, and prove the

Theorem C. — The set of all critical values of the distance function to K is closed

and of measure zero.

The Basic Lemma applies to the cut locus of a point at infinity. Let γ : [0,∞)→ X

be an arbitrary fixed ray. A co-ray σ to γ is by definition a ray obtained by the limit

of a sequence of minimizing geodesics σj : [0, �j] → X such that limj→∞ σj(0) = σ(0)

and such that {σj(�j)} is a monotone divergent sequence on γ[0,∞). Through every

point on X there passes at least a co-ray to γ. A co-ray σ to γ is said to be maximal

iff it is not properly contained in any co-ray to γ. Let C(γ(∞)) be the set of all the

starting points of all maximal co-rays to γ. In the Riemannian case the set C(γ(∞))

is contained in the set of all non-differentiable points of the Busemann function Fγ

with respect to γ. Here Fγ is defined by

Fγ(x) := lim
t→∞

[t− d(x, γ(t))], x ∈ X .

The set C(γ(∞)) may be understood as the cut locus at a point γ(∞) of infinity,

for it carries the same structure as cut locus. The structure of C(γ(∞)) has not

been discussed even in Riemannian case. Our proof method applies to investigate the

structure of C(γ(∞)) on X , and we obtain
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Theorem D. — Let γ : [0,∞) → X be an arbitrary fixed ray.

(1) Theorem A is valid for each component of C(γ(∞)) .

(2) There exists a set E(γ(∞)) ⊂ (0,∞) of measure zero with the property that

Theorem B is valid for the levels of Fγ .

The proof of Theorem D is essentially contained in those of Theorems A and B

and omitted here. The first two statements in Theorem A were proved by Hebda in

[He] in the case where K is a point on a smooth Riemannian 2-manifold. In view

of the proofs of these theorems, we recognize that the differentiability assumption in

Riemannian case is not essential.

Basic tools in Alexandrov spaces and length spaces are referred to [GLP] and

[BGP]. The authors would like to express their thanks to H. Sato for valuable dis-

cussion on the treatment of the Sard theorem for continuous functions developed in

Lemma 3.2, and also to J. Itoh for the discussion on the construction of Example

4. This work was achieved during the second author’s visit to Kyushu University in

1992-93. He would like to express his thanks to Kyushu University for its hospitality

while he was staying in the Department of Mathematics.

1. PRELIMINARIES

Let M2(k) be a complete simply connected surface with constant curvature k.

An Alexandrov spaceX with curvature bounded below by a constant k is by definition

a locally compact complete length space with the following properties :

(1) Any two points x, y ∈ X are joined by a curve, denoted by xy and called a

geodesic, whose length realizes the distance d(x, y).

(2) Every point x ∈ X admits a neighborhood Ux with the following property. There

exists for every geodesic triangle ∆ = ∆(pqr) in Ux a corresponding geodesic
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triangle ∆̃ = ∆(p̃q̃r̃) with the same edge lengths sketched on M2(k) such that if

s is a point on an edge qr of ∆ and if s̃ is a point on the corresponding edge q̃r̃

of ∆̃ with d(q, s) = d(q̃, s̃), then d(p, s) ≥ d(p̃, s̃).

The above property makes it possible to define an angle � yxz at x ∈ X between

two geodesics xy and xz, and to lead the Alexandrov convexity property as well as

the Toponogov comparison theorem for geodesic triangles. Alexandrov spaces with

curvature bounded below have the following properties which are used throughout

this paper.

Fact 1 (see 2.8.2 Corollary in [BGP]) Every geodesic on X does not have branches.

Namely, if a point z ∈ X belongs to an interior of geodesics xy and xy1,

then these four points are on the same geodesic.

Fact 2 (see 2.8 in [BGP]) If {piqi} and {piri} are sequences of geodesics such that

limi→∞ piqi = pq and limi→∞ piri = pr, then

lim inf i→∞� qipiri ≥ � qpr .

Fact 3 (The first variation formula ; see Theorem 3.5 in [OS]) For a geodesic xy

and for a point p ∈ X we have

d(p, y)− d(p, x) = −d(x, y) · cos min px � pxy + o(d(x, y)) ,

where the minimum is taken over all geodesics joining p to x.

From now on, letX be a 2-dimensional Alexandrov space with curvature bounded

below by k. It was proved in § 11; [BGP] that if a 2-dimensional Alexandrov space X

without boundary has curvature bounded below, then it is a topological 2-manifold.

However it is not expected for such an X to admit a usual differentiable manifold

structure. In fact, singular points may exist on X . It was proved in [OS] that

X admits a full measure subset X0 on which C1-differentiable structure and C
1
2 -

Riemannian structure is well defined. A point p ∈ X is by definition a singular point

iff the space of directions Sp at p is a circle of length less than 2π. It follows from the

Toponogov comparison theorem that Sing(X) is a countable set, (see [G]).
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Notice that the strict inequality in Fact 2 occurs only when p ∈ X is a singular

point. If dimX = 2 in Fact 2, then lim i→∞� qipiri = � qpr holds for every p /∈
Sing(X).

The following example (see [OS]) shows that Sing(X) forms a dense set in X .

Example 1. — Let Pn ⊂ R
3 for n ≥ 4 be a convex polyhedron contained in 2-ball

around the origin with the following properties. All the vertices of Pn are those of

Pn+1 and the image under radial projection of all the vertices of Pn to the unit sphere

S2(1) forms an δn-dense set on S2(1) with limn→∞ δn = 0. If X ⊂ R
3 is the Hausdorff

limit of {Pn}, then X is an Alexandrov surface of curvature bounded below by 0 and

its singular set is dense on it.

Let K ⊂ X be an arbitrary fixed compact set. Let ρ : X → R be the distance

function to K, i.e., ρ(x) := d(x,K), x ∈ X . A geodesic joining x to a point y ∈ K

with length ρ(x) is called a geodesic from x to K. Let Γ(x) for x ∈ X \K be the set

of all geodesics from x to K. A point x ∈ X is by definition a cut point toK iff a

geodesic in Γ(x) is not properly contained in any geodesic to K. The cut locus C(K)

to K is by definition the set of all cut points to K. Notice that X \K has countably

many components. Each bounded component of it contains a unique component of

C(K). Thus C(K) has at most countably many components. Notice also that every

singular point of X is a cut point to K because such a point cannot be an interior

of any geodesic on X . In contrast to the Riemannian case, C(K) is not necessarily

closed in X , for instance see Examples 2 and 4. From the definition of cut locus to

a compact set K we observe that C(K) ∩ K = ∅, while we allow the existence of a

sequence of cut points to K converging to a point on K.

Example 2. — Let D be a convex domain in R
2. Then, its double F is an Alexandrov

surface with curvature bounded below by 0. If a point p on the plane curve ∂D has

positive curvature, then C(p) = ∂D \ {p}, and in particular d(p, C(p)) = 0.

A point x ∈ X is by definition a critical point of ρ iff for every tangential direction

ξ ∈ Sx there exists a geodesic xz ∈ Γ(x) whose tangential direction at x makes an

angle with ξ not greater than π/2. The set of all critical points of ρ is denoted by
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Crit(ρ). It is clear that Crit(ρ) ⊂ C(K). If x ∈ Sing(X) has the property that Sx has

length not longer than π, then x is a critical point of ρ.

The following Example 3 of a flat cone shows that its vertex is a critical point of

ρ and that the strict inequality in Fact 2 occurs. Thus, the behavior of geodesics on

X is quite different from that on Riemannian manifolds.

Example 3. — Let X be a flat cone with its vertex x, at which Sx has length π. Let

K ⊂ X be a line segment which intersects a generating half line � orthogonally at its

midpoint. We develop X to a closed half plane H such that the double cover �̃ of �

is a line and forms the boundary of H. The developed image K̃ ⊂ H of K forms two

parallel line segments orthogonal to �̃ and each of them has the same length. If a line

segment p̃q̃ with p̃, q̃ ∈ K̃ is parallel to �̃, then its midpoint r̃ has the preimage r ∈ X

as a critical point of ρ. The Γ(r) consists of exactly two elements which are developed

onto p̃q̃ making an angle π at r̃. If a sequence {rn} of such points converges to x,

then {Γ(rn)} converges to a unique geodesic Γ(x), and x is a critical point of ρ.

There are three types of cut points to K. A cut point p to K is an endpoint if

the set of tangential directions to all elements of Γ(p) forms either a point or a closed

subarc of Sp. A cut point q ∈ C(K) is by definition a regular point iff Γ(q) consists of

exactly two elements. A cut point q is by definition a branch point iff Γ(q) contains

at least three connected components.

The following Example 4 provides us with an Alexandrov surface F in R
3 where

the cardinality of the set of all end cut points to p ∈ F is uncountable.

Example 4. — A monotone increasing sequence {Fn} of convex polyhedra in R
3 is

successively constructed in such a way that if F is the Hausdorff limit of {Fn}, then
F admits a point p at which C(p) has the following properties :

(1) the cardinality of the set of all endpoints of C(p) is uncountable ;

(2) there exists a sequence of endpoints of C(p) converging to an interior of some

geodesic emanating from p.

Let Π(a) ⊂ R
3 for a ≥ 0 be the plane parallel to (x, y)-plane and given by z = a.

For convex polygons P,Q ⊂ R
3, not lying on the same plane, we denote by C(P ;Q)
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the convex polyhedron generated by P and Q. A positive number q is identified with

the point (0, 0, q) ∈ R
3 when there is no confusion.

Let {rn} be a strictly decreasing sequence with r0 := 1 such that lim rn =: r > 0,

and {pn} a strictly increasing sequence with p0 := 0 such that lim pn =: p < ∞. Let

∆0 ⊂ Π(0) be a right triangle centered at the origin O of R
3 whose inscribed circle

has radius r0 = 1. A sequence of right 3 · 2n-gons ∆n ⊂ Π(pn) for n = 1, . . . with

the inscribed circle S(pn; rn) centered at a point pn with radius rn is successively

constructed as follows. For given sequences {rn} and {pn}, we choose a strictly

increasing sequence {θn} such that θ0 > 0 and lim θn < π/2 and such that

(1-1) (pn − pn−1) tan θn−1 = rn−1 − rn ,
rn−1

cos π
3·2n

− rn ≤ (pn − pn−1) tan θn .

Let ∆n ⊂ Π(pn) be placed as follows. Every other edge of ∆n is parallel to an

edge of ∆n−1. The plane containing these edges meets z-axis at a point qn with

qn = rn−1 cot θn−1 + pn−1 = rn cot θn−1 + pn. If an edge of ∆n is not parallel to any

edge of ∆n−1, then the plane containing qn and this edge intersects Π(pi) and the line

of intersection does not separate ∆i for all i = 0, · · ·n − 1. The relation (1-1) then

implies that

Fn := ∂(
n⋃

k=1

C(∆k−1; ∆k)) ,

for all n is the boundary of a convex polyhedron. The polyhedron Fn has the property

that the set of all its vertices coincides with the set of all endpoints of C(pn). If q is a

vertex of ∆k for some k < n, then the geodesic pnq on Fn intersects orthogonally an

edge of every ∆j for j = k + 1, · · · , n at its midpoint. If F is the Hausdorff limit of

{Fn}, then F is an Alexandrov surface with curvature bounded below by zero. The

point p ∈ F has the property that lim pn = p and the set of all endpoints of C(p)

is the union of all vertices of all ∆n’s. The set of all accumulation points of those

vertices lies on S(p, r) \ { geodesics joining p to all vertices of all ∆n’s }. Therefore,

the set of all endpoints of C(p) is uncountable. Moreover, if q ∈ F is a vertex of ∆n,

then there exists a sequence of endpoints of C(p) converging to an interior of pq. For

a suitable choice of sequences {rn} and {pn} we see that C(p) has an unbounded total

length.
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We now discuss a general property of cut locus of K. As discussed in [BGP],

every point on X admits a disk neighborhood. For a point x ∈ X and for an r > 0

we denote by B(x; r) an open metric r-ball centered at x. For every compact set

A ⊂ X such that d(A,K) > 0, we find a positive number r = rA with the following

properties:

(1) d(A,K) ≥ 4r ;

(2) there exist for every point x ∈ A two disk neighborhoods Ur(x) and U2r(x) such

that Ur(x) ⊃ B(x; r), U2r(x) ⊃ B(x; 2r) ; the boundaries ∂Ur(x) and ∂U2r(x)

are homeomorphic to a circle ;

(3) ∂Ur(x) ⊂ {z ∈ X ; d(z, x) = r} and ∂U2r(x) ⊂ {z ∈ X ; d(z, x) = 2r}. To each

point x ∈ C(K) we assign a sufficiently small positive number ε(x) such that for

A := B(x; 1
2d(x,K)) and for r = rA every point x′ ∈ B(x; ε(x)) has the property

that every member in Γ(x′) intersects ∂Ur(x) (and also ∂U2r(x)) at a unique

point. If ε(x) is taken sufficiently small then this property is justified by the

Toponogov comparison theorem for a narrow triangle ∆(xγ′(r1)γ′(2r)), where

γ′ ∈ Γ(x′) and γ′(r1) ∈ ∂Ur(x). In fact the triangle has excess not greater than

ε(x).

It follows from the choice of ε(x) that U2r(x) \ Γ(x′) for every x′ ∈ B(x; ε(x))

consists of a countable union of disk domains and each component of it is bounded

by two subarcs of γ′ and σ′ for γ′, σ′ ∈ Γ(x′) and a subarc of ∂U2r(x) cut off by γ′

and σ′.

The following notation of a sector at a point x ∈ C(K) plays an important role

in our investigation.

Definition. — Each component of U2r(x) \ Γ(x) (respectively, Ur(x) \ Γ(x)) is by
definition a 2r-sector (respectively an r-sector) at x. The inner angle of a sector

Rr(x) is by definition the length of the subarc of Sx determined by Rr(x).

Let γ, σ ∈ Γ(x) be the boundary of a sector Rr(x) at x ∈ C(K) such that

γ(0) = σ(0) = x. Each sector Rr(x) at x ∈ C(K) has the following properties.

S0 If z ∈ Rr(x), then every geodesic xz lies in Rr(x). If y, z ∈ Rr(x), then every

geodesic yz is contained in U2r(x). If the inner angle at x of Rr(x) is less than
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1
2L(Sx) and if y, z ∈ Rr(x) are sufficiently close to x, then every geodesic yz lies

in Rr(x).

S1 There is no element in Γ(x) which passes through points in Rr(x).

S2 There exists a sequence of cut points to K in Rr(x) converging to x.

S3 If {qj} is a sequence of points in Rr(x) converging to x, then every converging

subsequence of geodesics in {Γ(qj)} has limit as either γ or else σ.

S4 If x′ ∈ C(K) ∩B(x, ε(x)) ∩Rr(x), then there exists a unique sector at x′ which

contains x.

S5 Let I, J be non-overlapping small subarcs of ∂Ur(x) such that γ(r) ∈ I and

σ(r) ∈ J . Then, there exists a positive number δ(I, J) ≤ ε(x) such that if

x′ ∈ B(x; δ(I, J))∩Rr(x) then every element in Γ(x′) meets I ∪ J .

The property S0 is a direct consequence of the triangle inequality and also S1

follows directly from the definition of a sector. Suppose that S2 does not hold. Then,

there exists an open set V around x such that V ∩Rr(x) does not contain any cut point

to K. For any point y ∈ V ∩Rr(x), each geodesic from y to K is properly contained in

some geodesic to K which can be extended so as to pass through x. Therefore, Rr(x)

is simply covered by geodesics to K passing through x, a contradiction. Clearly S3

follows from S1. Property S4 follows from the fact that every geodesic in Γ(x′) does

not pass through x. Property S5 is a direct consequence of S3.

If there exists no sector at x ∈ C(K), then Ur(x) is simply covered by Γ(x) and

the component of C(K) containing x is a single point x. Such a cut point is not

discussed.

It is clear that x ∈ C(K) is an endpoint of C(K) if and only if there is a unique

sector at x. A point x ∈ C(K) is a regular (respectively, branch) cut point to K if

and only if there exist exactly two (respectively, more than two) sectors at x.

Basic Lemma. — Let Rr(x) be a sector at a point x ∈ C(K). Then, for sufficiently

small non-overlapping subarcs I and J of ∂Ur(x) such that γ(r) ∈ I and σ(r) ∈ J ,

there exists a point x∗ ∈ C(K) and a Jordan arc mR : [0, 1] → C(K) ∩ Rr(x) ∩
B(x; ε(x)) with the property that mR(0) = x and mR(1) = x∗. Moreover, there exist
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at most countably many branch cut points on mR[0, 1]. If an interior point mR(t) is

not a branch point, then there exist exactly two geodesics in Γ(mR(t)) intersecting I

and J respectively.

Proof. We first note that if γ = σ, then I and J have a common endpoint at

γ(r) = σ(r). From S4 we find for every point y ∈ B(x; ε(x)) ∩ Rr(x) ∩ C(K), a

unique sector R2r(y; x) at y containing x. If

WI := {y ∈ B(x; ε(x)) ∩Rr(x); there exists an element in Γ(y) intersecting I}

and if

WJ := {y ∈ B(x; ε(x)) ∩Rr(x); there exists an element in Γ(y) intersecting J},

then they are closed in X . Since x ∈ C(K), every neighborhood U around x contains

points in the interiors Int(WI) of WI and Int(WJ). Thus, U contains points on

WI ∩WJ , and hence WI ∩WJ is a nonempty closed set in X . Let x∗ ∈ WI ∩WJ

be chosen so as to satisfy that Rr(x) ∩ R2r(x∗; x) is maximal in WI ∩WJ . Namely,

if y ∈ WI ∩WJ , then Rr(x) ∩R2r(y; x) ⊂ Rr(x) ∩ R2r(x∗; x). It follows from Fact 1

that δ(I, J) tends to zero as I or J shrinks to a point. We may consider that I and

J are taken to be ∂Ur(x) ∩R2r(x∗; x) ∩Rr(x) = I ∪ J . Setting for y ∈ WI ∩WJ ,

W (x; y) := Rr(x) ∩R2r(y; x) ,

we observe thatW (x; y) for every y ∈ WI ∩WJ is divided byWI∩WJ , where Int(WI),

Int(WJ) and W (x; x∗) are all disk domains.

We now prove that WI ∩ WJ is a Jordan arc. To see this a continuous map

ȳ : J → WI ∩WJ joining x to x∗ is constructed as follows. If t ∈ J lies on a geodesic

in Γ(z) for some z ∈ WI ∩WJ , then such a point is unique by Fact 1. We then define

ȳ(t) := z. If t0 ∈ J is not on any geodesic in Γ(z) for any z ∈ WI ∩WJ , then there

is a cut point z0 to K with z0 ∈ WJ such that t0 belongs to some geodesic in Γ(z0).

Applying the discussion as developed in the last paragraph to the sector R2r(z0; x)

and two subarcs J1, J2 of J with J1 ∪ J2 = J ∩ R2r(z0; x), we find a point z∗0 in

WI ∩WJ such that R2r(z0; x) ∩ R2r(z∗0 ; z0) is maximal in WJ1 ∩WJ2 . Here WJi
:=
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{y ∈ R2r(z0; x); there exists an element of Γ(y) intersecting Ji}, i = 1, 2. Then, we

define ȳ(t0) := z∗0 . The continuity of ȳ : J → WI ∩ WJ is now clear. Choosing a

suitable parameterization of J by a step function, we obtain a homeomorphic map

mR : [0, 1] → WI ∩WJ . Similarly we obtain a continuous map ŷ : I → WI ∩WJ .

It follows by construction that a point z ∈ WI ∩WJ is a branch point if and only

if ȳ−1({z}) or ŷ−1({z}) is a non-trivial subarc on I ∪ J . If z �= w are branch points

on mR, then the corresponding open subarcs are disjoint on I ∪J . Therefore, mR has

at most countably many branch points.

Corollary 1.1. — Let x ∈ C(K) and x∗ ∈ C(K) ∩B(x; ε(x)) and I, J ⊂ ∂Ur(x) be

as in Basic Lemma. If z ∈ C(K) ∩W (x; x∗), then there exists a unique Jordan arc

joining z to some point on mR[0, 1].

2. CUT LOCUS AND SECTORS

As can be seen in the proof of the Basic Lemma, each sector at a cut point x to

K contains a Jordan arc in C(K). We shall assert that every Jordan arc in C(K)

is obtained in the manner constructed in the Basic Lemma. To see this, we fix an

arbitrary given Jordan arc c : [0, 1] → C(K). There exists for each t ∈ [0, 1] a small

positive number δ = δ(t) such that c(t, t+δ(t)] (respectively, c[t−δ(t), t)) is contained

entirely in a sector, say, R+
r (x) (respectively, R−

r (x)) at x := c(t) and such that

c[t−δ, t+δ] ⊂ B(x; ε(x)). The first property follows from the fact that every geodesic

in Γ(x) does not meet c([0, 1]) except at x = c(t). Also, if x∗ ∈ C(K) ∩ B(x; ε(x))

is the point as obtained in the proof of Basic Lemma for Rr(x) = R+
r (x) and for

non-overlapping subarcs on ∂Ur(x) ∩R+
r (x), then the resulting Jordan arc

mR+
r (x) : [0, 1] → C(K) ∩B(x; ε(x)) ∩R+

r (x)
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joins x to x∗ and has a small non-empty subarc around 0 which is contained entirely

in c([0, 1]). To see this, we recall that C(K) does not contain a circle bounding a disk

domain, see [P]. If otherwise supposed, then these two Jordan arcs meet only at their

starting point x. Then, there is a geodesic from x to K lying in between these two

arcs, a contradiction to S1. The same is true for R−
r (x) and mR−

r (x). By iterating

this procedure we prove the assertion.

Definition. — A Jordan arc m : [0, 1] → X is said to have left tangent (respectively

right tangent) v ∈ Sm(c) atm(c) for c ∈ (a, b] (respectively c ∈ [a, b)), iff the tangential

direction vm(c)m(t) to any geodesic m(c)m(t) converges to v in Sm(c) as t → c − 0

(respectively t → c+ 0).

Lemma 2.1. — Let m : [0, 1] → C(K) be a Jordan arc. Then m has the right

(respectively, left) tangent at m(t) for all t ∈ [0, 1) (respectively, t ∈ (0, 1]) and the

right tangent (respectively, left tangent) bisects the sector R+
r (m(t)) (respectively,

R−
r (m(t))).

Proof. We only prove the statement for an arbitrary fixed point x = m(t0), 0 < t0 < 1.

Let γ+, σ+ ∈ Γ(x) bound the sector R+
r (x) and also γ−

t , σ
−
t ∈ Γ(m(t)) for t > t0 bound

R−
r (m(t)). Since x is an interior ofm, γ±

t �= σ±
t for all t ∈ (t0, 1). Sincem[t0, t0+δ0] for

a small δ0 > 0 coincides with mR+
r (x)[0, 1], for every t ∈ (t0, t0 + δ0] Γ(m(t)) contains

two geodesics intersecting two subarcs of R+
r (x)∩R−

2r(m(t)). The property S0 implies

that both σ−
t (r)x and γ−

t (r)x are inW (x;m(t)). Clearly, lim t→t0+0σ
−
t (r)x = σ+[0, r]

and lim t→t0+0γ
−
t (r)x = γ+[0, r]. Assume that there is a sequence {m(ti)} with

limi→∞ ti = t0 such that

lim i→∞� σ+(r)xm(ti) =: θ , lim i→∞� γ+(r)xm(ti) =: θ′ .

From the triangle inequality we have

d(σ−
ti
(r), m(ti))− d(σ−

ti
(r), x) ≤ ρ ◦m(ti)− ρ(x) ≤ d(γ+(r), m(ti))− d(γ+(r), x) .

Applying Fact 3 to both sides of the above relation,

− cos θ′ ≤ lim inf i→∞
ρ ◦m(ti)− ρ(x)
d(m(ti), x)

≤ lim sup i→∞
ρ ◦m(ti)− ρ(x)
d(m(ti), x)

≤ − cos θ .
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The above discussion being symmetric, we have θ = θ′ .

It is left to prove the case where m(0) (or m(1)) is an endpoint of C(K) and the

boundary of R+
r (m(0)), (or R−

r (m(1))) consists of a single geodesic. The proof in this

case is clear from the above discussion. Thus, the proof is complete.

Lemma 2.2. — Letm : [0, 1] → C(K) be a Jordan arc in a sector Rr(x) at x := m(0).

Let 2θ be the inner angle of Rr(x) and 2θ+(t), 2θ−(t) for t ∈ (0, 1) the inner angles

of R+
r (m(t)), R−

r (m(t)) respectively. If t0 ∈ (0, 1), then

lim t→t0+0θ
+(t) = θ+(t0), lim t→t0+0θ

−(t) = π − θ+(t0) ,

and

lim t→0+θ
+(t) = θ, lim t→0+θ

−(t) = π − θ .

Moreover, θ+(t) and θ−(t) are continuous on the set of all regular points on m and

lim t→0+ � σ−
t (r)m(t)x = lim t→0+ � γ−

t (r)m(t)x = π − θ .

Proof. Take any positive number ε and a point z0 ∈ Rr(x) which is not a cut point

to {x} such that

θ − ε < � σ(r)xz0, θ − ε < � γ(r)xz0 .

Since limt→0+ σ+
t = σ and limt→0+ γ+

t = γ, we see that R+
r (m(t)) for sufficiently

small t contains z0. From 2θ+(t) ≥ � σ+
t (r)m(t)z0 + � γ+

t (r)m(t)z0 and from Fact 3,

lim inf t→0+ � σ+
t (r)m(t)z0 ≥ � σ(r)xz0 ≥ θ − ε ,

lim inf t→0+ � γ+
t (r)m(t)z0 ≥ � γ(r)xz0 ≥ θ − ε .

Thus, we have

lim inf t→0+2θ+(t) ≥ 2θ − 2ε .

Since ε is taken arbitrary small, lim inft→0+ θ+(t) ≥ θ. From 2θ+(t) + 2θ−(t) ≤ 2π

for all t ∈ (0, 1), the first part is proved by showing that lim inft→0+ θ−(t) ≥ π − θ.
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To see this inequality we apply the Toponogov comparison theorem to geodesic

triangles ∆(xm(t)σ−
t (r)) and ∆(xm(t)γ−

t (r)) to obtain

lim inf t→0+ � σ−
t (r)m(t)x ≥ π − θ ,

lim inf t→0+ � γ−
t (r)m(t)x ≥ π − θ .

From Lemma 2.1 m bisects Rr(x) at x and that

lim t→0+ � σ−
t (r)xσ(r) = lim

t→0+
� γ−

t (r)xγ(r) = 0 .

Therefore, the desired inequality is obtained by

lim inf t→0+2θ−(t) ≥ lim inf t→0+{ � σ−
t (r)m(t)x+ � γ−

t (r)m(t)x} ≥ 2(π − θ) .

The rest is now clear from Basic Lemma.

Lemma 2.3. — Every Jordan arc m : [0, 1] → C(K) is rectifiable.

Proof. As is asserted in the beginning of this section m is expressed by a finite union

of Jordan arcs as obtained in Basic Lemma. We only need to prove the rectifiability

of an m := mR : [0, 1] → C(K) for an arbitrary fixed sector Rr(x) at a cut point

x ∈ C(K).

The Toponogov comparison theorem implies that ∂Ur(x) and ∂U2r(x) are rec-

tifiable and hence J has a length L(J). Also there exists for a sufficiently small

positive number h a constant c(k, r, h) > 0 depending continuously on h such that if

∆ = ∆(uvw) is a narrow triangle with d(u, v), d(u, w) � d(v, w), and if v1 ∈ uv and

w1 ∈ uw satisfy r−h ≤ d(u, v1), d(u, w1) ≤ r+h and 2r−h ≤ d(u, v), d(u, w) ≤ 2r+h

and d(u, v)/d(u, w), d(u, v1)/d(u, w1) ∈ (1−h, 1+h), then d(v, w) ≤ c(k, r, h)d(u1, v1).

For an arbitrary fixed small positive number δ, we define A(δ) ⊂ m([0, 1]) by

A(δ) := {m(t); θ±(t) ∈ (δ, π − δ)} .

In view of Lemma 2.2 we can choose 0 = t0 ≤ t1 ≤ · · · ≤ t2N = 1 such that

A(δ) ⊂
N⋃

i=1

W (m(t2i);m(t2i+1)) ,
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and

� m(ti+1)m(ti)σ+
ti
(2r), � m(ti)m(ti+1)σ+

ti
(2r) ∈ (2δ, π − 2δ)

for every i = 1, ..., 2N , and such that if ui := σ+
ti
(2r), v′i := J ∩ σ+

ti
([0, 2r]) and if

w′
i := J ∩ σ+

ti
(2r)m(ti+1), then d(ui, v

′
i)/d(ui, w

′
i) ∈ (1 − h, 1 + h). If d(ui, m(ti)) ≥

d(ui, m(ti+1)), we then set wi := m(ti+1) and vi on σ+
ti
such that d(ui, vi) = d(ui, wi).

If d(ui, m(ti)) < d(ui, m(ti+1)), we then set vi := m(ti) and wi on m(ti+1)ui such

that d(ui, vi) = d(ui, wi). Then, Fact 3 implies that

lim supN→∞

N∑

i=1

d(m(t2i), m(t2i+1)) ≤
∑

N
i=1d(v2i, w2i)

sin 2δ
≤ c(k, r, h)L(J)

sin 2δ
.

Clearly, each interior point m(t) of m belongs to A(δ) for some δ > 0. The above

discussion shows that every open subarc of m is rectifiable.

If the inner angle of Rr(x) at x is 2π, then the proof is immediate from Fact 3.

Now the critical points of ρ are discussed.

Proposition 2.4. — Assume that x ∈ C(K) does not admit a sector with inner angle

π. Then, there exists a positive number ε1(x) ≤ ε(x) with the following properties.

If Σr(x) is a sector at x with inner angle less than π, then there is a point

x∗ ∈ Σr(x) ∩ C(K) ∩B(x; ε(x)) and mΣ : [ρ(x∗), ρ(x)] → C(K) such that

(a) ρ−1(ρ(x)− ε1(x), ρ(x)] ∩W (x; x∗) =: D1(x) is a disk domain and contains

no critical point of ρ ;

(b) if y ∈ W (x; x∗) ∩ C(K) ∩ B(x; ε1(x)), then there exists a Jordan arc

m : [ρ(y), t0] → C(K) ∩W (x; x∗) ∩ B(x; ε1(x)) joining y to a point mΣ(t0)

such that ρ ◦m(t) = t holds for every t ∈ [ρ(y), t0] ;

(c) for every t ∈ (ρ(y), t0], the sector R−
r (m(t)) has its inner angle less than π,

while R+
r (m(t)) has its inner angle greater than π.

If Λr(x) is a sector with inner angle greater than π, then there is a point

x∗ ∈ C(K) ∩ Λr(x) ∩B(x; ε(x)) and mΛ : [ρ(x), ρ(x∗)] → C(K) such that
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(a’) W (x; x∗) ∩ ρ−1(ρ(x) − ε1(x), ρ(x) + ε1(x)) ∩ B(x; ε1(x)) = D2(x) is a disk

domain and contains no critical point of ρ ,

(b’) if y ∈ W (x; x∗) ∩ C(K) ∩ B(x; ε1(x)), then there exists a Jordan arc

m : [ρ(y), t0] → C(K) ∩ W (x; x∗) joining y to a point mΛ(t0) such that

ρ ◦m(t) = t for all t ∈ [ρ(y), t0] ,

(c’) for every t ∈ [ρ(y), t0] the sector R+
r (m(t)) has inner angle greater than π,

while R−
r (m(t)) has inner angle less than π .

Proof. Suppose that (a) does not hold for any ε ∈ (0, ε(x)]. Then, there is a sequence

{qj} of critical points of ρ inW (x; x∗)∩B(x; ε) converging to x. There exists a positive

number δ such that if Σr(x) is any sector at x with inner angle less than π, then its

inner angle is not greater than π − δ. Let γj , σj ∈ Γ(qj) bound the sector Rr(qj ; x).

Since qj is a critical point of ρ, we may consider that γj satisfies � xqjγj(r) ≤ π/2.

By applying Fact 3 to a triangle ∆(xqjγj(r)),

ρ(qj)− ρ(x) ≤ d(qj , γj(r))− d(x, γj(r))

= −d(x, qj) cos min xqj
� qjxγj(r) + o(d(x, qj)) ,

and similarly (by using ∆(xqjγj(r))),

ρ(x)− ρ(qj) ≤ d(x, γj(r))− d(qj , γj(r))

= −d(x, qj) cos min xqj
� xqjγj(r) + o(d(x, qj)) .

Thus, a contradiction is derived from min xqj
� qjxγj(r) ≤ (π − δ)/2. This proves (a).

Notice that the constant ε1(x) as obtained above does not depend on x but on

the number δ bounding the inner angles less than π.

For the proof of (c) we assert that there is an open set U around x such that

every point in U does not admit any sector with inner angle π. Suppose this is false.

Then, there is a sequence {qj} of cut points converging to x such that qj for every

j admits a sector Πj with inner angle π. Since qj is a critical point of ρ, the above

argument shows that there exists a sector Rr(x) at x with inner angle greater than π

such that almost all qj ’s are contained in it. Suppose x is not a singular point of X .

Then, the equality in Fact 2 holds at x, and S3 implies that the inner angle of Rr(x)

is the limit of those of Πj , a contradiction.
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Let x ∈ Sing(X). By means of the Basic Lemma, all of qj ’s but a finite number

are on mR[0, 1]. In fact, if an infinite subsequence {qk} of {qj} are contained in WJ

(or in WI), then there is a sequence tk ∈ (0, 1) with lim tk = 0 such that mR(tk)

admits a sector Σk with inner angle less than π such that qk ∈ Σk is a critical point

of ρ and lim d(mR(tk), qk) = 0. This contradicts to (a).

We therefore have either R+
r (m(tj)) = Πj or else R−

r (m(tj)) = Πj. If there is an

infinite sequence with R+
r (m(tj)) = Πj , then Lemma 2.2 implies that the limit of their

inner angles is π, a contradiction. If there is an infinite sequence withR−
r (m(tj)) = Πj,

then Lemma 2.2 derives a contradiction that Rr(x) has its inner angle less than π.

We find an ε1(x) ∈ (0, ε(x)] such that B(x; ε1(x)) contains no critical point of

ρ and there is no point on B(x; ε1(x)) admitting a sector with inner angle π. This

proves (c).

For the proof of (b), the Jordan arc is obtained as in the Basic Lemma. We

see from (a) that there is no critical point on this arc, and the derivative (ρ ◦m)′(t)

does not vanish. Therefore, m intersects each level of ρ at a unique point, and is

parameterized by ρ.

Because for every t ∈ [0, 1) R−
r (mΛ(t)) has inner angle less than π, the proof of

the rest part follows from (a), (b) and (c).

The following proposition is analogously proved. The proof is omitted.

Proposition 2.5. — Assume that x admits a sector Πr(x) with inner angle π.

Then, there exists a rectifiable Jordan arc mΠ : [0, 1] → C(K) emanating from x in

Πr(x) ∩B(x; ε(x)) and a positive number ε2(x) satisfying the following properties

(1) ρ(mΠ(t)) ∈ [ρ(x)− ε2(x), ρ(x) + ε2(x)] holds for each t ∈ [0, 1],

(2) there is no critical point of ρ in D3(x) := Πr(x) ∩ R−
r (mΠ(t)) ∩ ρ−1[ρ(x)−

ε2(x), ρ(x) + ε2(x)] except possibly the points on mΠ,

(3) if y ∈ D3(x) ∩ C(K), then there is a Jordan arc m : [ρ(y), t0] → C(K) ∩
W (x; x∗) such that m(t0) ∈ mΠ[0, 1] and ρ ◦m(s) = s for all s ∈ [ρ(y), t0].

Proof of Theorem A(1). Let x be a cut point to K and V any neighborhood around

x. We shall construct a tree T (x) such that T (x) ⊂ V and such that T (x) is a
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neighborhood of x in C(K), i.e., T (x) is a tree neighborhood around x in C(K) such

that T (x) ⊂ V .

If every sector at x has its inner angle less than π, we then take a positive number

ε1(x) so as to satisfy ε1 ∈ (0, ε1(x)) and ρ−1(ρ(x) − ε1, ρ(x)] ⊂ V . Since ρ(x) is a

local maximum, ρ−1(ρ(x) − ε1, ρ(x)] is open. Let T (x) be the set of all cut points

in ρ−1(ρ(x)− ε1, ρ(x)]. It follows from Proposition 2.4 that any cut point in T (x) is

connected to x by a unique rectifiable arc in ρ−1(ρ(x) − ε1, ρ(x)] ∩ C(K), hence in

T (x). Thus, T (x) is a tree neighborhood around x with T (x) ⊂ V .

Suppose that x admits a sector Λr(x) with inner angle greater than π. Take a

rectifiable Jordan arc mΛ and a positive number ε1(x) as in Proposition 2.4. Choose

a positive number ε2 ≤ ε1(x) so as to satisfy

R−
r (mΛ(ρ(x) + ε2)) ∩ ρ−1[ρ(x)− ε2, ρ(x) + ε2] ⊂ V .

We then define a tree neighborhood T (x) around x by the set of all cut points in

R−
r (mΛ(ρ(x) + ε2)) ∩ ρ−1[ρ(x) − ε2, ρ(x) + ε2]. If x′ ∈ T (x) lies in a sector at x

with inner angle less than π, then Proposition 2.4 implies that x′ is joined to x by a

rectifiable Jordan arc in T (x). If x′ ∈ T (x) lies in Λr(x), then x′ lies in the arc mΛ

or in a sector at a point on mΛ with inner angle less than π. Hence, by Proposition

2.4, x′ can be joined to a point on mΛ by a rectifiable Jordan arc in T (x). Therefore

any x′ ∈ T (x) is joined to x by a rectifiable Jordan arc in T (x).

For a cut point x admitting a sector with inner angle π, the construction of T (x)

is left to the reader, since it is similar by making use of Propositions 2.4 and 2.5. This

proves Theorem A(1).

By means of Theorem A(1), we can introduce an interior metric δ on C(K) as

follows. If p, q ∈ C0(K) are in a component C0(K) of C(K), we then define

δ(p, q) := inf{L(c); c is a rectifiable arc in C0(K) joining p and q} ,

and also, if p, q are not in the same component of C(K) ,

δ(p, q) := +∞ .
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Proof of Theorem A(2). Let C0(K) be a component of C(K) and x ∈ C0(K). Since

d ≤ δ on C(K), we only need to prove that lim n→∞δ(xn, x) = 0 for any sequence

{xn} of points in C0(K) with lim n→∞d(xn, x) = 0. Suppose that there exists a

sequence {xn} of points in C0(K) and a positive number η such that δ(xn, x) ≥ η

for any n and lim n→∞d(xn, x) = 0. If xn ∈ B(x; ε1(x)) lies in a sector at x with

inner angle less than π, then Lemma 2.1 and Fact 3 imply that (ρ ◦ c)′(s) ≥ sin δ
2 for

almost all s ∈ [0, δ(xn, x)]. Here, π− δ denotes the maximal inner angle of all sectors

at x with inner angles less than π, and c : [0, δ(xn, x)] → C0(K) the minimizing curve

joining xn to x parameterized by arclength. By integrating the inequality, we get

δ(xn, x) ≤
ρ(x)− ρ(xn)

sin δ
2

≤ d(xn, x)
sin δ

2

.

From what we have supposed, δ(xn, x) ≥ η for any n we see that the sequence {xn}
contains an infinite subsequence all of whose members lie in a sector Rr(x) whose

inner angle is not less than π. Without loss of generality, we may assume that for all

xn,

δ(xn, x) ≥ η, xn ∈ Rr(x) ∩B(x; ε2(x)) .

Take a rectifiable Jordan arc mR emanating from x in Rr(x) as obtained in the Basic

Lemma. Hence xn is connected to a point x′n on mR and xn lies in a sector at x′n
with inner angle less than π. Since C0(K) is a local tree, lim n→∞d(x′n, x) = 0, and

hence lim n→∞d(xn, x
′
n) = 0 by the triangle inequality. Thus

lim n→∞δ(xn, x
′
n) ≤ lim n→∞

d(xn, x
′
n)

sin δ
2

= 0

for some positive δ < π.

On the other hand lim n→∞δ(x, x′n) = 0, since m is rectifiable and C0(K) is a

local tree. Therefore we have

lim n→∞δ(xn, x) ≤ lim n→∞δ(x, x′n) + lim n→∞δ(x′n, xn) = 0 .

This contradicts δ(x, xn) ≥ η for all n.

Definition. — A rectifiable Jordan arc in C(K) is called a path iff it is parameterized

by arclength. A path m : [a, b] → C(K) is called a main path iff for each t ∈ (a, b) the
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inner angle of R+
r (m(t)) at m(t) is maximal of the inner angles of all sectors at m(t)

except R−
r (m(t)).

Proof of Theorem A(3),(4). Let x ∈ C0(K). Let D(x) be an open set of x as con-

structed in the proof of Theorem A(1) such that D(x)∩C0(K) is a tree neighborhood

in C0(K) around x. Since X satisfies the second countability axiom, C0(K) is covered

by a countable union
⋃∞

i=1 D(xi) for xi ∈ C0(K). Thus, C(K) is the union of a count-

able tree neighborhoods. From this fact we only need to prove that T (x) \Ce(K) for

a tree neighborhood T (x) of a cut point x is covered by a countable union of paths

in C0(K). In each sector at x we choose a main path which is maximal in T (x). Let

A1 be the set of all such paths in T (x). Notice that the existence of such a main

path is clear from Lemma 2.2. Because there exists at most countable sectors at x,

A1 is a countable set. Each sector at y ∈
⋃

I∈A1
I =: |A1|, which does not contain

any point on |A1|, corresponds to an open subarc J(y) ⊂ ∂Ur(x). The J(y) is cut

off by two elements in Γ(y) and has the property that if y′ is another such point not

lying on the same main path, then J(y′) ∩ J(y) = ∅. Hence, there exist at most

countably many points y ∈ |A1| admitting a sector which does not contain any point

of |A1|. In each sector at each point y ∈ |A1|, which does not contain any point of

|A1|, choose a main path emanating from y which is maximal in T (x) \ |A1|. If A2

denotes the set of all such paths, then A2 is also countable. Define a sequence of

countable sets A1, A2, ... inductively. If T (x) = |A1| ∪ ...∪ |Ak| for some finite integer

k, then T (x) is clearly covered by countable paths. If the sequence {Ai} is infinite,

we shall prove that T (x) \Ce(K) is covered by ∪∞
i=1|Ai|. Suppose that there exists a

point q ∈ T (x) \ Ce(K) such that q /∈ |Ai| for any i. Let c : [0, δ(x, q)] → T (x) be

the unique path joining x to q. Let R(x) be the sector at x containing c(0, δ(x, q)]

and I1 ∈ A1 the curve in R(x). Since c and I1 lie in the same sector, there exists

a positive number a1 such that c[0, a1] is the intersection of c[0, δ(x, q)] and I1. Let

R(c(a1)) be the sector at c(a1) containing c(a1, δ(x, q)) and I2 ∈ A2 the curve in

R(c(a1)) emanating from c(a1). Then, there exists a positive number a2 such that

c[a1, a1 + a2] is the intersection of c[a1, δ(x, q)] and I2. Since q /∈ |Ai| for any i, we

get an infinite sequence {ai} of positive numbers with
∑∞

i=1 ai ≤ δ(x, q). If R̃(xk),

where xk = c(
∑k

i=1 ai), denotes the sector at xk containing Ik \ {xk}, then it follows
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from Lemma 2.2 that the inner angles of R̃(xk) and R(xk) at xk tend to zero and

a positive number respectively as k → ∞. But this contradicts the assumption that

each Ik is a main path emanating from xk lying in R̃(xk).

3. GEODESIC SPHERES ABOUT K

Let Cea(K) := {x ∈ Ce(K); =Γ(x) > 1}. We observe from the proof of Theorem

A(3) that Cea(K) is countable. As is seen in Example 4, the set Ce(K) \Cea(K) has

the special property that there is no reason to distinguish it from points which are

not on C(K). This is caused by the lack of differentiability. A sufficient condition for

Ce(K) \ Cea(K) to be uncountable is stated as Proposition 3.1.

Proposition 3.1. — Let X be a simply connected Alexandrov surface with curvature

bounded below and {pi} a sequence of cut points to a point p such that each Γ(pi)

consists of a single element. If any subsequence of the sequence does not converge to

p and if the set of all tangential directions vppi
of geodesics ppi is a dense subset in

an open subarc J of Sp, then there exist uncountably many cut points to p which are

endpoints.

Proof. Notice that X is homeomorphic to a 2-sphere or Euclidean plane, since X

is simply connected. Hence, for each cut point x of p, each connected component of

X \Γ(x) is bounded by two geodesics joining x to p. Each component of X \Γ(x) shall
be called a (global) sector at x. Let A be the set of all monotone decreasing sequences

{Σ(xi)} of bounded sectors at cut points xi of the point p such that the inner angle

of Σ(xi) at xi tends to zero as i goes to infinity. It is trivial that the sequence {xi}
converges to a unique cut point of p, which is an endpoint of C(p). If for two elements

{Σ(xi)}, {Σ(yi)} of A, there exists an integer N such that Σ(xi) and Σ(yj) are disjoint

for any i, j ≥ N , then we shall say that {Σ(xi)} and {Σ(yi)} are nonequivalent. Notice
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that limi→∞ xi and limi→∞ yi are distinct if {Σ(xi)} and {Σ(yi)} are nonequivalent.

Let {εi} be any sequence of positive numbers with limi→∞ εi = 0. For the cut point

p1 of p, there exists a cut point x1 of p and a sector Σ(x1) at x1 containing p1

such that the subarc of Sp determined by Σ(x1) is a subarc of J and that the inner

angle of Σ(x1) at x1 is less than π. Since the set {vppi
; i = 1, 2, 3...} is dense in J ,

there exist at least two distinct cut points pi,pj in Σ(x1). Hence, there exist two

cut points q(1),q(2) of p and two disjoint sectors Σ(q(1)),Σ(q(2)) lying in Σ(x1) such

that the inner angle of Σ(q(i)) at q(i) (i=1,2) is less than ε1. One can inductively

define cut points q(i1, ..., in) of p and sectors Σ(q(i1, ..., in)) so as to satisfy that

Σ(q(i1, ..., in)) is contained in Σ(q(i1, ..., in−1)), the two sectors Σ(q(i1, ..., in−1, 1))

and Σ(q(i1, ..., in−1, 2)) are disjoint and the inner angle of Σ(q(i1, ..., in)) at q(i1, ..., in)

is less than εn. This implies that the set A contains uncountably many nonequivalent

elements. In particular, there exist uncountably many cut points of p which are

endpoints.

We shall prove Theorems B and C. The set E ⊂ (0,∞) of all exceptional values

for geodesic spheres is defined by

E := ρ(Sing(ρ))∪ ρ(Crit(ρ))∪ ρ{ the set of all branch cut points to K}∪ ρ(Cea(K)) .

First of all we prove that E is of Lebesgue measure zero. As stated in Section 1,

Sing(X) is countable, and so is ρ(Sing(X)). Also we observe from Theorem A(3) that

the set of all branch cut points is countable.

In connection with the critical points of ρ and sectors at branch and regular cut

points to K, we classify cut points into six sets as follows

CBIC(K) := {x ∈ C(K) \ Sing(X); =Γ(x) > 2, every sector at x has inner angle

less than π} (branch-isolated critical),

CRNC(K) := {x ∈ C(K) \ Sing(X); =Γ(x) = 2, x admits a sector with inner angle

greater than π} (regular-noncritical),

CBNC(K) := {x ∈ C(K) \ Sing(X); =Γ(x) > 2, x admits a sector with inner angle

greater than π} (branch-noncritical),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



556 K. SHIOHAMA M. TANAKA

CRC(K) := {x ∈ C(K) \ Sing(X); =Γ(x) = 2, and the two sectors have

the same inner angle π} (regular-critical),

CBC(K) := {x ∈ C(K) \ Sing(X); =Γ(x) > 2, x admits a sector with

inner angle π} (branch-critical),

CIC(K) := {x ∈ C(K) \ Sing(X); there exists no sector at that point}

(isolated critical).

In order to prove that the set ρ(Crit(ρ)) is of Lebesgue measure zero, we need a

generalized Sard theorem for continuous functions.

Lemma 3.2. — Let f : [0, 1] → R be a continuous function. If

A := {t ∈ [0, 1] ; f ′(t) exists and equals 0} ,

then f(A) is of Lebesgue measure zero.

Proof. For an arbitrary fixed ε > 0 and for each positive integer n, we set

Aε
n := { t ∈ [0, 1] ; sup |h|≤ 1

n
|f(t+ h)− f(t)

h
| ≤ ε} .

The continuity of f implies that Aε
n is closed, hence measurable. Clearly, Aε

n is

increasing in n. Setting Aε :=
⋃

n≥1 A
ε
n, we observe A ⊂ Aε for any ε > 0. We now

fix an ε > 0 and an n and set

Γk := Aε
n ∩ (

k − 1
n

,
k

n
)

for 1 ≤ k ≤ n. Then, f(Γk) ⊂ [inft∈Γk
f(t), supt∈Γk

f(t)], and hence

µ(f(Γk)) ≤ sup t,t′∈Γk
|f(t)− f(t′)| ≤ ε

n
,

where µ is the Lebesgue measure on R. Thus we have

µ(f(Aε
n)) ≤

n∑

k=1

µ(f(Γk)) ≤ ε ,
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and in particular

µ(f(A)) ≤ µ(f(Aε)) = lim n→∞µ(f(Aε
n)) ≤ ε .

This proves Lemma 3.2.

Proof of Theorems B and C. Clearly the set Crit(ρ) is closed, and hence so is ρ(Crit(ρ)).

Using above notations we observe that

Crit(ρ) ⊂ Sing(X) ∪ CBIC (K) ∪ CRC(K) ∪ CIC(K) .

In order to prove that E is of Lebesgue measure zero, we only need to check that

ρ(Crit(ρ)) is of measure zero. If x ∈ CRC(K), then there exists a path m : [−a, a] →
C(K) for a sufficiently small a > 0 with m(0) = x such that (ρ◦ c)′(0) = 0. By means

of Theorem A(3) there are at most countably many paths in the interior of which

CRC(K) is contained. Then, Lemma 3.2 implies that E is of measure zero. This also

proves Theorem C.

For the proof of Theorem B(1) we suppose that S(t) has infinitely many com-

ponents, say S1(t),S2(t),S3(t), ... for some t ∈ (0,∞) \ E . Take any point xi on the

component Si(t) for each i. Since S(t) is compact, by choosing a subsequence if

necessary, we may assume that the sequence {xi} converges to a point x of a com-

ponent S∞(t) of S(t) and that any xi does not lie on S∞(t). Choose a disk domain

U(x) containing x so as to satisfy that some proper subarc I0 of S∞(t) divides U(x)

into two components U+, U−. Let I1 be a proper subarc of I0 containing x and let

I+(respectively I−) denote the set of all points y in I1 such that there exists a geodesic

from y to K passing through U+ (respectively U−). Since x is not a critical point of

ρ, the intersection of I+ and I− is empty. Furthermore, I+ and I− are both closed in

I1 and I+ ∪ I− = I1. Thus either I+ or I− is empty. Therefore, we may assume I+

is empty. Take any sufficiently small positive ε and any points y, z in I0 sufficiently

close to x such that the subarc Iyz of I0 with endpoints y, z contains x in its interior.

Then, a disk domain D in U− is bounded by Iyz, a subarc of S(t− ε) and subarcs of

geodesics in Γ(y),Γ(z). Since I+ is empty, xi for all sufficiently large i is contained in

D. Hence, Si(t) is contained in D for all sufficiently large i. Therefore, there exists
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a sequence of local maximal points with respect to ρ which converges to x. Since a

local maximal point is a critical point of ρ, x is a critical point of ρ. This contradicts

the assumption that t = ρ(x) is not a critical value of ρ.

The proofs of Theorem B(3) and (4) are clear from the definition of E .

Let t be a positive number in (0,∞) \ E . It suffices for the proof of (2) to show

that every x ∈ S(t) has a sufficiently small open subarc of S(t) which is rectifiable.

If x is such a point that has a unique geodesic in Γ(x), then it is orthogonal to S(t).
We conclude the proof in the same manner as in the proof of Lemma 2.3.
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CUT LOCI AND DISTANCE SPHERES ON ALEXANDROV SURFACES 559

[M2] S.B. Myers, Connections between differential geometry and topology II, Duke
Math. J. 2 (1936), 95–102.

[OS] Y. Otsu, T. Shioya, The Riemannian structure of Alexandrov spaces, J. Dif-
ferential Geom. 39 (1994), 629–658.
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