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ON THE RIEMANN-HILBERT PROBLEM AND STABLE

VECTOR BUNDLES ON THE RIEMANN SPHERE

by
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A la mémoire d’Andrey Bolibrukh

Abstract. — In this note we give a brief survey of recent results on the classical

Riemann-Hilbert problem for differential equations on the Riemann sphere. We em-

phasize geometrical aspects of the problem involving the notion of stability of vector

bundles with connections.

Résumé(Problème de Riemann-Hilbert et fibrés stables sur la sphèrede Riemann)
Dans cette note nous donnons un bref survol de résultats récents sur le problème

classique de Riemann-Hilbert pour des équations différentielles sur la sphère de Rie-

mann. Nous mettons l’accent sur des aspects géométriques du problème faisant in-

tervenir la notion de stabilité de fibrés vectoriels avec connexions.

1. Introduction

Let us briefly recall what is meant by the Riemann-Hilbert problem for differential

equations on the Riemann sphere. This problem was included by D. Hilbert in his

famous list under the number twenty one and can be reformulated as follows:

Given a representation of the fundamental group of the punctured Riemann sphere,

χ : π1(P
1(C) \ S; z0) → GL(p, C)

where S = {a1, . . . , a2} is a set of points in C, does there exist a fuchsian differential

system on P1(C),

dy

dz
=

(

n
∑

i=1

Bi

z − ai

)

y,

where Bi, 1 ≤ i ≤ n, are p× p-matrices with entries in C satisfying
∑n

i=1 Bi = 0, (so

that ∞ is not a singular point), for which χ is a monodromy representation?
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This problem has a long story. For more than seventy years, it was commonly

believed that it had a positive solution and had been completely solved by J. Plemelj

in 1908. But at the beginning of the eighties an error was discovered in the proof, see

[Tre83]. It turned out that J. Plemelj could only obtain a positive answer in the case

of differential systems with regular singularities, see [Ple64]. Later on, W. Dekkers

solved the problem positively in dimension 2, see [Dek79].

Then, in 1989, A. Bolibrukh gave a final and surprising answer to the problem.

It turns out that this problem has in general a negative answer. A. Bolibrukh pub-

lished an important counterexample for a representation of dimension three with four

singular points on the Riemann sphere. He also classified all the representations in di-

mension three that can be realized as monodromy representations of fuchsian systems,

see [AB94], [Bol95], [Bea93]. This classification in dimension three has been estab-

lished recently using tools from complex algebraic geometry, see [GS99]. In 2000, a

classification for the representations in dimension four was given by A. Gladyshev,

see [Gla00].

In 1992, A. Bolibrukh showed that for irreducible representations, the problem has

a positive solution, see [AB94], [Bol95], a result also obtained independently by V.

Kostov at the same time, see [Kos92]. More recently, the subject has been revisited

in a more algebraic setting, see [Sab02], [dPS03], and generalizations have been

obtained when P1(C) is replaced by a Riemann surface of positive genus, see [EV99].

2. The geometrical approach

The methods introduced by A. Bolibrukh use to a large extend the geometry of

vector bundles on the Riemann sphere. To understand his approach, we will state the

Riemann-Hilbert problem in a more geometrical setting.

Let us first recall the method of attack of P. Deligne to handle the problem in the

case of regular singularities, see [Del70].

It is a classical fact that starting from the representation χ, one can construct a

vector bundle Ê on the open manifold P1(C) \ S, endowed with a flat holomorphic

connection ∇̂ with χ as its holonomy or monodromy representation, see [Del70]. By

a classical theorem of Stein, we know that Ê is in fact holomorphically trivial on

P1(C) \ S. In terms of differential equations, one gets a differential system

(D) dy = ωy

with χ as monodromy representation and S as the singular divisor of the differential

form ω, and with regular singularities at the points ai, 1 ≤ i ≤ n, see also [Röh57].

Now consider, for all 1 ≤ i ≤ n, the matrices

Ei =
1

2iπ
log χ(σi),
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for a given determination of the logarithm, where σi denotes the homotopy class of a

simple loop around ai with base point z0 enclosing no other aj . Modulo conjugation

with a matrix Si, we may assume that the matrix Ei is upper triangular, for 1 ≤ i ≤ n.

We also consider local differential systems dy = ωiy defined on a neighborhood of

ai by

ωi(z) =
Ei

(z − ai)
dz.

By construction, each such local system is fuchsian at ai and has the requested local

monodromy. The idea of P. Deligne was to glue together these local systems with the

help of the vector bundle (Ê, ∇̂) in order to get a vector bundle E on P1(C) endowed

with a connection ∇ which has logarithmic singularities at the points ai, 1 ≤ i ≤ n.

This construction of E provides what P. Deligne calls the canonical extension of Ê

on P1(C).

Instead canonical extensions, A. Bolibrukh considered extensions of Ê on P1(C) by

means of local fuchsian systems of the form dy = ωΛi

i y where

ωΛi

i (z) = (Λi + (z − ai)
ΛiEi(z − ai)

−Λi)
dz

z − ai

,

where Λi is a diagonal matrix with integer entries such that the matrix

(z − ai)
ΛiEi(z − ai)

−Λi

is holomorphic at ai, for all 1 ≤ i ≤ n. This idea came from what are called Levelt

decompositions of fundamental matrices of differential systems with regular singular-

ities, see [AB94], [Bol95], [Gan59], [Lev61].

This construction provides an infinite family E of vector bundles (EΛ,∇Λ) on

P1(C), where the connections ∇Λ have logarithmic singularities on S, parametrized

by n−tuples Λ = (Λ1, . . . , Λn).

A. Bolibrukh has moreover shown that any extension of Ê on P1(C) with a con-

nection ∇ having logarithmic singularities, can be obtained in this manner [AB94],

[Bol95]. As a result, the Riemann-Hilbert problem can be stated as follows:

A representation
χ : π1(P

1(C) \ S; z0) → GL(p, C)

is given. Does there exist n diagonal matrices Λi, 1 ≤ i ≤ n, with integer entries such

that (EΛ,∇Λ) ∈ E is holomorphically trivial on P1(C) for Λ = (Λ1, . . . , Λn).

The result obtained in 1992 by A. Bolibrukh can be reformulated in the following

way:

Let
χ : π1(P

1(C) \ S; z0) → GL(p, C)

be an irreducible representation. Then, there exist n diagonal matrices Λi, 1 ≤ i ≤ n,

with integer entries such that (EΛ,∇Λ) ∈ E is holomorphically trivial on P1(C) for

Λ = (Λ1, . . . , Λn).
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One of the main geometrical ingredients in the proof was to observe that if the

representation χ is irreducible then the splitting type of the bundle EΛ on P1(C),

(O) EΛ ∼= O(c1) ⊕ · · · ⊕ O(cp)

satisfies the important property that

(B) |ci − cj | ≤ (n − 2)p,

for all 1 ≤ i, j ≤ p.

3. The Riemann-Hilbert problem and stability assumptions

In this section, we mainly restate recent results of A. Bolibrukh that give new

sufficient conditions to solve positively the Riemann-Hilbert problem on Riemann

surfaces of genus g ≥ 0. But, for simplicity, we will focus here on the case of the

Riemann sphere only and we will explain the results obtained in [Mal02a] in a more

geometrical language.

It is known, from the work of C. Simpson, that the notion of irreducibility is

actually related to the concept of stability of vector bundles with connections, see

[Sim92]. Let us first recall the definition of it.

Definition 3.1. — A pair (F,∇) of a vector bundle F and a connection ∇ is called

stable if for any proper subbundle F ′, 0 ( F ′ ( F , that is stabilized by the connection

∇,

∇(F ′) ⊂ F ′ ⊗ Ω1(log S),

the slope µ(F ′) = deg(F ′)/rank(F ′) of F ′ is smaller than the slope µ(F ) of F ,

(∗) µ(F ′) < µ(F ).

This notion of stability has to be distinguished from the classical one, where the

inequality (∗) has to be satisfied for all proper subbundles F ′ of F , see for instance

[OSS80]. In particular, one easily sees that there exists no stable (in the classical

sense) vector bundle F of degree zero on P1(C). Indeed, one should have the relations

c1 + · · ·+ cp = 0 and ci < 0, 1 ≤ i ≤ p, for the splitting (O) of the bundle F on P1(C),

which is impossible.

We are now able to state the main result of this note, see [Bol02].

Theorem 3.2. — Let

χ : π1(P
1(C) \ S; z0) → GL(p, C)

be a representation. Assume that among the constructed pairs (EΛ,∇Λ) ∈ E, there is

a stable pair (EΛ0

,∇Λ0

). Then, one can construct another pair (EΛ̃0

,∇Λ̃0

) ∈ E that

is stable, of degree zero and holomorphically trivial on P1(C). The Riemann-Hilbert

problem has therefore a positive solution for the representation χ.
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Proof. — The first part of the proof involves much calculation. Starting from the

initial stable pair (EΛ0

,∇Λ0

) ∈ E , one constructs a new stable pair (EΛ1

,∇Λ1

) ∈ E of

degree zero, with large differences (in fact larger than the integer (n − 2)p2) between

the entries λj,1
i , 1 ≤ j ≤ p of each Λ1

i . This property turns out to be crucial as we

will see later. The details of this construction are explained in [Bol02].

The vector bundle Ê on P1(C) \ S (see section 2) is described by means of

a locally constant cocycle {gα,β}α,β∈L corresponding to a covering {Uα}α∈L of

P1(C) \ S. By construction, the vector bundle EΛ1

is described by a cocycle

{gα,β(z), gi,α(z)}1≤i≤n,α,β∈L, for a covering {Oi, Uα}1≤i≤n,α∈L of P1(C) which is

defined as follows. For a small neighborhood Oi of ai, 1 ≤ i ≤ n, the function gi,α(z)

defined on Oi ∩ Uα is of the form

gi,α(z) = (z − ai)
Λ1

i (z − ai)
Ei .

From now on, to simplify the notation, we assume that a1 = 0. Again, by the result

of Stein, the vector bundle EΛ1

is holomorphic trivial on P1(C) \ {0}, and without

loss of generality, we may assume that all the functions gi,α(z), for i 6= 1, α ∈ L,

split as products gi,α(z) = Γ−1
i (z)Γα(z) where Γ−1

i (z) is holomorphic invertible on

Oi and Γα(z) is holomorphic invertible on Uα. By the holomorphic triviality of Ê on

P1(C) \ S, the functions gα,β also split.

From the decomposition (O) for the vector bundle EΛ1

, we get in particular that

there exist holomorphic invertible matrices Γ1(z) (resp. Γα(z)) on a neighborhood of

0 (resp. on a neighborhood of ∞) such that

(C) Γ1(z)zKΓα(z) = g1,α(z) = zΛ1
1zE1 ,

on O1 ∩ Uα, where

K = diag(c1, . . . , cp)

and c1 ≥ · · · ≥ cp with c1 + · · · + cp = 0.

Now, the geometrical key-ingredient of the proof is that the boundedness property

of the splitting type is preserved when one replaces the notion of irreducibility by the

notion of stability. More precisely, when a pair (EΛ,∇Λ) is stable, then we get the

estimates

(B) |ci − cj | ≤ (n − 2)p,

for all 1 ≤ i, j ≤ p, in its decomposition (O) on P1(C). For an analytical proof, see

[Mal02a] and for a more geometrical proof based on Harder-Narasimhan filtrations,

see [Bol02].

On the other hand, due to a lemma of A. Bolibrukh, see [Bol95], there exists a

matrix Γ̃α(z), holomorphic invertible on a neighborhood of infinity such that

Γ̃α(z)z−KΓ−1
1 (z) = Γ̃1(z)zKσ

,
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where Γ̃1(z) is holomorphic invertible on a neighborhood of 0, and

Kσ = diag(cσ(1), . . . , cσ(p))

with σ a permutation of {1, . . . , p}. From (C) and the latter formula, we deduce that

(S) zKσ

g1,α(z) = (Γ̃1(z))−1Γ̃α(z)Γα(z),

on O1 ∩ Uα, where (Γ̃1(z))−1 is holomorphic invertible on a neighborhood of 0 and

Γ̃α(z)Γα(z) is holomorphic invertible on a neighborhood of ∞.

Let

g̃1,α(z) = zΛ1
1+Kσ

zE1

and g̃i,α(z) = gi,α(z), for i 6= 1.

We notice the crucial fact that the matrix

z(Λ1
1+Kσ)E1z

−(Λ1
1+Kσ),

is holomorphic invertible at 0, since by construction the diagonal matrix Λ1
1 has entries

with differences larger than (n−2)p2 and the matrix Kσ has entries whose differences

are bounded by (n − 2)p.

By construction, the cocycle {g̃i,α, gα,β} related to the covering {Oi, Uα}1≤i≤n,α∈L

describes the vector bundle (EΛ̃0

,∇Λ̃0

) where Λ̃0 = {Λ1
1 +Kσ, Λ1

2, . . . , Λ
1
n}. From the

relation (S), we finally get that the vector bundle EΛ̃0

is holomorphically trivial on

P1(C), which proves the result.

Remark: One observes that if the representation χ is irreducible, then by defini-

tion the pairs (EΛ,∇Λ) are stable for all Λ. From Theorem 3.2, we recover the fact

that the Riemann-Hilbert problem has a positive solution for irreducible representa-

tions.

In the case of a reducible representation χ, we get a more precise result. The follow-

ing theorem restates in a geometrical setting the main result obtained in [Mal02a].

Theorem 3.3. — Let

χ : π1(P
1(C) \ S; z0) → GL(p, C)

be a reducible representation. Assume that among the constructed pairs (EΛ,∇Λ),

there is a stable pair (EΛ0

,∇Λ0

). Then, one can construct a pair (EΛ̃0

,∇Λ̃0

) which is

holomorphically trivial on P1(C) and which in addition has a holomorphically trivial

proper subbundle 0 ( F̃ ( EΛ̃0

that is stabilized by the connection ∇Λ̃0

.

In terms of differential equations, the representation χ can be realized as the mon-

odromy representation of a fuchsian system

dy

dz
=

(

n
∑

i=1

Bi

z − ai

)

y,
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with
∑n

i=1 Bi = 0, where the coefficient matrices Bi are reducible,

Bi =

(

B1
i ∗

0 B2
i

)

,

for all 1 ≤ i ≤ n.

Proof. — The idea in the first step of the proof is the following. From (EΛ0

,∇Λ0

), one

construct another a pair (EΛ1

,∇Λ1

) ∈ E which has a subbundle F1 stabilized by the

connection ∇Λ1

. This pair is constructed in such a way that the pairs (F1,∇
Λ1

|F1
) and

(EΛ1

/F1,∇
Λ1

q ), where ∇Λ1

q is the connection constructed from ∇Λ1

on the quotient

bundle EΛ1

/F1, are stable of degree zero, and as in the proof of Theorem 3.2, with

large differences between the entries λj,1
i , 1 ≤ j ≤ p of each Λ1

i . The details of this

construction are explained in [Mal02a]. The rest of the proof follows the same lines

as the proof of Theorem 3.2 and will not be reproduced here, see [Mal02a].

Several applications of these results have been investigated.

– A new method of constructing counterexamples to the Riemann-Hilbert problem

by means of direct sums of representations, has been obtained in special cases,

see [Mal02b].

– Later on, the reduction procedure introduced in Theorem 3.3 has been applied

in the framework of isomonodromic Schlesinger deformations. A constructive

method to get solutions of non-linear systems of partial differential equations

called Schlesinger equations has been obtained. These equations are written as

follows,

(S) dAi(a) = −

n
∑

j=1,j 6=i

[Ai(a), Aj(a)]

ai − aj

d(ai − aj) , i = 1, . . . , n,

and are obtained as isomonodromic deformations of a family of fuchsian systems

(Fa)
dT

dx
=

(

n
∑

i=1

Ai(a)

x − ai

)

T ,

n
∑

i=1

Ai(a) = 0

depending holomorphically on the parameter a = (a1, . . . , an) ∈ D(a0), where

D(a0) is a small disck with center a0 = (a0
1, . . . , a

0
n) in the space Cn \∪i6=j{(ai−

aj) = 0}.

The method consists in rational reductions of these equations to blocked

upper triangular forms. More precisely, under the hypothesis of reducibility of

the monodromy representation of the family (Fa), we have shown that there

exist rational transformations Γi in their arguments such that the matrices

Γi(a1, . . . , an, {(Ai)k,l / 1 ≤ i ≤ n, k ∈ Ii, l ∈ Ji}) = Bi =

(

B1
i B3

i

0 B2
i

)
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where Ii, Ji are subsets of {1, . . . , p}, for 1 ≤ i ≤ n, satisfy again Schlesinger

equations. It is easy to see that the functions (Bj
i )1≤i≤n satisfy Schlesinger

equations for j = 1, 2 and that the funtions (B3
i )1≤i≤n satisfy systems of lin-

ear partial differential equations with coefficients involving rational functions in

a1, . . . , an and functions Bj
i , 1 ≤ i ≤ n, j = 1, 2. In that way, we have reduced

the study of the initial Schlesinger equations (S) to the study of two Schlesinger

equations of smaller dimensions, see [Mal02d].

– An other application concerns the famous Birkhoff reduction problem for linear

differential equations, see [Mal02c].
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