PAINLEVÉ PROPERTY OF THE HÉNON-HEILES HAMILTONIANS

by

Robert Conte, Micheline Musette \& Caroline Verhoeven

Abstract. - Time independent Hamiltonians of the physical type

$$
H=\left(P_{1}^{2}+P_{2}^{2}\right) / 2+V\left(Q_{1}, Q_{2}\right)
$$

pass the Painlevé test for only seven potentials V, known as the Hénon-Heiles Hamiltonians, each depending on a finite number of free constants. Proving the Painlevé property was not yet achieved for generic values of the free constants. We integrate each missing case by building a birational transformation to some fourth order first degree ordinary differential equation in the classification (Cosgrove, 2000) of such polynomial equations which possess the Painlevé property. The properties common to each Hamiltonian are:
(i) the general solution is meromorphic and expressed with hyperelliptic functions of genus two,
(ii) the Hamiltonian is complete (the addition of any time independent term would ruin the Painlevé property).

Résumé (Propriété de Painlevé des hamiltoniens de Hénon-Heiles). - Les hamiltoniens, indépendants du temps, de la forme

$$
H=\left(P_{1}^{2}+P_{2}^{2}\right) / 2+V\left(Q_{1}, Q_{2}\right)
$$

satisfont au test de Painlevé pour seulement sept potentiels V; ceux-ci sont connus sous le nom de hamiltoniens de Hénon-Heiles et ils dépendent d'un nombre fini de constantes libres. La propriété de Painlevé restait à établir pour des valeurs génériques des constantes libres. Nous traitons chacun des cas en suspens en construisant une transformation birationnelle vers une équation différentielle ordinaire d'ordre quatre qui figure dans la liste exhaustive (Cosgrove, 2000) de telles équations polynomiales possédant la propriété de Painlevé. Les propriétés communes à ces hamiltoniens sont :
(i) la solution générale est méromorphe et peut être exprimée en termes de fonctions hyperelliptiques de genre deux,
(ii) le hamiltonien est complet au sens où l'addition de tout terme indépendant du temps ferait perdre la propriété de Painlevé.

2000 Mathematics Subject Classification. - Primary 34M60; Secondary 34E20, 34M55, 34M35.
Key words and phrases. - Hénon-Heiles Hamiltonian, Painlevé property, hyperelliptic functions, separation of variables, Darboux coordinates.

The authors acknowledge the financial support of the Tournesol grant no. T2003.09 between Belgium and France. C. Verhoeven is a postdoctoral fellow at the FWO-Vlaanderen.

1. Introduction

Let us consider the most general two-degree of freedom, classical, time-independent Hamiltonian of the physical type (i.e, the sum of a kinetic energy and a potential energy),

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+V\left(q_{1}, q_{2}\right) \tag{1}
\end{equation*}
$$

and let us require that the general solution $q_{1}^{n_{1}}, q_{2}^{n_{2}}$, with n_{1}, n_{2} integers to be determined, be single valued functions of the complex time t, i.e., what is called the Painlevé property of these equations.

A necessary condition is that the Hamilton equations of motion, when written in these variables $q_{1}^{n_{1}}, q_{2}^{n_{2}}$, pass the Painlevé test ($\left.[\mathbf{1 2}]\right)$. This selects seven potentials V (three "cubic" and four "quartic") depending on a finite number of arbitrary constants, which are known as the Hénon-Heiles Hamiltonians ([24]). In order to prove the sufficiency of these conditions, one must then perform the explicit integration and check the singlevaluedness of the general solution. We present here a review on this subject.

The paper is organized as follows:
In section 2, we enumerate the seven cases isolated by the Painlevé test, together with the second constant of the motion K in involution with the Hamiltonian. In section 3, we recall the separating variables in the four cases where they are known. In section 4, we display confluences from quartic cases to all the cubic cases, thus restricting the problem to the consideration of the quartic cases only. In section 5 , due to the lack of knowledge of the separating variables in the three remaining cases, we state the equivalence of the equations of motion and the conservation of energy with some fourth order first degree ordinary differential equations (ODEs). In section 6, since these fourth order equations do not belong to any set of already classified equations, we build a birational transformation between each quartic case and some fourth order ODE belonging to a classification of Cosgrove ([17]), thus proving the Painlevé property for the quartic cases.

To summarize, the results are twofold:

1. each case is integrated by solving a Jacobi inversion problem involving a hyperelliptic curve of genus two, which proves the meromorphy of the general solution,
2. each case is complete in the sense of Painlevé, i.e, it is impossible to add any timeindependent term to the Hamiltonian without ruining the Painlevé property.

2. The seven Hénon-Heiles Hamiltonians

By application of the Painlevé test, one isolates two classes of potentials $V\left(q_{1}, q_{2}\right)$, called "cubic" and "quartic" for simplification.

1. In the cubic case $\mathrm{HH} 3([\mathbf{1 0}, \mathbf{1 3}, \mathbf{2 1}])$,

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+\omega_{1} q_{1}^{2}+\omega_{2} q_{2}^{2}\right)+\alpha q_{1} q_{2}^{2}-\frac{1}{3} \beta q_{1}^{3}+\frac{1}{2} \gamma q_{2}^{-2}, \quad \alpha \neq 0 \tag{2}
\end{equation*}
$$

in which the constants $\alpha, \beta, \omega_{1}, \omega_{2}$ and γ can only take the three sets of values,
(SK) : $\quad \beta / \alpha=-1, \omega_{1}=\omega_{2}$,

$$
\begin{array}{rc}
(\mathrm{KdV} 5): & \beta / \alpha=-6 \tag{4}\\
(\mathrm{KK}): & \beta / \alpha=-16, \omega_{1}=16 \omega_{2} .
\end{array}
$$

2. In the quartic case HH4 ([23, 32]),
(6) $\quad H=\frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}+\Omega_{1} Q_{1}^{2}+\Omega_{2} Q_{2}^{2}\right)+C Q_{1}^{4}$

$$
+B Q_{1}^{2} Q_{2}^{2}+A Q_{2}^{4}+\frac{1}{2}\left(\frac{\alpha}{Q_{1}^{2}}+\frac{\beta}{Q_{2}^{2}}\right)+\gamma Q_{1}, \quad B \neq 0
$$

in which the constants $A, B, C, \alpha, \beta, \gamma, \Omega_{1}$ and Ω_{2} can only take the four values (the notation $A: B: C=p: q: r$ stands for $A / p=B / q=C / r=$ arbitrary),

$$
\begin{cases}A: B: C=1: 2: 1, & \gamma=0, \tag{7}\\ A: B: C=1: 6: 1, & \gamma=0, \Omega_{1}=\Omega_{2} \\ A: B: C=1: 6: 8, & \alpha=0, \Omega_{1}=4 \Omega_{2} \\ A: B: C=1: 12: 16, & \gamma=0, \Omega_{1}=4 \Omega_{2}\end{cases}
$$

For each of the seven cases so isolated there exists a second constant of the motion $K([\mathbf{7}, \mathbf{1 8}, \mathbf{2 5}])([\mathbf{6}, \mathbf{7}, \mathbf{2 6}])$ in involution with the Hamiltonian,
(SK) $\quad K=\left(3 p_{1} p_{2}+\alpha q_{2}\left(3 q_{1}^{2}+q_{2}^{2}\right)+3 \omega_{2} q_{1} q_{2}\right)^{2}+3 \gamma\left(3 p_{1}^{2} q_{2}^{-2}+4 \alpha q_{1}+2 \omega_{2}\right)$,
$(\mathrm{KdV} 5) \quad K=4 \alpha p_{2}\left(q_{2} p_{1}-q_{1} p_{2}\right)+\left(4 \omega_{2}-\omega_{1}\right)\left(p_{2}^{2}+\omega_{2} q_{2}^{2}+\gamma q_{2}^{-2}\right)$

$$
+\alpha^{2} q_{2}^{2}\left(4 q_{1}^{2}+q_{2}^{2}\right)+4 \alpha q_{1}\left(\omega_{2} q_{2}^{2}-\gamma q_{2}^{-2}\right)
$$

$$
\begin{align*}
& K=\left(3 p_{2}^{2}+3 \omega_{2} q_{2}^{2}+3 \gamma q_{2}^{-2}\right)^{2}+12 \alpha p_{2} q_{2}^{2}\left(3 q_{1} p_{2}-q_{2} p_{1}\right) \tag{KK}\\
&-2 \alpha^{2} q_{2}^{4}\left(6 q_{1}^{2}+q_{2}^{2}\right)+12 \alpha q_{1}\left(-\omega_{2} q_{2}^{4}+\gamma\right)-12 \omega_{2} \gamma
\end{align*}
$$

$(1: 2: 1)\left\{\begin{array}{l}K=\left(Q_{2} P_{1}-Q_{1} P_{2}\right)^{2}+Q_{2}^{2} \frac{\alpha}{Q_{1}^{2}}+Q_{1}^{2} \frac{\beta}{Q_{2}^{2}} \\ \\ \quad-\frac{\Omega_{1}-\Omega_{2}}{2}\left(P_{1}^{2}-P_{2}^{2}+Q_{1}^{4}-Q_{2}^{4}+\Omega_{1} Q_{1}^{2}-\Omega_{2} Q_{2}^{2}+\frac{\alpha}{Q_{1}^{2}}-\frac{\beta}{Q_{2}^{2}}\right), \\ A=\frac{1}{2},\end{array}\right.$
$(1: 6: 1)$
$(1: 6: 8)$
(1:12:16)

$$
\begin{aligned}
& \left\{\begin{aligned}
& K=\left(P_{1} P_{2}+\right.\left.Q_{1} Q_{2}\left(-\frac{Q_{1}^{2}+Q_{2}^{2}}{8}+\Omega_{1}\right)\right)^{2} \\
&-P_{2}^{2} \frac{\kappa_{1}^{2}}{Q_{1}^{2}}-P_{1}^{2} \frac{\kappa_{2}^{2}}{Q_{2}^{2}}+\frac{1}{4}\left(\kappa_{1}^{2} Q_{2}^{2}+\kappa_{2}^{2} Q_{1}^{2}\right)+\frac{\kappa_{1}^{2} \kappa_{2}^{2}}{Q_{1}^{2} Q_{2}^{2}}, \\
& \alpha=-\kappa_{1}^{2}, \quad \beta=-\kappa_{2}^{2}, \quad A=-\frac{1}{32},
\end{aligned}\right. \\
& \left\{\begin{array}{l}
K=\left(P_{2}^{2}-\frac{Q_{2}^{2}}{16}\left(2 Q_{2}^{2}+4 Q_{1}^{2}+\Omega_{2}\right)+\frac{\beta}{Q_{2}^{2}}\right)^{2} \\
\\
-\frac{1}{4} Q_{2}^{2}\left(Q_{2} P_{1}-2 Q_{1} P_{2}\right)^{2}+\gamma\left(-2 \gamma Q_{2}^{2}-4 Q_{2} P_{1} P_{2}\right. \\
\\
\left.\quad+\frac{1}{2} Q_{1} Q_{2}^{4}+Q_{1}^{3} Q_{2}^{2}+4 Q_{1} P_{2}^{2}-4 \Omega_{2} Q_{1} Q_{2}^{2}+4 Q_{1} \frac{\beta}{Q_{2}^{2}}\right), \\
A=-\frac{1}{16},
\end{array}\right. \\
& \left\{\begin{aligned}
K= & \left(8\left(Q_{2} P_{1}-Q_{1} P_{2}\right) P_{2}-Q_{1} Q_{2}^{4}-2 Q_{1}^{3} Q_{2}^{2}\right. \\
& \left.\quad+2 \Omega_{1} Q_{1} Q_{2}^{2}-8 Q_{1} \frac{\beta}{Q_{2}^{2}}\right)^{2}+\frac{32 \alpha}{5}\left(Q_{2}^{4}+10 \frac{Q_{2}^{2} P_{2}^{2}}{Q_{1}^{2}}\right), \\
A & =-\frac{1}{32} .
\end{aligned}\right.
\end{aligned}
$$

Remark. - Performing the reduction $q_{1}=0, p_{1}=0$ in the three HH3 Hamiltonians (2) yields $H=p^{2} / 2+(1 / 2) \omega q^{2}+(1 / 2) \gamma q^{-2}$, for which q^{2} obeys a linearizable Briot-Bouquet ODE. Similarly, the reduction $Q_{1}=1, P_{1}=0$ in the four HH4 Hamiltonians (6) yields $H=P^{2} / 2+(1 / 2) \omega Q^{2}+A Q^{4}+(1 / 2) \beta Q^{-2}$, for which Q^{2} obeys the Weierstrass elliptic equation.

These seven Hénon-Heiles Hamiltonians can be studied from various points of view such as: separation of variables $([\mathbf{3 7}])$, Painlevé property, algebraic complete integrability ([3]). For the interrelations between these various approaches, the reader can refer to the plain introduction in Ref. [1]. In the present work, we only deal with proving the Painlevé property (PP).

In order to prove or disprove the PP, it is sufficient to obtain an (explicit) canonical transformation to new canonical variables (the so-called separating variables) which separate the Hamilton-Jacobi equation for the action $S\left(q_{1}, q_{2}\right)$ ([5, chap. 10]), which for two degrees of freedom is

$$
\begin{equation*}
H\left(q_{1}, q_{2}, p_{1}, p_{2}\right)-E=0, p_{1}=\frac{\partial S}{\partial q_{1}}, p_{2}=\frac{\partial S}{\partial q_{2}} \tag{8}
\end{equation*}
$$

Indeed, if such separating variables are obtained, depending on the genus g of the hyperellitic curve $r^{2}=P(s)$ involved in the associated Jacobi inversion problem,

$$
\begin{equation*}
\frac{\mathrm{d} s_{1}}{\sqrt{P\left(s_{1}\right)}}+\frac{\mathrm{d} s_{2}}{\sqrt{P\left(s_{2}\right)}}=0, \quad \frac{s_{1} \mathrm{~d} s_{1}}{\sqrt{P\left(s_{2}\right)}}+\frac{s_{2} \mathrm{~d} s_{2}}{\sqrt{P\left(s_{2}\right)}}=\mathrm{d} t \tag{9}
\end{equation*}
$$

the elementary symmetric functions $s_{1}+s_{2}$ and $s_{1} s_{2}$ are either meromorphic functions of time $(g \leq 2)$, or multivalued $(g>3)$.

3. The four cases with known separating variables

Two of the seven cases (KdV5, 1:2:1) have a second invariant K equal to a second degree polynomial in the momenta, therefore there exists a classical method ([38, 39]) to obtain the canonical transformation $\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \rightarrow\left(s_{1}, s_{2}, r_{1}, r_{2}\right)$ with the separating variables $\left(s_{1}, s_{2}\right)$ obeying the canonical system (9). For the KdV5 case, one obtains ([4, 18, 45])

$$
\begin{cases}q_{1}=-\left(s_{1}+s_{2}+\omega_{1}-4 \omega_{2}\right) /(4 \alpha), & q_{2}^{2}=-s_{1} s_{2} /\left(4 \alpha^{2}\right) \tag{10}\\ p_{1}=-4 \alpha \frac{s_{1} r_{1}-s_{2} r_{2}}{s_{1}-s_{2}}, & p_{2}^{2}=-16 \alpha^{2} \frac{s_{1} s_{2}\left(r_{1}-r_{2}\right)^{2}}{\left(s_{1}-s_{2}\right)^{2}} \\ H=\frac{f\left(s_{1}, r_{1}\right)-f\left(s_{2}, r_{2}\right)}{s_{1}-s_{2}}, & \\ f(s, r)=-\frac{s^{2}\left(s+\omega_{1}-4 \omega_{2}\right)^{2}\left(s-4 \omega_{2}\right)-64 \alpha^{4} \gamma}{32 \alpha^{2} s}+8 \alpha^{2} r^{2} s \\ f\left(s_{j}, r_{j}\right)-E s_{j}+\frac{K}{2}=0, j=1,2, \\ P(s)=s^{2}\left(s+\omega_{1}-4 \omega_{2}\right)^{2}\left(s-4 \omega_{2}\right)+32 \alpha^{2} E s^{2}-16 \alpha^{2} K s-64 \alpha^{4} \gamma\end{cases}
$$

For 1:2:1, one obtains

$$
\left\{\begin{align*}
& q_{j}^{2}=(-1)^{j} \frac{\left(s_{1}+\omega_{j}\right)\left(s_{2}+\omega_{j}\right)}{\omega_{1}-\omega_{2}}, \quad j=1,2 \tag{11}\\
& p_{j}= 2 q_{j} \frac{\omega_{3-j}\left(r_{2}-r_{1}\right)-s_{1} r_{1}+s_{2} r_{2}}{s_{1}-s_{2}}, \quad j=1,2, \\
& H= \frac{f\left(s_{1}, r_{1}\right)-f\left(s_{2}, r_{2}\right)}{s_{1}-s_{2}}, \\
& f(s, r)= 2\left(s+\omega_{1}\right)\left(s+\omega_{2}\right) r^{2}-\frac{s^{3}}{2}-\frac{\omega_{1}+\omega_{2}}{2} s^{2} \\
& \quad-\frac{\omega_{1} \omega_{2}}{2} s+\frac{\omega_{2}-\omega_{1}}{2}\left(\frac{\alpha}{s+\omega_{1}}-\frac{\beta}{s+\omega_{2}}\right) \\
& f\left(s_{j}, r_{j}\right)=-\left(s_{j}+E \frac{\omega_{1}+\omega_{2}}{2}\right)-\frac{\alpha+\beta}{2}-\frac{K}{2}, \quad j=1,2 \\
& P(s)= s\left(s+\omega_{1}\right)^{2}\left(s+\omega_{2}\right)^{2}-\alpha\left(s+\omega_{2}\right)^{2}-\beta\left(s+\omega_{1}\right)^{2} \\
& \quad-\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)\left[E\left(2 s+\omega_{1}+\omega_{2}\right)-K\right]
\end{align*}\right.
$$

The two cubic cases SK and KK,

$$
\begin{align*}
& H_{\mathrm{SK}}=\frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{\Omega_{1}}{2}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\frac{1}{2} Q_{1} Q_{2}^{2}+\frac{1}{6} Q_{1}^{3}+\frac{\lambda^{2}}{8} Q_{2}^{-2}, \tag{12}\\
& H_{\mathrm{KK}}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{\omega_{2}}{2}\left(16 q_{1}^{2}+q_{2}^{2}\right)+\frac{1}{4} q_{1} q_{2}^{2}+\frac{4}{3} q_{1}^{3}+\frac{\lambda^{2}}{2} q_{2}^{-2} \tag{13}
\end{align*}
$$

are equivalent under a birational canonical transformation $([8,36])$. Therefore, the separating variables $\left(s_{1}, s_{2}\right)$ are common to these two cases.

In the nongeneric case $\lambda=0$, the separating variables have been built ([33]) by a $\operatorname{method}([\mathbf{2}, \mathbf{4 0}])$ based on the local representation of the general solution $q_{1}(t), q_{2}(t)$ by a Laurent series of $t-t_{0}$ near a movable singularity t_{0}. The algebraic curves defined by the values of the two invariants H, K in terms of the arbitrary coefficients of the Laurent series are then geometrically interpreted, with, in principle, the separating variables as the final output. However, some technical difficulty prevents this method to handle the generic case $\lambda \neq 0$.

The generic case can nevertheless be separated ([42]) and the result is

$$
\begin{cases}q_{1}=-6\left(\frac{\tilde{P}_{1}-\tilde{P}_{2}}{\tilde{Q}_{1}-\tilde{Q}_{2}}\right)^{2}-\frac{\tilde{Q}_{1}+\tilde{Q}_{2}}{2}, & q_{2}^{2}=24 \frac{f\left(\tilde{Q}_{1}, \tilde{P}_{1}\right)-f\left(\tilde{Q}_{2}, \tilde{P}_{2}\right)}{\tilde{Q}_{1}-\tilde{Q}_{2}}, \tag{14}\\ p_{1}=-4 \tilde{Q}_{1} \frac{\tilde{P}_{1}-\tilde{P}_{2}}{\tilde{Q}_{1}-\tilde{Q}_{2}}-2 \frac{\tilde{Q}_{1} \tilde{P}_{2}-\tilde{Q}_{2} \tilde{P}_{1}}{\tilde{Q}_{1}-\tilde{Q}_{2}}, & p_{2}=\tilde{Q}_{2} \\ H=f\left(\tilde{Q}_{1}, \tilde{P}_{1}-\tilde{P}_{1}\right)+f\left(\tilde{Q}_{2}, \tilde{Q}_{2}\right)+\frac{\tilde{Q}_{2}}{24} \frac{\tilde{Q}_{1}-\tilde{Q}_{2}}{f\left(\tilde{Q}_{1}, \tilde{P}_{1}\right)-f\left(\tilde{Q}_{2}, \tilde{P}_{2}\right)}, \\ f(q, p)=p^{2}+\frac{1}{12} q^{3}-4 \omega_{2}^{2} q, \\ \left(f\left(\tilde{Q}_{j}, \tilde{P}_{j}\right)-\frac{E}{2}\right)^{2}+\frac{\lambda^{2}}{24} \tilde{Q}_{j}+K=0, \quad j=1,2, \\ \tilde{Q}_{1}=s_{1}^{2}-\frac{3 K}{\lambda^{2}}, \tilde{Q}_{2}=s_{2}^{2}-\frac{3 K}{\lambda^{2}}, \tilde{P}_{1}=\frac{r_{1}}{2 s_{1}}, \tilde{P}_{2}=\frac{r_{2}}{2 s_{2}}, \\ P(s)=-\frac{1}{3}\left(s^{2}-3 \frac{K}{\lambda^{2}}\right)^{3}+\Omega_{1}^{2}\left(s^{2}-3 \frac{K}{\lambda^{2}}\right)+\frac{\lambda}{\sqrt{3}} s+2 E .\end{cases}
$$

It is remarkable that the canonical transformation

$$
\begin{equation*}
\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \longrightarrow\left(\frac{\tilde{Q}_{1}+\tilde{Q}_{2}}{2}+\Omega_{1}, \frac{\tilde{Q}_{1}-\tilde{Q}_{2}}{2}, \tilde{P}_{1}+\tilde{P}_{2}, \tilde{P}_{1}-\tilde{P}_{2}\right) \tag{15}
\end{equation*}
$$

coincides with the canonical transformation between the SK variables and the KK variables in the particular case $\lambda=0$.

In the three remaining cases, the quartic $1: 6: 1,1: 6: 8,1: 12: 16$, the separating variables are only known in nongeneric cases $([\mathbf{4 1}, \mathbf{4 3}])$, and the associated particular solutions are single valued. In order to decide about the Painlevé property, which only involves the general solution, one must therefore integrate by different means.

4. Confluences from the quartic cases to the cubic ones

A possible way to integrate would be to take advantage of some confluence from an integrated case to a not yet integrated case. For instance, the property of single valuedness of the general solution of the second Painlevé equation P2 implies, from the classical confluence from P2 to P1, the same property for P1.

The confluence from the quartic 1:6:8 case to the cubic KK case found in Ref. [35] is not an isolated feature ([41]), and in fact all the cubic cases can be obtained by a confluence of at least one quartic case. Just like between the six Painlevé equations, one of the parameters in the Hamiltonian is lost in the process. Consider, for instance, the quartic 1:12:16 and the cubic KK cases,

$$
\left\{\begin{align*}
h_{1: 12: 16}(t)= & \frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{\omega}{8}\left(4 q_{1}^{2}+q_{2}^{2}\right) \tag{16}\\
& \quad-\frac{n}{32}\left(16 q_{1}^{4}+12 q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)+\frac{1}{2}\left(\frac{\alpha}{q_{1}^{2}}+\frac{\beta}{q_{2}^{2}}\right) \\
H_{\mathrm{KK}}(T)= & \frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{\Omega}{2}\left(16 Q_{1}^{2}+Q_{2}^{2}\right)+N\left(Q_{1} Q_{2}^{2}+\frac{16}{3} Q_{1}^{3}\right)+\frac{B}{2 Q_{2}^{2}}
\end{align*}\right.
$$

The confluence in this case is

$$
1: 12: 16 \rightarrow \mathrm{KK}\left\{\begin{array}{l}
t=\varepsilon T, q_{1}=\varepsilon^{-1}+Q_{1}, q_{2}=Q_{2}, n=-\frac{4}{3} \varepsilon^{-1} N \\
\alpha=\varepsilon^{-7}\left(-\frac{4}{3} N+4 \Omega \varepsilon\right), \beta=\varepsilon^{-2} B \\
\omega=\varepsilon^{-3}(-4 N+4 \Omega \varepsilon), h=\varepsilon^{-5}\left(-2 N+4 \Omega \varepsilon+H \varepsilon^{3}\right), \varepsilon \rightarrow 0
\end{array}\right.
$$

and the two quartic parameters (α, ω) coalesce to the single cubic parameter Ω.
We have checked that all the generic cubic cases can be obtained by confluence from at least one quartic case, as indicated in the following list:

$$
\left\{\begin{array}{l}
\text { HH4 } 1: 2: 1 \rightarrow \text { HH3 KdV5 } \tag{17}\\
\text { HH4 } 1: 6: 8 \rightarrow \text { HH3 KK }, \\
\text { HH4 1:6:8 } \rightarrow \text { HH3 KdV5 }, \\
\text { HH4 1:12:16 } \rightarrow \text { HH3 KK, } \\
\text { HH4 1:12:16 } \rightarrow \text { HH3 SK. }
\end{array}\right.
$$

Since these confluences are not invertible and always go from quartic to cubic, they are unfortunately of no help to integrate the missing cases, which are all quartic. In section 6 , we present another class of transformations, these one invertible, between some of the seven cases, which indeed helps to integrate the missing cases.

5. Equivalent fourth order ODEs

The Painlevé school has "classified" (i.e, enumerated the integrable equations and integrated them) several types of ODEs (e.g., second order first degree, third order first degree of the polynomial type, etc), but no four-dimensional first order differential system such as the Hamilton equations

$$
\begin{equation*}
\frac{\mathrm{d} q_{j}}{\mathrm{~d} t}=p_{j}, \frac{\mathrm{~d} p_{j}}{\mathrm{~d} t}=-\frac{\partial V}{\partial q_{j}}, j=1,2 \tag{18}
\end{equation*}
$$

has ever been classified. However, some types of fourth order ODEs have been classified, in particular the polynomial class $([\mathbf{9}, \mathbf{1 1}, \mathbf{1 6}, \mathbf{1 7}])$

$$
\begin{equation*}
u^{\prime \prime \prime \prime}=P\left(u^{\prime \prime \prime}, u^{\prime \prime}, u^{\prime}, u, x\right) \tag{19}
\end{equation*}
$$

in which P is polynomial in $u^{\prime \prime \prime}, u^{\prime \prime}, u^{\prime}, u$ and analytic in x. Therefore, if one succeeds, by elimination of either q_{1} or q_{2} (or another combination) between the two Hamilton equations and the equation $H=E$ expressing the conservation of the energy, to build a fourth order ODE in the class (19), and if this ODE is equivalent to the original system, then the question is settled.

In the cubic case, the two Hamilton equations

$$
\begin{align*}
& q_{1}^{\prime \prime}+\omega_{1} q_{1}-\beta q_{1}^{2}+\alpha q_{2}^{2}=0 \tag{20}\\
& q_{2}^{\prime \prime}+\omega_{2} q_{2}+2 \alpha q_{1} q_{2}-\gamma q_{2}^{-3}=0 \tag{21}
\end{align*}
$$

together with $H-E=0$, see (2), are indeed equivalent ([21]) to the single fourth order first degree ODE for $q_{1}(t)$,

$$
\begin{align*}
q_{1}^{\prime \prime \prime \prime}+(8 \alpha-2 \beta) & q_{1} q_{1}^{\prime \prime}-2(\alpha+\beta) q_{1}^{\prime 2}-\frac{20}{3} \alpha \beta q_{1}^{3} \\
& +\left(\omega_{1}+4 \omega_{2}\right) q_{1}^{\prime \prime}+\left(6 \alpha \omega_{1}-4 \beta \omega_{2}\right) q_{1}^{2}+4 \omega_{1} \omega_{2} q_{1}+4 \alpha E=0 \tag{22}
\end{align*}
$$

The equivalence results from the conservation of the number of parameters between the system (20)-(21) and the single equation (22), since the coefficient γ of the nonpolynomial term q_{2}^{-2} has been replaced by the constant value E of the Hamiltonian H. The results of the classification ([17]) enumerate as expected only three Painlevéintegrable such equations and they provide their general solution (for the first time in the SK and KK cases).

In the quartic case, the similar fourth order equation is built by eliminating Q_{2} and $Q_{1}^{\prime \prime \prime}$ between the two Hamilton equations,

$$
\begin{align*}
& Q_{1}^{\prime \prime}+\Omega_{1} Q_{1}+4 C Q_{1}^{3}+2 B Q_{1} Q_{2}^{2}-\alpha Q_{1}^{-3}+\gamma=0 \tag{23}\\
& Q_{2}^{\prime \prime}+\Omega_{2} Q_{2}+4 A Q_{2}^{3}+2 B Q_{2} Q_{1}^{2}-\beta Q_{2}^{-3}=0 \tag{24}
\end{align*}
$$

and the Hamiltonian (6), which results in

$$
\begin{align*}
-Q_{1}^{\prime \prime \prime \prime} & +2 \frac{Q_{1}^{\prime} Q_{1}^{\prime \prime \prime}}{Q_{1}}+\left(1+6 \frac{A}{B}\right) \frac{Q_{1}^{\prime \prime 2}}{Q_{1}}-2 \frac{Q_{1}^{\prime 2} Q_{1}^{\prime \prime}}{Q_{1}^{2}} \\
& +8\left(6 \frac{A C}{B}-B-C\right) Q_{1}^{2} Q_{1}^{\prime \prime}+4(B-2 C) Q_{1}{Q_{1}^{\prime}}^{2}+24 C\left(4 \frac{A C}{B}-B\right) Q_{1}^{5} \\
& +\left[12 \frac{A}{B} \omega_{1}-4 \omega_{2}+\left(1+12 \frac{A}{B}\right) \frac{\gamma}{Q_{1}}-4\left(1+3 \frac{A}{B}\right) \frac{\alpha}{Q_{1}^{4}}\right] Q_{1}^{\prime \prime} \tag{25}\\
& +6 \frac{A}{B} \frac{\alpha^{2}}{Q_{1}^{7}}+20 \frac{\alpha}{Q_{1}^{5}}{Q_{1}^{\prime}}^{2}-12 \frac{A}{B} \frac{\gamma \alpha}{Q_{1}^{4}}+4\left(3 \frac{A}{B} \omega_{1}-\omega_{2}\right)\left(\gamma-\frac{\alpha}{Q_{1}^{3}}\right)-2 \gamma \frac{Q_{1}^{\prime 2}}{Q_{1}^{2}} \\
& +6\left(\frac{A}{B} \gamma^{2}+2 B \alpha-8 \frac{A C}{B} \alpha\right) \frac{1}{Q_{1}}+\left(6 \frac{A}{B} \omega_{1}^{2}-4 \omega_{1} \omega_{2}-8 B E\right) Q_{1} \\
& +48 \frac{A C}{B} \gamma Q_{1}^{2}+4\left(12 \frac{A C}{B}-B-4 C\right) \omega_{1} Q_{1}^{3}=0
\end{align*}
$$

The equivalence with the Hamilton equations results from the dependence on E but not on β. However, this type of fourth order first degree ODEs has not yet been classified, and this would be quite useful to do so, in order to check that no Painlevéintegrable case has been omitted when performing the Painlevé test on the coupled system made of the two Hamilton equations.

6. Birational transformations between the quartic cases and integrated equations

Between Hamiltonians with one degree of freedom such as $H=p^{2} / 2+a q^{2}+b q^{3}+q^{4}$ and $H=p^{2} / 2+A q^{2}+q^{3}$, there exist invertible transformations which allow one to carry out the solution from one case to the other. These are the well known homographies between the Jacobi and the Weierstrass elliptic functions. In the present case of two degrees of freedom, the simplest example of such a transformation is ([15, Eq. (7.14)])

$$
\left\{\begin{array}{l}
Q_{1}^{2}+Q_{2}^{2}+\frac{\Omega_{1}+\Omega_{2}}{5}=\alpha q_{1}+\frac{\omega_{1}+4 \omega_{2}}{20} \tag{26}\\
\left(\Omega_{1}-\Omega_{2}\right)\left(Q_{1}^{2}-Q_{2}^{2}\right)=\frac{\alpha^{2}}{2} q_{2}^{2}-\frac{4 \omega_{1}+26 \omega_{2}}{5} \alpha q_{1}-\frac{\left(\omega_{1}+4 \omega_{2}\right)^{2}}{100}+2 E \\
\Omega_{1}=\omega_{1}, \quad \Omega_{2}=4 \omega_{2}
\end{array}\right.
$$

between the quartic $1: 2: 1$ case $H\left(Q_{j}, P_{j}, \Omega_{1}, \Omega_{2}, A, B\right)$ and the cubic KdV5 case $H\left(q_{j}, p_{j}, \omega_{1}, \omega_{2}, \alpha, \gamma\right)$. Its action on the hyperelliptic curves is just a translation.

An attempt to find transformations between the other quartic cases and any cubic case which would be as simple as (26) has been unsuccessful for the moment.

However, it is possible to obtain a birational transformation ([15]) between every remaining quartic case (1:6:1, 1:6:8, 1:12:16) and some classified fourth order ODE
of the type (19). Indeed, for each of the seven cases, the two Hamilton equations are equivalent $([\mathbf{6}, \mathbf{2 1}, \mathbf{2 2}])$ to the traveling wave reduction of a soliton system made either of a single PDE (HH3) or of two coupled PDEs (HH4), most of them appearing in lists established from group theory ([19]). Among the various soliton equations which are equivalent to them via a Bäcklund transformation, some of them admit a traveling wave reduction to a classified ODE. This property defines a path ([31, 44]) which starts from one of the three remaining HH4 cases, goes up to a soliton system of two coupled 1+1-dimensional PDEs admitting a reduction to the considered case, then goes via a Bäcklund transformation to another equivalent 1+1-dim PDE system, finally goes down by reduction to an already integrated ODE or system of ODEs.

6.1. Integration of the $1: 6: 1$ and $1: 6: 8$ cases with the a-F-VI equation

In this section, the integration is performed via a birational transformation to the autonomous F-VI equation (a-F-VI) in the classification of Cosgrove ([17]):

$$
\begin{equation*}
\mathrm{a}-\mathrm{F}-\mathrm{VI}: y^{\prime \prime \prime \prime}=18 y y^{\prime \prime}+9 y^{\prime 2}-24 y^{3}+\alpha_{\mathrm{VI}} y^{2}+\frac{\alpha_{\mathrm{VI}}^{2}}{9} y+\kappa_{\mathrm{VI}} t+\beta_{\mathrm{VI}}, \kappa_{\mathrm{VI}}=0 \tag{27}
\end{equation*}
$$

The two considered Hamiltonians, with their second constant of the motion, are the following,

$$
1: 6: 1\left\{\begin{array}{c}
H=\frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{\Omega}{2}\left(Q_{1}^{2}+Q_{2}^{2}\right) \\
-\frac{1}{32}\left(Q_{1}^{4}+6 Q_{1}^{2} Q_{2}^{2}+Q_{2}^{4}\right)-\frac{1}{2}\left(\frac{\kappa_{1}^{2}}{Q_{1}^{2}}+\frac{\kappa_{2}^{2}}{Q_{2}^{2}}\right)=E \tag{28}\\
K=\left(P_{1} P_{2}+\right. \\
\left.Q_{1} Q_{2}\left(-\frac{Q_{1}^{2}+Q_{2}^{2}}{8}+\Omega\right)\right)^{2} \\
-P_{2}^{2} \frac{\kappa_{1}^{2}}{Q_{1}^{2}}-P_{1}^{2} \frac{\kappa_{2}^{2}}{Q_{2}^{2}}+\frac{1}{4}\left(\kappa_{1}^{2} Q_{2}^{2}+\kappa_{2}^{2} Q_{1}^{2}\right)+\frac{\kappa_{1}^{2} \kappa_{2}^{2}}{Q_{1}^{2} Q_{2}^{2}}
\end{array}\right.
$$

and

$$
1: 6: 8\left\{\begin{array}{c}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{\omega}{2}\left(4 q_{1}^{2}+q_{2}^{2}\right) \tag{29}\\
\quad-\frac{1}{16}\left(8 q_{1}^{4}+6 q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)-\gamma q_{1}+\frac{\beta}{2 q_{2}^{2}}=E \\
K=\left(p_{2}^{2}-\frac{q_{2}^{2}}{16}\left(2 q_{2}^{2}+4 q_{1}^{2}+\omega\right)+\frac{\beta}{q_{2}^{2}}\right)^{2} \\
-\frac{1}{4} q_{2}^{2}\left(q_{2} p_{1}-2 q_{1} p_{2}\right)^{2}+\gamma\left(-2 \gamma q_{2}^{2}-4 q_{2} p_{1} p_{2}\right. \\
\\
\left.+\frac{1}{2} q_{1} q_{2}^{4}+q_{1}^{3} q_{2}^{2}+4 q_{1} p_{2}^{2}-4 \omega q_{1} q_{2}^{2}+4 q_{1} \frac{\beta}{q_{2}^{2}}\right)
\end{array}\right.
$$

There exists a canonical transformation ([6]) between these two cases, mapping the constants as follows:
(30) $E_{1: 6: 8}=E_{1: 6: 1}, \quad K_{1: 6: 8}=K_{1: 6: 1}, \quad \omega=\Omega, \quad \gamma=\frac{\kappa_{1}+\kappa_{2}}{2}, \quad \beta=-\left(\kappa_{1}-\kappa_{2}\right)^{2}$.

Therefore, one only needs to integrate either case.

The path to an integrated ODE comprises the following three segments.
The coordinate $q_{1}(t)$ of the 1:6:8 case can be identified $([\mathbf{7}, \boldsymbol{6}])$ to the component F of the traveling wave reduction $f(x, \tau)=F(x-c \tau), g(x, \tau)=G(x-c \tau)$ of a soliton system of two coupled KdV-like equations (c-KdV system) denoted c-KdV ${ }_{1}([\mathbf{7}, \mathbf{6}])$
$(31)\left\{\begin{array}{l}f_{\tau}+\left(f_{x x}+\frac{3}{2} f f_{x}-\frac{1}{2} f^{3}+3 f g\right)_{x}=0, \\ -2 g_{\tau}+g_{x x x}+6 g g_{x}+3 f g_{x x}+6 g f_{x x}+9 f_{x} g_{x}-3 f^{2} g_{x} \\ +\frac{3}{2} f_{x x x x}+\frac{3}{2} f f_{x x x}+9 f_{x} f_{x x}-3 f^{2} f_{x x}-3 f f_{x}^{2}=0,\end{array}\right.$
with the identification

$$
\left\{\begin{array}{l}
q_{1}=F, q_{2}^{2}=-2\left(F^{\prime}+F^{2}+2 G-2 \omega\right) \tag{32}\\
c=-\omega, K_{1}=\gamma, K_{2}=E
\end{array}\right.
$$

in which K_{1} and K_{2} are two constants of integration.
There exists a Bäcklund transformation between this soliton system and another one of c-KdV type, denoted bi-SH system ([19]):

$$
\left\{\begin{array}{l}
-2 u_{\tau}+\left(u_{x x}+u^{2}+6 v\right)_{x}=0 \tag{33}\\
v_{\tau}+v_{x x x}+u v_{x}=0
\end{array}\right.
$$

This Bäcklund transformation is defined by the Miura transformation ([31])

$$
\left\{\begin{align*}
u & =\frac{3}{2}\left(2 g-f_{x}-f^{2}\right) \tag{34}\\
v & =\frac{3}{4}\left(2 f_{x x x}+4 f f_{x x}+8 g f_{x}+4 f g_{x}+3 f_{x}^{2}-2 f^{2} f_{x}-f^{4}+4 g f^{2}\right)
\end{align*}\right.
$$

Finally, the traveling wave reduction

$$
\left\{\begin{aligned}
u(x, \tau) & =U(x-c \tau), \\
v(x, \tau) & =V(x-c \tau)
\end{aligned}\right.
$$

can be identified $([\mathbf{4 4}])$ to the autonomous F-VI equation (a-F-VI) (27), whose general solution is meromorphic, expressed with genus two hyperelliptic functions ([17, Eq. (7.26)]). The identification is

$$
\left\{\begin{array}{l}
U=-6\left(y+\frac{c}{18}\right) \tag{35}\\
V=y^{\prime \prime}-6 y^{2}+\frac{4}{3} c y+\frac{16}{27} c^{2}-\frac{K_{A}}{2} \\
\alpha_{\mathrm{VI}}=-4 c, \beta_{\mathrm{VI}}=K_{B}-2 c K_{A}+\frac{512}{243} c^{3}
\end{array}\right.
$$

in which K_{A}, K_{B} are two constants of integration.

In order to perform the integration of both the 1:6:1 and the 1:6:8 cases, it is sufficient to express (F, G) rationally in terms of $\left(U, V, U^{\prime}, V^{\prime}\right)$. The result is

$$
\left\{\begin{align*}
F & =\frac{W^{\prime}}{2 W}+\frac{K_{1}}{24 W}\left[-3{U^{\prime 2}}^{2}-2(U-3 c)\left(12 V+(U+3 c)^{2}\right)+36 K_{B}-54 K_{1}^{2}\right] \tag{36}\\
G & =\frac{U}{3}+\frac{1}{8 W}\left[\left(2 V+3 K_{2}\right)\left(2 V^{\prime \prime}+K_{1} U^{\prime}-3 K_{1}^{2}\right)\right. \\
W & =\left(V+\frac{3}{2} K_{2}\right)^{2}+\frac{3}{2} K_{1}^{2}(U-3 c) \\
K_{A} & =K_{2}
\end{align*}\right.
$$

Making the product of the successive transformations (32), (36), (35), one obtains a meromorphic general solution for q_{1}, q_{2}^{2} :

$$
\left\{\begin{align*}
q_{1}= & \frac{W^{\prime}}{2 W}+\frac{\gamma}{W}\left[9 j-3\left(y+\frac{4}{9} \omega\right)(h+E)-\frac{9}{4} \gamma^{2}\right] \\
q_{2}^{2}= & -16\left(y-\frac{5}{9} \omega\right)+\frac{1}{W}\left[12\left(y^{\prime}+\frac{\gamma}{2}\right)^{2}-48 y^{3}-16 \omega y^{2}\right. \\
& +\left(24 E+\frac{128}{9} \omega^{2}\right) y+\frac{1280}{243} \omega^{3}-\frac{40}{3} \omega E+\frac{3}{4} \beta \\
& \left.-24 \gamma\left(y-\frac{5}{9} \omega\right) h^{\prime}-144 \gamma^{2}\left(y-\frac{5}{9} \omega\right)^{2}\right] \tag{37}\\
W= & (h+E)^{2}-9 \gamma^{2}\left(y-\frac{5}{9} \omega\right), \\
\alpha_{\mathrm{VI}}= & 4 \omega, \quad \beta_{\mathrm{VI}}=\frac{3}{4} \gamma^{2}+2 \omega E-\frac{3}{16} \beta-\frac{512}{243} \omega^{3} \\
K_{1, \mathrm{VI}}= & \frac{3}{32} K-\frac{1}{2} E^{2}, \quad K_{2, \mathrm{VI}}=\frac{3}{32} E K-\frac{1}{3} E^{3}+\frac{9}{64} \beta \gamma^{2} \\
K_{1}= & \gamma, \quad K_{2}=E, \quad K_{A}=E, \quad K_{B}=-\frac{3}{16} \beta+\frac{3}{4} \gamma^{2}
\end{align*}\right.
$$

in which h and j are the convenient auxiliary variables ([17, Eqs. (7.4)-(7.5)])

$$
\left\{\begin{align*}
y & =\frac{Q\left(s_{1}, s_{2}\right)+\sqrt{Q\left(s_{1}\right) Q\left(s_{2}\right)}}{2\left(\sqrt{s_{1}^{2}-C_{\mathrm{VI}}}+\sqrt{s_{2}^{2}-C_{\mathrm{VI}}}\right)^{2}}+\frac{5}{36} \alpha_{\mathrm{VI}} \tag{38}\\
h & =-\frac{3}{4} E_{\mathrm{VI}} \frac{s_{1} s_{2}+C_{\mathrm{VI}}+\sqrt{\left(s_{1}^{2}-C_{\mathrm{VI}}\right)\left(s_{2}^{2}-C_{\mathrm{VI}}\right)}}{s_{1}+s_{2}}-\frac{F_{\mathrm{VI}}}{2} \\
j & =\frac{1}{6}\left(2 h+F_{\mathrm{VI}}\right)\left\{y+\frac{\alpha_{\mathrm{VI}}}{9}-\frac{E_{\mathrm{VI}}}{4\left(s_{1}+s_{2}\right)}\right\}
\end{align*}\right.
$$

In the above, the variables s_{1}, s_{2} are defined by the hyperelliptic system ([17])

$$
\left\{\begin{array}{l}
\left(s_{1}-s_{2}\right) s_{1}^{\prime}=\sqrt{P\left(s_{1}\right)}, \quad\left(s_{2}-s_{1}\right) s_{2}^{\prime}=\sqrt{P\left(s_{2}\right)}, \tag{39}\\
P(s)=\left(s^{2}-C_{\mathrm{VI}}\right) Q(s), \\
Q(s, t)=\left(s^{2}-C_{\mathrm{VI}}\right)\left(t^{2}-C_{\mathrm{VI}}\right)-\frac{\alpha_{\mathrm{VI}}}{2}\left(s^{2}+t^{2}-2 C_{\mathrm{VI}}\right)+\frac{E_{\mathrm{VI}}}{2}(s+t)+F_{\mathrm{VI}}, \\
Q(s)=Q(s, s) .
\end{array}\right.
$$

Despite their square roots, the symmetric expressions in (38) are nevertheless meromorphic ($[\mathbf{2 0}, \mathbf{3 0}]$).

The completeness of both the 1:6:1 and 1:6:8 Hamiltonians results from the completeness of the a-F-VI ODE and the following counting. The 1:6:8 depends on the parameters $(\omega, \beta, \gamma, E, K)$, the a-F-VI ODE and its hyperelliptic system depend on the same number of parameters $(\alpha, \beta, C, E, F)_{\mathrm{VI}}$, and these two sets of five parameters are linked by exactly five algebraic relations ([17, Eqs. (7.9)-(7.12)]):

$$
\left\{\begin{array}{l}
\alpha_{\mathrm{VI}}=4 \omega \tag{40}\\
\beta_{\mathrm{VI}}=\frac{3}{4} \gamma^{2}+2 \omega E-\frac{3}{16} \beta-\frac{512}{243} \omega^{3} \\
E_{\mathrm{VI}}^{2}=-\frac{16}{3} \omega\left(F_{\mathrm{VI}}-2 E\right)-\beta+4 \gamma^{2} \\
C_{\mathrm{VI}} E_{\mathrm{VI}}^{2}=\frac{4}{3}\left(F_{\mathrm{VI}}^{2}-4 E^{2}\right)+K \\
\left(F_{\mathrm{VI}}-2 E\right)^{2}\left(F_{\mathrm{VI}}+4 E\right)+\frac{9 K}{4}\left(F_{\mathrm{VI}}-2 E\right)-\frac{27}{4} \beta \gamma^{2}=0
\end{array}\right.
$$

The algebraic nature (instead of rational like in the 1:2:1 case and the three cubic cases) of these dependence relations could explain the difficulty to separate the variables in the Hamilton-Jacobi equation. In the nongeneric case $\beta \gamma=0$, i.e, $\kappa_{1}^{2}=\kappa_{2}^{2}$, for which the separating variables are known $([34])$, the coefficients $\left(\alpha, \beta, C, E^{2}, F\right)_{\mathrm{VI}}$ become rational functions of $(\omega, \beta, \gamma, E, K)$, see [43]. Since these separating variables have been obtained by the same method as in the cubic SK-KK case, it would be quite useful to remove the difficulty which remains in the method based on Laurent series, see Section 3.
6.2. Integration of the $1: 12: 16$ case by a birational transformation. - This is the only case for which the integration, which can indeed be performed with the same results (meromorphy of the general solution, completeness of the Hamiltonian) is not satisfying. Indeed, the hyperelliptic system to which the 1:12:16 has been mapped by a birational transformation ([15]) is essentially different from the hyperelliptic system resulting from the separating variables ([41]) in the nongeneric case $\alpha \beta=0$ for which they are known. Since the nongeneric subcase $\alpha=0$ belongs to the

Stäckel class (two invariants quadratic in p_{1}, p_{2}), for which the separating variables are unambiguous, this indicates that some progress has still to be made.

The main remarkable feature of the 1:12:16 is the existence of a twin system to which it is mapped by a canonical transformation ($[\mathbf{6}, \mathbf{7}]$) which only differs by numerical coefficients from the canonical transformation between the cubic SK and KK cases. The two systems are the following ones:
(41) $1: 12: 16$

$$
\left\{\begin{aligned}
H= & \frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{\Omega}{8}\left(4 Q_{1}^{2}+Q_{2}^{2}\right) \\
& \quad-\frac{1}{32}\left(16 Q_{1}^{4}+12 Q_{1}^{2} Q_{2}^{2}+Q_{2}^{4}\right)-\frac{1}{2}\left(\frac{\kappa_{1}^{2}}{Q_{1}^{2}}+\frac{4 \kappa_{2}^{2}}{Q_{2}^{2}}\right)=E \\
K= & \frac{1}{16}\left(8\left(Q_{2} P_{1}-Q_{1} P_{2}\right) P_{2}-Q_{1} Q_{2}^{4}-2 Q_{1}^{3} Q_{2}^{2}\right. \\
& \left.+2 \Omega Q_{1} Q_{2}^{2}+32 Q_{1} \frac{\kappa_{2}^{2}}{Q_{2}^{2}}\right)^{2}+\kappa_{1}^{2}\left(Q_{2}^{4}-4 \frac{Q_{2}^{2} P_{2}^{2}}{Q_{1}^{2}}\right)
\end{aligned}\right.
$$

and [this system is not the sum of a kinetic energy and a potential energy]

$$
5: 9: 4\left\{\begin{array}{r}
H=\frac{1}{2}\left(p_{1}^{2}+\left(p_{2}-\frac{3}{2} q_{1} q_{2}\right)^{2}\right)- \tag{42}\\
-\frac{1}{8}\left(4 q_{1}^{4}+9 q_{1}^{2} q_{2}^{2}+5 q_{2}^{4}\right) \\
\\
+\frac{\omega}{2}\left(q_{1}^{2}+q_{2}^{2}\right)-\kappa q_{1}+\frac{\zeta}{2 q_{2}^{2}}=E, \\
K=\frac{1}{q_{2}^{2}}\left(2 q_{2}^{2} p_{1}+2 q_{1}^{2} q_{2}^{2}-2 q_{1} q_{2} p_{2}-q_{2}^{4}-4 \kappa q_{1}\right)^{2}\left(2 q_{2}^{2} p_{1}+2 q_{1}^{2} q_{2}^{2}\right. \\
+p_{2}^{2}-4 q_{1} q_{2} p_{2}-2 q_{2}^{4}+\Omega q_{2}^{2}+4 \frac{\kappa^{2}}{q_{2}^{2}}+8 \kappa q_{1}-4 \kappa \frac{p_{2}}{q_{2}} \\
\left.+4\left(\zeta+4 \kappa^{2}\right)\right)\left(\left(-2 q_{1} \frac{p_{2}}{q_{2}}+4 q_{1}^{2}+q_{2}^{2}+4 q_{1} \frac{\kappa}{q_{2}^{2}}\right) p_{1}\right. \\
-\frac{1}{q_{2}^{4}}\left(q_{1}^{2} q_{2}^{2}+q_{2}^{4}+2 \kappa q_{1}\right)^{2}+2 \frac{q_{1}^{2}}{q_{2}^{2}}\left(p_{2}-\frac{3}{2} q_{1} q_{2}\right)^{2} \\
\\
\left.+\frac{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}}{2}+q_{1}^{2} \frac{\zeta}{q_{2}^{4}}\right)
\end{array}\right.
$$

The canonical transformation maps the constants as follows:
(43) $E_{5: 9: 4}=E_{1: 12: 16}, \quad K_{5: 9: 4}=K_{1: 12: 16}, \quad \omega=\Omega, \quad \kappa=\frac{\kappa_{1}+\kappa_{2}}{2}, \quad \zeta=-\left(\kappa_{1}-\kappa_{2}\right)^{2}$.

The path to an integrated ODE is quite similar to that described in detail in section 6.1, in particular it is also made of three segments $([\mathbf{6}, \mathbf{3 1}, \mathbf{4 1}])$. The result is the following ([15]):

$$
\begin{equation*}
Q_{1}, Q_{2}^{2}=\operatorname{rational}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right) \tag{44}
\end{equation*}
$$

in which y obeys the F-IV equation in the classification of Cosgrove ($[\mathbf{1 7}]$),

$$
\text { F-IV }\left\{\begin{array}{l}
y^{\prime \prime \prime \prime}=30 y y^{\prime \prime}-60 y^{3}+\alpha_{\mathrm{IV}} y+\beta_{\mathrm{IV}} \tag{45}\\
y=\frac{1}{2}\left(s_{1}^{\prime}+s_{2}^{\prime}+s_{1}^{2}+s_{1} s_{2}+s_{2}^{2}+A\right) \\
\left(s_{1}-s_{2}\right) s_{1}^{\prime}=\sqrt{P\left(s_{1}\right)}, \quad\left(s_{2}-s_{1}\right) s_{2}^{\prime}=\sqrt{P\left(s_{2}\right)}, \\
P(s)=\left(s^{2}+A\right)^{3}-\frac{\alpha_{\mathrm{IV}}}{3}\left(s^{2}+A\right)+B s+\frac{\beta_{\mathrm{IV}}}{3} \\
K_{1, \mathrm{IV}}=\left(\frac{3 B}{4}\right)^{2}, \quad K_{2, \mathrm{IV}}=-\frac{9 A B^{2}}{64}
\end{array}\right.
$$

with ($K_{1, \mathrm{IV}}, K_{2, \text { IV }}$) two polynomial first integrals of F-IV. The general solution of this ODE is meromorphic, expressed with genus two hyperelliptic functions ([17]). This proves the PP for the 1:12:16.

In the two nongeneric cases $\kappa_{1} \kappa_{2}=0$ where the separating variables are known, the hyperelliptic curve is

$$
\begin{equation*}
\kappa_{1} \kappa_{2}=0: P(s)=s^{6}-\omega s^{3}+2 E s^{2}+\frac{K}{20} s+\kappa_{1}^{2}+\kappa_{2}^{2}=0 \tag{46}
\end{equation*}
$$

and it does not coincide in this case with the hyperelliptic curve of F-IV. Therefore, F-IV (as well as its birationally equivalent ODE F-III) is not the good ODE to consider, and it should be quite instructive to directly integrate the fourth order equivalent ODE (26) in that case.

7. Conclusion and open problems

All the time independent two-degree-of-freedom Hamiltonians which possess the Painlevé property have a meromorphic general solution, expressed with hyperelliptic functions of genus two. Moreover, all such Hamiltonians are complete in the Painlevé sense, i.e, it is impossible to add any term to the Hamiltonian without ruining the Painlevé property.

As to the remaining open problems, depending on the center of interest, they are

1. from the point of view of Hamiltonian theory, one has to find the separating variables in the three missing quartic cases. This should be possible by the methods of Sklyanin and van Moerbeke and Vanhaecke;
2. from the point of view of the integration of differential equations, the problem remains to enumerate all the fourth order first degree differential equations in a given precise class which possess the Painlevé property.

Let us finally mention that the time dependent extension of these seven cases has been studied in Refs. [27, 28].

References

[1] S. Abenda, V. Marinakis \& T. Bountis - On the connection between hyperelliptic separability and Painlevé integrability, J. Phys. A 34 (2001), p. 3521-3539.
[2] M. Adler \& P. van Moerbeke - Completely integrable system - A systematic approach, Perspect. Math., Academic Press, New York, 1987.
[3] M. Adler \& P. van Moerbeke - The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math. 97 (1989), p. 3-51.
[4] A. Ankiewicz \& C. Pask - The complete Whittaker theorem for two-dimensional integrable systems and its application, J. Phys. A 16 (1983), p. 4203-4208.
[5] V. Arnol'd - Les méthodes mathématiques de la mécanique classique, Nauka, Moscou, 1974, Mir, Moscou, 1976.
[6] S. Baker - Squared eigenfunction representations of integrable hierarchies, PhD Thesis, University of Leeds, Leeds, 1995.
[7] S. Baker, V. Z. Enol'skii \& A. P. Fordy - Integrable quartic potentials and coupled KdV equations, Phys. Lett. A 201 (1995), p. 167-174.
[8] M. Beaszak \& S. Rauch-Wojciechowski - A generalized Hénon-Heiles system and related integrable Newton equations, J. Math. Phys. 35 (1994), p. 1693-1709.
[9] F. J. Bureau - Differential equations with fixed critical points, Ann. Mat. Pura Appl. 66 (1964), p. 1-116.
[10] M. T. Chang Y. F. \& J. Weiss - Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys. 23 (1982), p. 531-538.
[11] J. Chazy - Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), p. 317-385.
[12] R. Conte - The Painlevé approach to nonlinear ordinary differential equations, in The Painlevé property, one century later, CRM Series in Mathematical Physics (Springer), New York, 1999, p. 77-180.
[13] R. Conte, A. P. Fordy \& A. Pickering - A perturbative Painlevé approach to nonlinear differential equations, Phys. D 69 (1993), p. 33-58.
[14] R. Conte, M. Musette \& C. Verhoeven - Completeness of the cubic and quartic Hénon-Heiles Hamiltonians, Theor. Math. Phys. 144 (2005), p. 888-898.
[15] ___ Explicit integration of the Hénon-Heiles Hamiltonians, J. Nonlinear Mathematical Physics 12 Supp. 1 (2005), p. 212-227.
[16] C. M. Cosgrove - Higher order Painlevé equations in the polynomial class, i. Bureau symbol $p 1$, preprint, University of Sydney (2000), no. 2000-6, p. 1-113.
[17] , Higher order Painlevé equations in the polynomial class, i. Bureau symbol $p 2$, Stud. Appl. Math. 104 (2000), p. 1-65.
[18] J. Drach - Sur l'intégration par quadratures de l'équation $\mathrm{d}^{2} y / \mathrm{d} x^{2}=[\varphi(x)+h] y$,, C. R. Acad. Sc. Paris 168 (1919), p. 337-340.
[19] V. G. Drinfel'd \& V. V. Sokolov - Equations of Korteweg-de Vries type and simple Lie algebras, Soviet Math. Dokl. 23 (1981), p. 457-462.
[20] N. Farkas \& E. Kra - Riemann surfaces, Springer, Berlin, 1980.
[21] A. P. Fordy - The Hénon-Heiles system revisited, Phys. D 52 (1991), p. 204-210.
[22] A. P. Fordy \& P. P. Kulish - Nonlinear Schrödinger equations and simple Lie algebras, Commun. Math. Phys. 89 (1983), p. 427-443.
[23] B. Grammaticos, B. Dorizzi \& A. Ramani - Integrability of Hamiltonians with thirdand fourth-degree polynomial potentials, J. Math. Phys. 24 (1983), p. 2289-2295.
[24] M. HÉnon \& C. Heiles - The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964), p. 73-79.
[25] J. Hietarinta - Classical versus quantum integrability, J. Math. Phys. 25 (1984), p. 1833-1840.
[26] \qquad , Direct method for the search of the second invariant, Phys. Rep. 147 (1987), p. 87-154.
[27] A. N. W. Hone - Nonautonomous Hénon-Heiles systems, Phys. D 118 (1998), p. 1-16.
[28] , Coupled Painlevé systems and quartic potentials, J. Phys. A 34 (2001), p. 22352245.
[29] M. Jimbo \& T. Miwa - Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), p. 943-1001.
[30] D. Mumford - Tata lectures on theta, II, Birkhäuser, Basel, 1983.
[31] M. Musette \& C. Verhoeven - On CKP and BKP equations related to the generalized quartic Hénon-Heiles Hamiltonian, Theor. Math. Phys. 137 (2003), p. 1561-1573.
[32] A. Ramani, B. Dorizzi \& B. Grammaticos - Painlevé conjecture revisited, Phys. Rev. Lett. 49 (1982), p. 1539-1541.
[33] V. Ravoson, L. Gavrilov \& R. Caboz - Separability and Lax pairs for Hénon-Heiles system, J. Math. Phys. 34 (1993), p. 2385-2393.
[34] V. Ravoson, A. Ramani \& B. Grammaticos - Generalized separability for a Hamiltonian with nonseparable quartic potential, Phys. Letters A 191 (1994), p. 91-95.
[35] F. J. Romeiras - A note on integrable two-degrees-of-freedom hamiltonian systems with a second integral quartic in the momenta, J. Phys. A 28 (1995), p. 5633-5642.
[36] M. Salerno, V. Z. Enol'skii \& D. V. Leykin - Canonical transformation between integrable Hénon-Heiles systems, Phys. Rev. E 49 (1994), p. 5897-5899.
[37] E. K. Sklyanin - Separation of variables - New trends -, Prog. Theor. Phys. Suppl. 118 (1995), p. 35-60.
[38] P. Stäckel - Sur une classe de problèmes de Dynamique, C. R. Acad. Sc. Paris 116 (1893), p. 485-487.
[39] __ Sur une classe de problèmes de Dynamique, qui se réduisent à des quadratures, C. R. Acad. Sc. Paris 116 (1893), p. 1284-1286.
[40] P. Vanhaecke - Integrable systems in the realm of algebraic geometry, Lecture notes in mathematics, vol. 1638, Springer, Berlin, 1996.
[41] C. Verhoeven - Integration of Hamiltonian systems of Hénon-Heiles type and their associated soliton equations, PhD Thesis, Vrije Universiteit Brussel, Bruxelles, 2003.
[42] C. Verhoeven, M. Musette \& R. Conte - Integration of a generalized Hénon-Heiles Hamiltonian, J. Math. Phys. 43 (2002), p. 1906-1915.
[43] , General solution for Hamiltonians with extended cubic and quartic potentials, Theor. Math. Phys. 134 (2003), p. 128-138.
[44] , On reductions of some KdV-type systems and their link to the quartic HénonHeiles Hamiltonian, in Bilinear integrable systems - from classical to quantum, continuous to discrete, ed. P. van Moerbeke, Kluwer, Dordrecht, 2004.
[45] S. Wojciechowski - Separability of an integrable case of the Hénon-Heiles system, Phys. Lett. A 100 (1984), p. 277-278.
R. Conte, Service de physique de l'état condensé (U.R.A. 2464), C.E.A. Saclay, F-91191 Gif-surYvette Cedex, France - E-mail : Robert.Conte@cea.fr
M. Musette, Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel • International Solvay Institutes for Physics and Chemistry, Pleinlaan 2, B-1050 Brussels, Belgium E-mail : MMusette@vub.ac.be
C. Verhoeven, Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel - International Solvay Institutes for Physics and Chemistry, Pleinlaan 2, B-1050 Brussels, Belgium
E-mail : CVerhoev@vub.ac.be

