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PAINLEVÉ PROPERTY OF THE HÉNON-HEILES

HAMILTONIANS

by

Robert Conte, Micheline Musette & Caroline Verhoeven

Abstract. — Time independent Hamiltonians of the physical type

H = (P 2
1 + P 2

2 )/2 + V (Q1, Q2)

pass the Painlevé test for only seven potentials V , known as the Hénon-Heiles Hamil-
tonians, each depending on a finite number of free constants. Proving the Painlevé

property was not yet achieved for generic values of the free constants. We integrate
each missing case by building a birational transformation to some fourth order first
degree ordinary differential equation in the classification (Cosgrove, 2000) of such
polynomial equations which possess the Painlevé property. The properties common
to each Hamiltonian are:

(i) the general solution is meromorphic and expressed with hyperelliptic functions
of genus two,

(ii) the Hamiltonian is complete (the addition of any time independent term would
ruin the Painlevé property).

Résumé(Propriété de Painlevé des hamiltoniens de Hénon-Heiles).— Les hamiltoniens,
indépendants du temps, de la forme

H = (P 2
1 + P 2

2 )/2 + V (Q1, Q2)

satisfont au test de Painlevé pour seulement sept potentiels V ; ceux-ci sont connus
sous le nom de hamiltoniens de Hénon-Heiles et ils dépendent d’un nombre fini de
constantes libres. La propriété de Painlevé restait à établir pour des valeurs génériques
des constantes libres. Nous traitons chacun des cas en suspens en construisant une
transformation birationnelle vers une équation différentielle ordinaire d’ordre quatre
qui figure dans la liste exhaustive (Cosgrove, 2000) de telles équations polynomiales
possédant la propriété de Painlevé. Les propriétés communes à ces hamiltoniens sont :

(i) la solution générale est méromorphe et peut être exprimée en termes de fonc-
tions hyperelliptiques de genre deux,

(ii) le hamiltonien est complet au sens où l’addition de tout terme indépendant
du temps ferait perdre la propriété de Painlevé.
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1. Introduction

Let us consider the most general two-degree of freedom, classical, time-independent

Hamiltonian of the physical type (i.e, the sum of a kinetic energy and a potential

energy),

H =
1

2
(p2

1 + p2
2) + V (q1, q2),(1)

and let us require that the general solution qn1

1 , qn2

2 , with n1, n2 integers to be de-

termined, be single valued functions of the complex time t, i.e., what is called the

Painlevé property of these equations.

A necessary condition is that the Hamilton equations of motion, when written in

these variables qn1

1 , qn2

2 , pass the Painlevé test ([12]). This selects seven potentials V

(three“cubic”and four“quartic”) depending on a finite number of arbitrary constants,

which are known as the Hénon-Heiles Hamiltonians ([24]). In order to prove the

sufficiency of these conditions, one must then perform the explicit integration and

check the singlevaluedness of the general solution. We present here a review on this

subject.

The paper is organized as follows:

In section 2, we enumerate the seven cases isolated by the Painlevé test, together

with the second constant of the motion K in involution with the Hamiltonian. In

section 3, we recall the separating variables in the four cases where they are known.

In section 4, we display confluences from quartic cases to all the cubic cases, thus

restricting the problem to the consideration of the quartic cases only. In section

5, due to the lack of knowledge of the separating variables in the three remaining

cases, we state the equivalence of the equations of motion and the conservation of

energy with some fourth order first degree ordinary differential equations (ODEs).

In section 6, since these fourth order equations do not belong to any set of already

classified equations, we build a birational transformation between each quartic case

and some fourth order ODE belonging to a classification of Cosgrove ([17]), thus

proving the Painlevé property for the quartic cases.

To summarize, the results are twofold:

1. each case is integrated by solving a Jacobi inversion problem involving a hy-

perelliptic curve of genus two, which proves the meromorphy of the general

solution,

2. each case is complete in the sense of Painlevé, i.e, it is impossible to add any time-

independent term to the Hamiltonian without ruining the Painlevé property.

2. The seven Hénon-Heiles Hamiltonians

By application of the Painlevé test, one isolates two classes of potentials V (q1, q2),

called “cubic” and “quartic” for simplification.
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1. In the cubic case HH3 ([10, 13, 21]),

(2) H =
1

2
(p2

1 + p2
2 + ω1q

2
1 + ω2q

2
2) + αq1q

2
2 − 1

3
βq3

1 +
1

2
γq−2

2 , α 6= 0,

in which the constants α, β, ω1, ω2 and γ can only take the three sets of values,

(SK) : β/α = −1, ω1 = ω2,(3)

(KdV5) : β/α = −6,(4)

(KK) : β/α = −16, ω1 = 16ω2.(5)

2. In the quartic case HH4 ([23, 32]),

(6) H =
1

2
(P 2

1 + P 2
2 + Ω1Q

2
1 + Ω2Q

2
2) + CQ4

1

+ BQ2
1Q

2
2 + AQ4

2 +
1

2

(

α

Q2
1

+
β

Q2
2

)

+ γQ1, B 6= 0,

in which the constants A, B, C, α, β, γ,Ω1 and Ω2 can only take the four values

(the notation A : B : C = p : q : r stands for A/p = B/q = C/r = arbitrary),















A : B : C = 1 : 2 : 1, γ = 0,

A : B : C = 1 : 6 : 1, γ = 0, Ω1 = Ω2,

A : B : C = 1 : 6 : 8, α = 0, Ω1 = 4Ω2,

A : B : C = 1 : 12 : 16, γ = 0, Ω1 = 4Ω2.

(7)

For each of the seven cases so isolated there exists a second constant of the motion

K ([7, 18, 25]) ([6, 7, 26]) in involution with the Hamiltonian,

(SK) K =
(

3p1p2 + αq2(3q2
1 + q2

2) + 3ω2q1q2

)2
+ 3γ(3p2

1q
−2
2 + 4αq1 + 2ω2),

(KdV5) K = 4αp2(q2p1 − q1p2) + (4ω2 − ω1)(p
2
2 + ω2q

2
2 + γq−2

2 )

+ α2q2
2(4q2

1 + q2
2) + 4αq1(ω2q

2
2 − γq−2

2 ),

(KK) K = (3p2
2 + 3ω2q

2
2 + 3γq−2

2 )2 + 12αp2q
2
2(3q1p2 − q2p1)

− 2α2q4
2(6q2

1 + q2
2) + 12αq1(−ω2q

4
2 + γ) − 12ω2γ,

(1 : 2 : 1)



































K = (Q2P1 − Q1P2)
2

+ Q2
2

α

Q2
1

+ Q2
1

β

Q2
2

− Ω1 − Ω2

2

(

P 2
1 − P 2

2 + Q4
1 − Q4

2 + Ω1Q
2
1 − Ω2Q

2
2 +

α

Q2
1

− β

Q2
2

)

,

A =
1

2
,
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(1 : 6 : 1)















































K =

(

P1P2 + Q1Q2

(

− Q2
1 + Q2

2

8
+ Ω1

)

)2

− P 2
2

κ2
1

Q2
1

− P 2
1

κ2
2

Q2
2

+
1

4

(

κ2
1Q

2
2 + κ2

2Q
2
1

)

+
κ2

1κ
2
2

Q2
1Q

2
2

,

α = −κ2
1, β = −κ2

2, A = − 1

32
,

(1 : 6 : 8)



























































K =

(

P 2
2 − Q2

2

16
(2Q2

2 + 4Q2
1 + Ω2) +

β

Q2
2

)2

− 1

4
Q2

2(Q2P1 − 2Q1P2)
2 + γ

(

− 2γQ2
2 − 4Q2P1P2

+
1

2
Q1Q

4
2 + Q3

1Q
2
2 + 4Q1P

2
2 − 4Ω2Q1Q

2
2 + 4Q1

β

Q2
2

)

,

A = − 1

16
,

(1 :12 :16)



































K =

(

8(Q2P1 − Q1P2)P2 − Q1Q
4
2 − 2Q3

1Q
2
2

+ 2Ω1Q1Q
2
2 − 8Q1

β

Q2
2

)2

+
32α

5

(

Q4
2 + 10

Q2
2P

2
2

Q2
1

)

,

A = − 1

32
.,

Remark. — Performing the reduction q1 = 0, p1 = 0 in the three HH3 Hamiltoni-

ans (2) yields H = p2/2 + (1/2)ωq2 + (1/2)γq−2, for which q2 obeys a linearizable

Briot-Bouquet ODE. Similarly, the reduction Q1 = 1, P1 = 0 in the four HH4 Hamil-

tonians (6) yields H = P 2/2+ (1/2)ωQ2+AQ4 +(1/2)βQ−2, for which Q2 obeys the

Weierstrass elliptic equation.

These seven Hénon-Heiles Hamiltonians can be studied from various points of view

such as: separation of variables ([37]), Painlevé property, algebraic complete integra-

bility ([3]). For the interrelations between these various approaches, the reader can

refer to the plain introduction in Ref. [1]. In the present work, we only deal with

proving the Painlevé property (PP).

In order to prove or disprove the PP, it is sufficient to obtain an (explicit) canonical

transformation to new canonical variables (the so-called separating variables) which

separate the Hamilton-Jacobi equation for the action S(q1, q2) ([5, chap. 10]), which

for two degrees of freedom is

(8) H(q1, q2, p1, p2) − E = 0, p1 =
∂S

∂q1

, p2 =
∂S

∂q2

.
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HÉNON-HEILES HAMILTONIANS 69

Indeed, if such separating variables are obtained, depending on the genus g of the

hyperellitic curve r2 = P (s) involved in the associated Jacobi inversion problem,

(9)
ds1

√

P (s1)
+

ds2
√

P (s2)
= 0,

s1ds1
√

P (s2)
+

s2ds2
√

P (s2)
= dt,

the elementary symmetric functions s1+s2 and s1s2 are either meromorphic functions

of time (g ≤ 2), or multivalued (g > 3).

3. The four cases with known separating variables

Two of the seven cases (KdV5, 1:2:1) have a second invariant K equal to a second

degree polynomial in the momenta, therefore there exists a classical method ([38,

39]) to obtain the canonical transformation (q1, q2, p1, p2) → (s1, s2, r1, r2) with the

separating variables (s1, s2) obeying the canonical system (9). For the KdV5 case,

one obtains ([4, 18, 45])






































































q1 = −(s1 + s2 + ω1 − 4ω2)/(4α), q2
2 = −s1s2/(4α2),

p1 = −4α
s1r1 − s2r2

s1 − s2

, p2
2 = −16α2 s1s2(r1 − r2)

2

(s1 − s2)2
,

H =
f(s1, r1) − f(s2, r2)

s1 − s2

,

f(s, r) = −s2(s + ω1 − 4ω2)
2(s − 4ω2) − 64α4γ

32α2s
+ 8α2r2s,

f(sj, rj) − Esj +
K

2
= 0, j = 1, 2,

P (s) = s2(s + ω1 − 4ω2)
2(s − 4ω2) + 32α2Es2 − 16α2Ks − 64α4γ.

(10)

For 1:2:1, one obtains






























































































q2
j = (−1)j (s1 + ωj)(s2 + ωj)

ω1 − ω2

, j = 1, 2,

pj = 2qj

ω3−j(r2 − r1) − s1r1 + s2r2

s1 − s2

, j = 1, 2,

H =
f(s1, r1) − f(s2, r2)

s1 − s2

,

f(s, r) = 2(s + ω1)(s + ω2)r
2 − s3

2
− ω1 + ω2

2
s2

−ω1ω2

2
s +

ω2 − ω1

2

( α

s + ω1

− β

s + ω2

)

,

f(sj , rj) = −
(

sj + E
ω1 + ω2

2

)

− α + β

2
− K

2
, j = 1, 2,

P (s) = s(s + ω1)
2(s + ω2)

2 − α(s + ω2)
2 − β(s + ω1)

2

−(s + ω1)(s + ω2) [E(2s + ω1 + ω2) − K] .

(11)
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The two cubic cases SK and KK,

HSK =
1

2
(P 2

1 + P 2
2 ) +

Ω1

2
(Q2

1 + Q2
2) +

1

2
Q1Q

2
2 +

1

6
Q3

1 +
λ2

8
Q−2

2 ,(12)

HKK =
1

2
(p2

1 + p2
2) +

ω2

2
(16q2

1 + q2
2) +

1

4
q1q

2
2 +

4

3
q3
1 +

λ2

2
q−2
2 ,(13)

are equivalent under a birational canonical transformation ([8, 36]). Therefore, the

separating variables (s1, s2) are common to these two cases.

In the nongeneric case λ = 0, the separating variables have been built ([33]) by a

method ([2, 40]) based on the local representation of the general solution q1(t), q2(t)

by a Laurent series of t−t0 near a movable singularity t0. The algebraic curves defined

by the values of the two invariants H, K in terms of the arbitrary coefficients of the

Laurent series are then geometrically interpreted, with, in principle, the separating

variables as the final output. However, some technical difficulty prevents this method

to handle the generic case λ 6= 0.

The generic case can nevertheless be separated ([42]) and the result is







































































































































q1 = −6

(

P̃1 − P̃2

Q̃1 − Q̃2

)2

− Q̃1 + Q̃2

2
, q2

2 = 24
f(Q̃1, P̃1) − f(Q̃2, P̃2)

Q̃1 − Q̃2

,

p1 = −4Q̃1

P̃1 − P̃2

Q̃1 − Q̃2

− 2
Q̃1P̃2 − Q̃2P̃1

Q̃1 − Q̃2

, p2 = Q̃2

P̃1 − P̃2

Q̃1 − Q̃2

,

H = f(Q̃1, P̃1) + f(Q̃2, P̃2) +
λ2

24

Q̃1 − Q̃2

f(Q̃1, P̃1) − f(Q̃2, P̃2)
,

f(q, p) = p2 +
1

12
q3 − 4ω2

2q,

(

f(Q̃j , P̃j) −
E

2

)2

+
λ2

24
Q̃j + K = 0, j = 1, 2,

Q̃1 = s2
1 −

3K

λ2
, Q̃2 = s2

2 −
3K

λ2
, P̃1 =

r1

2s1

, P̃2 =
r2

2s2

,

P (s) = −1

3

(

s2 − 3
K

λ2

)3

+ Ω2
1

(

s2 − 3
K

λ2

)

+
λ√
3
s + 2E.

(14)

It is remarkable that the canonical transformation

(15) (q1, q2, p1, p2) −→
(

Q̃1 + Q̃2

2
+ Ω1,

Q̃1 − Q̃2

2
, P̃1 + P̃2, P̃1 − P̃2

)

coincides with the canonical transformation between the SK variables and the KK

variables in the particular case λ = 0.
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In the three remaining cases, the quartic 1:6:1, 1:6:8, 1:12:16, the separating vari-

ables are only known in nongeneric cases ([41, 43]), and the associated particular

solutions are single valued. In order to decide about the Painlevé property, which

only involves the general solution, one must therefore integrate by different means.

4. Confluences from the quartic cases to the cubic ones

A possible way to integrate would be to take advantage of some confluence from

an integrated case to a not yet integrated case. For instance, the property of single

valuedness of the general solution of the second Painlevé equation P2 implies, from

the classical confluence from P2 to P1, the same property for P1.

The confluence from the quartic 1:6:8 case to the cubic KK case found in Ref. [35]

is not an isolated feature ([41]), and in fact all the cubic cases can be obtained by a

confluence of at least one quartic case. Just like between the six Painlevé equations,

one of the parameters in the Hamiltonian is lost in the process. Consider, for instance,

the quartic 1:12:16 and the cubic KK cases,






















h1:12:16(t) =
1

2
(p2

1 + p2
2) +

ω

8
(4q2

1 + q2
2)

− n

32
(16q4

1 + 12q2
1q

2
2 + q4

2) +
1

2

( α

q2
1

+
β

q2
2

)

,

HKK(T ) =
1

2
(P 2

1 + P 2
2 ) +

Ω

2
(16Q2

1 + Q2
2) + N

(

Q1Q
2
2 +

16

3
Q3

1

)

+
B

2Q2
2

,

(16)

The confluence in this case is

1:12:16 →KK



















t = εT, q1 = ε−1 + Q1, q2 = Q2, n = −4

3
ε−1N,

α = ε−7
(

− 4

3
N + 4Ωε

)

, β = ε−2B,

ω = ε−3(−4N + 4Ωε), h = ε−5(−2N + 4Ωε + Hε3), ε → 0,

and the two quartic parameters (α, ω) coalesce to the single cubic parameter Ω.

We have checked that all the generic cubic cases can be obtained by confluence

from at least one quartic case, as indicated in the following list:


























HH4 1:2:1 → HH3 KdV5,

HH4 1:6:8 → HH3 KK,

HH4 1:6:8 → HH3 KdV5,

HH4 1:12:16 → HH3 KK,

HH4 1:12:16 → HH3 SK.

(17)

Since these confluences are not invertible and always go from quartic to cubic, they

are unfortunately of no help to integrate the missing cases, which are all quartic. In

section 6, we present another class of transformations, these one invertible, between

some of the seven cases, which indeed helps to integrate the missing cases.
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5. Equivalent fourth order ODEs

The Painlevé school has “classified” (i.e, enumerated the integrable equations and

integrated them) several types of ODEs (e.g., second order first degree, third order

first degree of the polynomial type, etc), but no four-dimensional first order differential

system such as the Hamilton equations

dqj

dt
= pj,

dpj

dt
= − ∂V

∂qj

, j = 1, 2(18)

has ever been classified. However, some types of fourth order ODEs have been clas-

sified, in particular the polynomial class ([9, 11, 16, 17])

u′′′′ = P (u′′′, u′′, u′, u, x),(19)

in which P is polynomial in u′′′, u′′, u′, u and analytic in x. Therefore, if one succeeds,

by elimination of either q1 or q2 (or another combination) between the two Hamilton

equations and the equation H = E expressing the conservation of the energy, to build

a fourth order ODE in the class (19), and if this ODE is equivalent to the original

system, then the question is settled.

In the cubic case, the two Hamilton equations

q′′1 + ω1q1 − βq2
1 + αq2

2 = 0,(20)

q′′2 + ω2q2 + 2αq1q2 − γq−3
2 = 0,(21)

together with H − E = 0, see (2), are indeed equivalent ([21]) to the single fourth

order first degree ODE for q1(t),

q′′′′1 + (8α − 2β)q1q
′′

1 − 2(α + β)q′21 − 20

3
αβq3

1

+(ω1 + 4ω2)q
′′

1 + (6αω1 − 4βω2)q
2
1 + 4ω1ω2q1 + 4αE = 0.(22)

The equivalence results from the conservation of the number of parameters between

the system (20)–(21) and the single equation (22), since the coefficient γ of the non-

polynomial term q−2
2 has been replaced by the constant value E of the Hamiltonian

H . The results of the classification ([17]) enumerate as expected only three Painlevé-

integrable such equations and they provide their general solution (for the first time

in the SK and KK cases).

In the quartic case, the similar fourth order equation is built by eliminating Q2

and Q′′′

1
2

between the two Hamilton equations,

Q′′

1 + Ω1Q1 + 4CQ3
1 + 2BQ1Q

2
2 − αQ−3

1 + γ = 0,(23)

Q′′

2 + Ω2Q2 + 4AQ3
2 + 2BQ2Q

2
1 − βQ−3

2 = 0,(24)
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and the Hamiltonian (6), which results in

−Q′′′′

1 + 2
Q′

1Q
′′′

1

Q1

+

(

1 + 6
A

B

)

Q′′

1
2

Q1

− 2
Q′

1
2
Q′′

1

Q2
1

+ 8

(

6
AC

B
− B − C

)

Q2
1Q

′′

1 + 4(B − 2C)Q1Q
′

1

2
+ 24C

(

4
AC

B
− B

)

Q5
1

+

[

12
A

B
ω1 − 4ω2 +

(

1 + 12
A

B

)

γ

Q1

− 4

(

1 + 3
A

B

)

α

Q4
1

]

Q′′

1(25)

+ 6
A

B

α2

Q7
1

+ 20
α

Q5
1

Q′

1

2 − 12
A

B

γα

Q4
1

+ 4

(

3
A

B
ω1 − ω2

)(

γ − α

Q3
1

)

− 2γ
Q′

1
2

Q2
1

+ 6

(

A

B
γ2 + 2Bα − 8

AC

B
α

)

1

Q1

+

(

6
A

B
ω2

1 − 4ω1ω2 − 8BE

)

Q1

+ 48
AC

B
γQ2

1 + 4

(

12
AC

B
− B − 4C

)

ω1Q
3
1 = 0.

The equivalence with the Hamilton equations results from the dependence on E

but not on β. However, this type of fourth order first degree ODEs has not yet been

classified, and this would be quite useful to do so, in order to check that no Painlevé-

integrable case has been omitted when performing the Painlevé test on the coupled

system made of the two Hamilton equations.

6. Birational transformations between the quartic cases and integrated

equations

Between Hamiltonians with one degree of freedom such as H = p2/2+aq2+bq3+q4

and H = p2/2 + Aq2 + q3, there exist invertible transformations which allow one

to carry out the solution from one case to the other. These are the well known

homographies between the Jacobi and the Weierstrass elliptic functions. In the present

case of two degrees of freedom, the simplest example of such a transformation is ([15,

Eq. (7.14)])






















Q2
1 + Q2

2 +
Ω1 + Ω2

5
= αq1 +

ω1 + 4ω2

20
,

(Ω1 − Ω2)(Q
2
1 − Q2

2) =
α2

2
q2
2 − 4ω1 + 26ω2

5
αq1 −

(ω1 + 4ω2)
2

100
+ 2E,

Ω1 = ω1, Ω2 = 4ω2,

(26)

between the quartic 1:2:1 case H(Qj, Pj , Ω1, Ω2, A, B) and the cubic KdV5 case

H(qj , pj , ω1, ω2, α, γ). Its action on the hyperelliptic curves is just a translation.

An attempt to find transformations between the other quartic cases and any cubic

case which would be as simple as (26) has been unsuccessful for the moment.

However, it is possible to obtain a birational transformation ([15]) between every

remaining quartic case (1:6:1, 1:6:8, 1:12:16) and some classified fourth order ODE
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of the type (19). Indeed, for each of the seven cases, the two Hamilton equations

are equivalent ([6, 21, 22]) to the traveling wave reduction of a soliton system made

either of a single PDE (HH3) or of two coupled PDEs (HH4), most of them appearing

in lists established from group theory ([19]). Among the various soliton equations

which are equivalent to them via a Bäcklund transformation, some of them admit a

traveling wave reduction to a classified ODE. This property defines a path ([31, 44])

which starts from one of the three remaining HH4 cases, goes up to a soliton system

of two coupled 1+1-dimensional PDEs admitting a reduction to the considered case,

then goes via a Bäcklund transformation to another equivalent 1+1-dim PDE system,

finally goes down by reduction to an already integrated ODE or system of ODEs.

6.1. Integration of the 1:6:1 and 1:6:8 cases with the a-F-VI equation

In this section, the integration is performed via a birational transformation to the

autonomous F-VI equation (a-F-VI) in the classification of Cosgrove ([17]):

a-F-VI : y′′′′ = 18yy′′ + 9y′2 − 24y3 + αVIy
2 +

α2
VI

9
y + κVIt + βVI, κVI = 0.(27)

The two considered Hamiltonians, with their second constant of the motion, are

the following,

1 : 6 : 1















































H =
1

2
(P 2

1 + P 2
2 ) +

Ω

2
(Q2

1 + Q2
2)

− 1

32
(Q4

1 + 6Q2
1Q

2
2 + Q4

2) −
1

2

( κ2
1

Q2
1

+
κ2

2

Q2
2

)

= E,

K =

(

P1P2 + Q1Q2

(

− Q2
1 + Q2

2

8
+ Ω

)

)2

− P 2
2

κ2
1

Q2
1

− P 2
1

κ2
2

Q2
2

+
1

4

(

κ2
1Q

2
2 + κ2

2Q
2
1

)

+
κ2

1κ
2
2

Q2
1Q

2
2

,

(28)

and

1 : 6 : 8



























































H =
1

2
(p2

1 + p2
2) +

ω

2
(4q2

1 + q2
2)

− 1

16
(8q4

1 + 6q2
1q

2
2 + q4

2) − γq1 +
β

2q2
2

= E,

K =

(

p2
2 −

q2
2

16
(2q2

2 + 4q2
1 + ω) +

β

q2
2

)2

− 1

4
q2
2(q2p1 − 2q1p2)

2 + γ
(

− 2γq2
2 − 4q2p1p2

+
1

2
q1q

4
2 + q3

1q
2
2 + 4q1p

2
2 − 4ωq1q

2
2 + 4q1

β

q2
2

)

.

(29)

There exists a canonical transformation ([6]) between these two cases, mapping the

constants as follows:

E1:6:8 = E1:6:1, K1:6:8 = K1:6:1, ω = Ω, γ =
κ1 + κ2

2
, β = −(κ1 − κ2)

2.(30)

Therefore, one only needs to integrate either case.
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The path to an integrated ODE comprises the following three segments.

The coordinate q1(t) of the 1:6:8 case can be identified ([7, 6]) to the component

F of the traveling wave reduction f(x, τ) = F (x− cτ), g(x, τ) = G(x− cτ) of a soliton

system of two coupled KdV-like equations (c-KdV system) denoted c-KdV1 ([7, 6])



















fτ +
(

fxx +
3

2
ffx − 1

2
f3 + 3fg

)

x
= 0,

−2gτ + gxxx + 6ggx + 3fgxx + 6gfxx + 9fxgx − 3f2gx

+
3

2
fxxxx +

3

2
ffxxx + 9fxfxx − 3f2fxx − 3ff2

x = 0,

(31)

with the identification
{

q1 = F, q2
2 = −2

(

F ′ + F 2 + 2G − 2ω
)

,

c = −ω, K1 = γ, K2 = E,
(32)

in which K1 and K2 are two constants of integration.

There exists a Bäcklund transformation between this soliton system and another

one of c-KdV type, denoted bi-SH system ([19]):

{

−2uτ +
(

uxx + u2 + 6v
)

x
= 0,

vτ + vxxx + uvx = 0.
(33)

This Bäcklund transformation is defined by the Miura transformation ([31])











u =
3

2

(

2g − fx − f2
)

,

v =
3

4

(

2fxxx + 4ffxx + 8gfx + 4fgx + 3f2
x − 2f2fx − f4 + 4gf2

)

.
(34)

Finally, the traveling wave reduction

{

u(x, τ) = U(x − cτ),

v(x, τ) = V (x − cτ)

can be identified ([44]) to the autonomous F-VI equation (a-F-VI) (27), whose gen-

eral solution is meromorphic, expressed with genus two hyperelliptic functions ([17,

Eq. (7.26)]). The identification is



















U = −6
(

y +
c

18

)

,

V = y′′ − 6y2 +
4

3
cy +

16

27
c2 − KA

2
,

αVI = −4c, βVI = KB − 2cKA +
512

243
c3,

(35)

in which KA, KB are two constants of integration.
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In order to perform the integration of both the 1:6:1 and the 1:6:8 cases, it is

sufficient to express (F, G) rationally in terms of (U, V, U ′, V ′). The result is

(36)















































F =
W ′

2W
+

K1

24W

[

− 3U ′2− 2(U− 3c)
(

12V + (U + 3c)2
)

+ 36KB − 54K2
1

]

,

G =
U

3
+

1

8W

[

(2V + 3K2)
(

2V ′′ + K1U
′ − 3K2

1

)

− 2(U − 3c)
(

2K1V
′ + K2

1 (U + 3c)
)]

,

W =
(

V +
3

2
K2

)2

+
3

2
K2

1 (U − 3c),

KA = K2.

Making the product of the successive transformations (32), (36), (35), one obtains

a meromorphic general solution for q1, q
2
2 :































































































































q1 =
W ′

2W
+

γ

W

[

9j − 3

(

y +
4

9
ω

)

(h + E) − 9

4
γ2

]

,

q2
2 = −16

(

y − 5

9
ω

)

+
1

W

[

12
(

y′ +
γ

2

)2

− 48y3 − 16ωy2

+

(

24E +
128

9
ω2

)

y +
1280

243
ω3 − 40

3
ωE +

3

4
β

− 24γ

(

y − 5

9
ω

)

h′ − 144γ2

(

y − 5

9
ω

)2
]

,

W = (h + E)2 − 9γ2

(

y − 5

9
ω

)

,

αVI = 4ω, βVI =
3

4
γ2 + 2ωE − 3

16
β − 512

243
ω3,

K1,VI =
3

32
K − 1

2
E2, K2,VI =

3

32
EK − 1

3
E3 +

9

64
βγ2,

K1 = γ, K2 = E, KA = E, KB = − 3

16
β +

3

4
γ2,

(37)

in which h and j are the convenient auxiliary variables ([17, Eqs. (7.4)–(7.5)])















































y =
Q(s1, s2) +

√

Q(s1)Q(s2)

2
(

√

s2
1 − CVI +

√

s2
2 − CVI

)2
+

5

36
αVI,

h = −3

4
EVI

s1s2 + CVI +
√

(s2
1 − CVI)(s2

2 − CVI)

s1 + s2

− FVI

2
,

j =
1

6
(2h + FVI)

{

y +
αVI

9
− EVI

4(s1 + s2)

}

.

(38)
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In the above, the variables s1, s2 are defined by the hyperelliptic system ([17])






























(s1 − s2)s
′

1 =
√

P (s1), (s2 − s1)s
′

2 =
√

P (s2),

P (s) = (s2 − CVI)Q(s),

Q(s, t) = (s2 − CVI)(t
2 − CVI) −

αVI

2
(s2 + t2 − 2CVI) +

EVI

2
(s + t) + FVI,

Q(s) = Q(s, s).

(39)

Despite their square roots, the symmetric expressions in (38) are nevertheless mero-

morphic ([20, 30]).

The completeness of both the 1:6:1 and 1:6:8 Hamiltonians results from the com-

pleteness of the a-F-VI ODE and the following counting. The 1:6:8 depends on the

parameters (ω, β, γ, E, K), the a-F-VI ODE and its hyperelliptic system depend on

the same number of parameters (α, β, C, E, F )VI, and these two sets of five parameters

are linked by exactly five algebraic relations ([17, Eqs. (7.9)-(7.12)]):


























































αVI = 4ω,

βVI =
3

4
γ2 + 2ωE − 3

16
β − 512

243
ω3,

E2
VI = −16

3
ω(FVI − 2E) − β + 4γ2,

CVIE
2
VI =

4

3
(F 2

VI − 4E2) + K,

(FVI − 2E)2(FVI + 4E) + 9K
4

(FVI − 2E) − 27
4

βγ2 = 0.

(40)

The algebraic nature (instead of rational like in the 1:2:1 case and the three cubic

cases) of these dependence relations could explain the difficulty to separate the vari-

ables in the Hamilton-Jacobi equation. In the nongeneric case βγ = 0, i.e, κ2
1 = κ2

2,

for which the separating variables are known ([34]), the coefficients (α, β, C, E2, F )VI

become rational functions of (ω, β, γ, E, K), see [43]. Since these separating variables

have been obtained by the same method as in the cubic SK-KK case, it would be

quite useful to remove the difficulty which remains in the method based on Laurent

series, see Section 3.

6.2. Integration of the 1:12:16 case by a birational transformation. — This

is the only case for which the integration, which can indeed be performed with the

same results (meromorphy of the general solution, completeness of the Hamiltonian)

is not satisfying. Indeed, the hyperelliptic system to which the 1:12:16 has been

mapped by a birational transformation ([15]) is essentially different from the hyper-

elliptic system resulting from the separating variables ([41]) in the nongeneric case

αβ = 0 for which they are known. Since the nongeneric subcase α = 0 belongs to the
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Stäckel class (two invariants quadratic in p1, p2), for which the separating variables

are unambiguous, this indicates that some progress has still to be made.

The main remarkable feature of the 1:12:16 is the existence of a twin system to

which it is mapped by a canonical transformation ([6, 7]) which only differs by nu-

merical coefficients from the canonical transformation between the cubic SK and KK

cases. The two systems are the following ones:

1 : 12 : 16



















































H =
1

2
(P 2

1 + P 2
2 ) +

Ω

8
(4Q2

1 + Q2
2)

− 1

32
(16Q4

1 + 12Q2
1Q

2
2 + Q4

2) −
1

2

( κ2
1

Q2
1

+
4κ2

2

Q2
2

)

= E,

K =
1

16

(

8(Q2P1 − Q1P2)P2 − Q1Q
4
2 − 2Q3

1Q
2
2

+2ΩQ1Q
2
2 + 32Q1

κ2
2

Q2
2

)2

+ κ2
1

(

Q4
2 − 4

Q2
2P

2
2

Q2
1

)

.

(41)

and [this system is not the sum of a kinetic energy and a potential energy]

5 : 9 : 4







































































































H =
1

2

(

p2
1 +

(

p2 −
3

2
q1q2

)2)

− 1

8
(4q4

1 + 9q2
1q

2
2 + 5q4

2)

+
ω

2
(q2

1 + q2
2) − κq1 +

ζ

2q2
2

= E,

K =
1

q2
2

(2q2
2p1 + 2q2

1q
2
2 − 2q1q2p2 − q4

2 − 4κq1)
2
(

2q2
2p1 + 2q2

1q
2
2

+p2
2 − 4q1q2p2 − 2q4

2 + Ωq2
2 + 4

κ2

q2
2

+ 8κq1 − 4κ
p2

q2

+4(ζ + 4κ2)
)

(

(

− 2q1

p2

q2

+ 4q2
1 + q2

2 + 4q1

κ

q2
2

)

p1

− 1

q4
2

(q2
1q

2
2 + q4

2 + 2κq1)
2 + 2

q2
1

q2
2

(

p2 −
3

2
q1q2

)2

+
(q2

1 + q2
2)

2

2
+ q2

1

ζ

q4
2

)

.

(42)

The canonical transformation maps the constants as follows:

E5:9:4 = E1:12:16, K5:9:4 = K1:12:16, ω = Ω, κ =
κ1 + κ2

2
, ζ = −(κ1 − κ2)

2.(43)

The path to an integrated ODE is quite similar to that described in detail in

section 6.1, in particular it is also made of three segments ([6, 31, 41]). The result

is the following ([15]):

Q1, Q
2
2 = rational(y, y′, y′′, y′′′),(44)
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in which y obeys the F-IV equation in the classification of Cosgrove ([17]),

F-IV



































































y′′′′ = 30yy′′ − 60y3 + αIVy + βIV,

y =
1

2

(

s′1 + s′2 + s2
1 + s1s2 + s2

2 + A
)

,

(s1 − s2)s
′

1 =
√

P (s1), (s2 − s1)s
′

2 =
√

P (s2),

P (s) = (s2 + A)3 − αIV

3
(s2 + A) + Bs +

βIV

3
,

K1,IV =

(

3B

4

)2

, K2,IV = −9AB2

64

(45)

with (K1,IV, K2,IV) two polynomial first integrals of F-IV. The general solution of this

ODE is meromorphic, expressed with genus two hyperelliptic functions ([17]). This

proves the PP for the 1:12:16.

In the two nongeneric cases κ1κ2 = 0 where the separating variables are known,

the hyperelliptic curve is

κ1κ2 = 0 : P (s) = s6 − ωs3 + 2Es2 +
K

20
s + κ2

1 + κ2
2 = 0,(46)

and it does not coincide in this case with the hyperelliptic curve of F-IV. There-

fore, F-IV (as well as its birationally equivalent ODE F-III) is not the good ODE

to consider, and it should be quite instructive to directly integrate the fourth order

equivalent ODE (26) in that case.

7. Conclusion and open problems

All the time independent two-degree-of-freedom Hamiltonians which possess the

Painlevé property have a meromorphic general solution, expressed with hyperelliptic

functions of genus two. Moreover, all such Hamiltonians are complete in the Painlevé

sense, i.e, it is impossible to add any term to the Hamiltonian without ruining the

Painlevé property.

As to the remaining open problems, depending on the center of interest, they are

1. from the point of view of Hamiltonian theory, one has to find the separating

variables in the three missing quartic cases. This should be possible by the

methods of Sklyanin and van Moerbeke and Vanhaecke;

2. from the point of view of the integration of differential equations, the problem

remains to enumerate all the fourth order first degree differential equations in a

given precise class which possess the Painlevé property.
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Let us finally mention that the time dependent extension of these seven cases has

been studied in Refs. [27, 28].
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[11] J. Chazy – Sur les équations différentielles du troisième ordre et d’ordre supérieur dont
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