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Abstract. We study a Kadomtsev–Petviashvili system for the local Camassa–Holm hierar-
chy obtaining a candidate to the Baker–Akhiezer function for its first reduction generalizing
the local Camassa–Holm. We focus our attention on the differences with the standard
KdV-KP case.

Key words: KP hierarchy; CH hierarchy; Sato Grassmannian

2000 Mathematics Subject Classification: 37K10; 35Q53

1 Introduction

The Camassa–Holm (CH) equation with zero critical velocity [2]

ut − uxxt = 6uxu− 4uxxux − 2uuxxx

and his multi fields extensions [1, 4, 12, 14, 15, 20, 21, 22, 26] are widely studied integrable
systems because they show a number of properties different from the standard Gelfand–Dikii
systems such as Korteweg–de Vries (KdV). Its study is important to a deep understanding of
infinite-dimensional integrability.

One of the most important differences between CH and KdV is that, even if CH has the same
dispersionless part of the KdV equation

ut = −uxxx + 6uux,

it does not admit tau structure in the sense of Dubrovin’s classification scheme [10]. Classically,
for the Kadomtsev–Petviashivili (KP) equation and its reductions, the tau structure is related
to the fact that the Baker–Akhiezer function ψ of the hierarchy satisfies a bilinear relation [8,
27, 28].

The bi-Hamiltonian method allows the interpretation of the KP system as a generalization
of the conservation laws for the corresponding Noether currents. This construction [13] starts
from the Riccati equation related to the system. In the KdV case the equation

hx + h2 = u+ z2, with h(z) := z +
∑
i≥−1

hi

zi
, (1)
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is the relation satisfied by the conserved densities hi of KdV. Using the Noether theorem one can
associate to every conserved density hi a currentH(3)

i such that ∂thi = ∂xH
(3)
i . Every commuting

symmetry in the KdV hierarchy is related to a different current and then, for a symmetry of
KdV involving the time ∂/∂ts = ∂s, it holds ∂shi = ∂xH

(s)
i . Using the generator h(z) we can

collect the currents into a set of generators of currents satisfying

∂sh(z) = ∂xH
(s)(z). (2)

At this stage this set of equations is simply a way to rewrite the equations of the KdV hierarchy.
The amazing property of the currents H(s) is that they belong to a very particular space

called H+. This is the space generated by the linear span on C∞(S1,R) of the Faà di Bruno
polynomials h(n) := (∂x + h)n · 1 of the conserved density h. There is a unique way to write

every current H(s) as H(s)(x, z) =
s∑

i=0
ci(x)h(i)(x, z).

Without account of (1), the equation (2) becomes an infinite differential system in an infinite
number of fields. This is equivalent to the KP equation presented by the Japanese school. This
system is a linear flow on a suitable Grassmannian whose H+ is the positive part. A key
property [24] of H+ for the relation between KP and Grassmannian flows is that this space is
invariant under the action of the operators (∂s +H(s)):

(∂s +H(s))H+ ⊂ H+. (3)

Thanks to (3) the KP system can be written as

(∂s +H(s))H(r) = H(s+r) +
s∑

i=1

Hr
i H

(s−i) +
r∑

i=1

Hs
iH

(r−i). (4)

If we forget the Faà di Bruno rule for construction of the space H+, the currents H(s) are simply
Laurent series in z and a collection {H(s)}s≥0 is related ([13]) to a point of the positive part H+

of the Sato Grassmannian W defined e.g. in [28]. The equation (4) describes now a flow on W
which admits as reduction the KP system imposing the relation between the currents and the Faà
di Bruno polynomials. It is called the central system for KP. The time t1 of the central system
can be identified with the variable x of KP because the conservation of the linear momentum
of KP equation.

This construction is a hint for the existence of bilinear relations [13] and one wonders whether
the same scheme can be applied to generalizations of CH hierarchy.

The study of KP equation for CH is interesting in this direction.
In [3] the authors show the existence of a KP equation constructed starting from local sym-

metries of the CH equation. In this paper we plan to pursue these ideas further. After a review
of the results presented in [3], we study the KP-CH system obtaining a candidate for the Baker–
Akhiezer function of the integrable reductions of the system. Next we consider the problem of
the reduction from KP-CH to the local Camassa–Holm hierarchy. By means of this process we
obtain a 3-field integrable system which generalizes the local symmetries for CH.

2 The full CH hierarchy

It was known [2, 16] that CH is bi-Hamiltonian on the vector space C∞(S1,R) by means of the
Poisson pencil

Pz2 = P0 − z2P1 =
1
2
∂x −

1
2
∂3

x − z2 (−m∂x − ∂xm) , z ∈ R,
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where m = (1 − ∂2
x)u and we call z2 the pencil parameter for later convenience. The theory

of bi-Hamiltonian systems (see e.g. [23]) shows that the conserved quantities for CH are the
coefficients of the potential of an exact 1-form v in the kernel of the Poisson pencil. If H(z) =
+∞∑

k=−∞
Hkz

−k satisfy Pz2dH(z) = 0 then one can construct the Lenard–Magri recursion P0dHk =

P1dHk+2. This chain implies that all Hk are in involution w.r.t. both the Poisson pencils.
Every element v(z) in KerPz2 satisfies the equation:

1
4
v2 − 1

2
vxxv +

1
4
v2
x + z2mv2 = f(m, z), (5)

where f(m, z) satisfies fx = 0. It turns out that v is an exact 1-form if f does not depend on m.
Without loss of generality, we can put f(z) = z2/4.

The equation (5) can be solved iteratively developing v in z. In order to find the poten-
tial H(z) we evaluate v on the generic vector ṁ:

〈v, ṁ〉 (5)
=

∫
S1

v
d

dt

(
z2

4v2
+

1
2z2

vxx

v
− 1

4z2

v2
x

v2
− 1

4z2

)
dx

=
d

dt

∫
S1

1
2v
dx+

∫
S1

∂x

(
v̇x +

vxv̇

v

)
dx =

d

dt

∫
S1

1
2v
dx.

Therefore H(z) =
∫
S1(1/2v) dx is a generator of conserved quantities.

Let us focus now our attention on the density h of H. It is obviously defined up to a nor-
malization and up to a total derivative. Paying attention to these ‘gauge’ choices one can put

h = z
1
2v

+ ∂x(ln
√
v)

and then the equation (5) becomes

hx + h2 =
1
4

+ z2m. (6)

By construction, all the solutions of this equation define conserved quantities for CH ([3, 19, 25]
and, in the context of the inverse spectral problem, [5, 7]).

The possible solutions of (6) are two functions, depending on the essential singularity point

of h(z). The first one, h(z) =
+∞∑
i=−1

hiz
−i, has its essential singularity in 0. It corresponds to the

Lenard–Magri recursion starting from the Casimir of P1 and all the quantities are local in m.

The second one, k(z) =
+∞∑
i=0

kiz
i, contains CH and it has an essential singularity at infinity.

It corresponds to the Lenard–Magri recursion starting from the Casimir of P0, and it has an
infinite number of quantities nonlocal in m.

The calculation of these solutions is not difficult but a little bit involved. It is performed
explicitly in [3]. We now simply list and comment the results.

The local hierarchy

The local hierarchy is related to the solutions of (6) of the form h(z) = h−1z + h0 + h1/z +
h2/z

2 + · · · :

h−1 =
√
m, h0 = (ln(m−1/4))x,
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h1 =
1

8
√
m
− 1

8
mxx√
m3

+
5
32

m2
x√
m5

,

h2 =
(
− 1

16m
+

1
16
mxx

m2
+

5
64
m2

x

m3

)
x

, . . . .

The conserved quantities Hi =
∫
hi−1 dx for i = 0, 1, 2, . . . are nontrivial only when hi−1 are

not a total derivative, i.e. when i is even. Using only the even conserved quantities we obtain
H(z2) =

∑
i≥0

H2iz
−2i.

We can iterate the Lenard–Magri chain defining an infinite number of vector fields X2i =
P0dH2i = P1dH2i+2 pairwise commuting and we identify X2i = ∂2im. The first one, already
presented in [2], is the local Camassa–Holm equation

∂0m = (∂x − ∂3
x)

1
4
√
m
. (7)

This part of the hierarchy generates the negative flows of CH.

The nonlocal hierarchy

The nonlocal hierarchy is related to the solutions of (6) of the form k(z) = k0+k−1z+k−2z
2+· · · :

k0 =
1
2
,

k−1 = 0,

k−2 = (1 + ∂x)−1m = u− ux,

k−3 = 0,

k−4 = −(1 + ∂x)−1((1 + ∂x)−1m)2 = −u2 − u2
x + total derivatives,

k−5 = 0,

k−6 = 2(1 + ∂x)−1((1 + ∂x)−1((1 + ∂x)−1m)2(1 + ∂x)−1m)

= u3 + uu2
x + total derivatives, . . . .

We remark that one can continue the iteration thanks to the invertibility of the operator 1 + ∂x

in the space of smooth periodic functions [3]. The densities are increasingly non-local in m, but
the first three are local in the field u = (1− ∂2

x)−1m.
As in the local case one can define conserved quantities K−i =

∫
k−i dx for i = 0, 1, 2, . . . .

Taking only the nontrivial ones, i = 2, 4, 6, . . . , we obtain K(z2) =
∑
i≥1

K−2iz
2i.

We can iterate the Lenard–Magri chain defining an infinite number of vector fields Y−2i =
P0dK−2i = P1dK−2i+2 := ∂−2im pairwise commuting. The first nontrivial vector field is the
conservation of the linear momentum ∂−2m = P1dK−2 = P0dK−4 = −mx. The second one is
the standard Camassa–Holm equation with null critical velocity

∂−4m = P1dK−4 = −(m∂x + ∂xm)(1− ∂2
x)−1(−2u+ 2uxx) = 4mux + 2mxu = P0dK−6

that is, with t−4 = t,

ut − uxxt = 6uxu− 4uxxux − 2uuxxx.

The conserved quantities Hi and K−i commute with each other by the bi-Hamiltonian construc-
tion. Therefore we can collect the two iteration chain into a unique one defining the full CH
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hierarchy
. . .

P1

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

. . .

dH4

P1

**UUUUUUUUUUUUUUUUUUU

P0

33fffffffffffffffffffffffffff

(∂x − ∂3
x)
−4m2 − 4mxxm+ 5m2

x

128m7/2

dH2

P1

**UUUUUUUUUUUUUUUUUUUUUU

P0
44iiiiiiiiiiiiiiiiiii

(∂x − ∂3
x)

1
4
√
m

dH0

P1

++WWWWWWWWWWWWWWWWWWWWWWWWWWWW

P0

44iiiiiiiiiiiiiiiiiiiiii

0

dK−2

P1

++WWWWWWWWWWWWWWWWWWWWWWWWW

P0

33ggggggggggggggggggggggggggg

−mx

dK−4

P1

++WWWWWWWWWWWWWWWWWWWWWWW

P0

33ggggggggggggggggggggggggg

4mux + 2mxu

dK−6
P1

++WWWWWWWWWWWWWWWWWWWWWWWWWW

P0

33ggggggggggggggggggggggg

. . .

. . .

P0

22ffffffffffffffffffffffffffff

3 The Noether currents

In the KdV case the KP system has a simple interpretation as a generalization of the Noether
relations (2) between conserved densities and related currents [13]. To understand if such a con-
struction is still possible, we write down these currents in our case. In the case of local conserved
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quantities the calculation is already performed in [3] and gives the result:

J (s) =
s∑

i=0

(
−1

2
∂xvi(zs−i+2) + vi(zs−i+2h)

)
=
zs+3

2
+O(z), s ≥ 0. (8)

With similar computations, using

∂−2sm = −Pz2

s∑
j=1

z2j−2s−2dK−2j

and w(z) = zdK(z), one can show that, in the nonlocal case, the currents are:

J (−s) =
s∑

j=1

(
1
2
∂xw−j(zj−s−1)− w−j(zj−s−1k)

)
=
z−s−2

2
+O(1), s ≥ 1.

Although it seems to possess the same structure, these two families of currents are really
different. The local currents, as in the KdV case, are elements of a particular space called
J+. It is the span on the periodic smooth functions of the Faà di Bruno polynomials

h(n) = (∂x + h)nz2, n ≥ 0. (9)

It holds

Proposition 1. The currents J (2s), with s ≥ 0, are elements of J+.

Proof. (See [3].) Thanks to the representation (8), it suffices to show that z2i and z2ih are
elements of J+ for all i ≥ 1. First of all, z2 = h(0) ∈ J+ and z2h = h(1) ∈ J+ by definition of J+.
Moreover, the Riccati equation (6) multiplied by z2,

h(2) =
z2

4
+ z4m, (10)

shows that z4 = 1/m(h(2) − (1/4)h(0)) ∈ Hh. Acting with (∂x + h)n on both sides of (10) we
prove the statement. �

For every s ≥ 0, the current J (s) has a essential singularity in zero and a pole of order s + 3
at infinity. The space which contains these currents has to be generated by Laurent series with
similar characteristics. Actually, in the proof of the previous proposition, a fundamental role
is played by the fact that the conserved density h(z), which is the seed for the Faà di Bruno
polynomials, diverges both at 0 (essential singularity) and at ∞ (simple pole).

For every s < 0, the current J (s) has a essential singularity at infinity and a pole of order
−s − 2 at zero. However the related generator of conserved quantities k(z) is regular at 0.
Therefore k(z) cannot generate the analogue of J+ for the nonlocal currents by means of the
previous method.

As we will see in the following, the existence of this space is a key ingredient for the con-
struction of a KP-CH system.

4 The KP-CH system

Let us then concentrate on the local currents J (s). They can be characterized in a unique way
by the following two properties:

1) J (s) =
1
2
zs+3 +O(z), 2) J (s) ∈ J+.
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These currents are not a basis of the J+ space. To obtain a basis one has to add the constant z2

so that J+ = 〈z2, J (n)〉n≥0. Assuming that h is an arbitrary Laurent series of the form

h(z) = h−1z +
+∞∑
i=0

hi

zi
,

where the coefficients hi are not constrained by the Riccati equation, we can define the cur-
rents J (s), for all s ≥ 0, imposing the two above-mentioned properties. We define the s-th
equation of the local KP-CH system [3] as

∂sh = ∂xJ
(s), s ≥ 0. (11)

It is an evolution equation in an infinite number of fields given by the coefficients h−1, h0, h1,
. . . of h. The main difference between this system and the standard KP system [17] is that the
density h is not an element of the space J+. Nevertheless the equations (11) can be written
using only elements of J+

∂sh
(1) = z2∂xJ

(s).

These equations are nonlinear in the space J+ because they involve the product of two elements
of J+. This nonlinearity in another difference between KP-CH and standard KP.

Directly from the equations of motion we easily see that this system possesses an infinite
number of conserved quantities. Their densities are all the coefficients hi of h(z).

It is well known that the KP equation in 2+1D can be obtained simply combining in a suitable
way the first equation of the KP system in infinite fields. The analogue of the 2+1 dimensional
KP equation can be obtained also in our case. The smallest closed differential subsystem of
evolution equation involves the first 5 fields h−1, . . . , h3

∂0h−1 = ∂x
h1

2h−1
, ∂0h0 = ∂x

h2

2h−1
, ∂0h1 = ∂x

h3

2h−1
,

∂1h−1 = ∂x

(
h2

h−1
+

1
h−1

∂x
h1

2h−1

)
,

∂1h0 = ∂x

(
h3

h−1
+

h2
1

2h2
−1

+
1
h−1

∂x
h2

2h−1

)
.

After some simple algebraic manipulation one reduces this system to

2ut =
(
w

u

)
x

,

uy = 2vt +
(
ut

u

)
x

,

vy = 2wt + 2
w

u
ut +

(
vt

u

)
x

,

where h−1 = u, h0 = v, h1 = w and t0 = t, t1 = y.

4.1 The evolution of the currents

We study now the evolution of the currents J (s). In the standard KP case they are related to the
Sato linear flows on the Grassmannian [13]. For the KP-CH equation the situation is somewhat
different. By definition, the space J+ is invariant w.r.t. ∂x + h but the invariance is lost w.r.t.
∂s + J (s). Actually the action of ∂s + J (s) of the generic element of the basis of J+ is

(∂s + J (s))h(k) = (∂s + J (s))(∂x + h)kz2 = z2(∂x + h)k(∂s + J (s)) ⊂ z2J+. (12)
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Remark 1. As we have seen in the introduction, the analogue for KP of the space J+ is the
space H+. The main difference between these two spaces is that in the KP-CH case the space J+

is not invariant under the action of the operators (∂s + J (s)).

Using arguments similar to those used in [13] it is easy to show, for example in the case
z2J+ ⊂ J+ studied in the next paragraph, the commutativity of the flows generated by {∂s}s≥0.
Therefore, in the same case, we can introduce the function ψ defined by ∂s lnψ = J (s) and
by ∂x lnψ = h. Such a function exist also in the KP case and, in that case [24], it is the
Baker–Akhiezer function.

We conjecture that the generalizations of ψ are the Baker–Akhiezer functions for the integ-
rable reductions of KP-CH.

5 On the KP-CH reductions

To recover the local CH hierarchy from (11), one has to impose on h the constraint given by
the Riccati equation (6). Therefore all the fields hi can be written in terms of m and its x-
derivatives. Thus the local KP-CH system (11) reduces to the local CH hierarchy. As in the
Gelfand–Dikii cases this reduction is a stationary reduction because the Riccati equation imply
J (1) = z4

2 and the triviality of the evolution along t1. From Proposition 1 it also follows that
all t2s+1 are stationary. However, contrarily to the KdV case, the constraint given by Riccati
equation (6) is not equivalent to J (1) = z4

2 . The local Camassa–Holm equation is a strange
reduction of a system obtained in its turn as a reduction from the KP-CH. Under the constraint

J (1) =
z4

2
(13)

the evolution w.r.t. the time t0 becomes

∂0h−1 = −∂x(h−1)h1

2h−1
2 +

∂xh1

2h−1
,

∂0h0 = −3
4

(∂xh−1)2h1

h−1
4 +

3
4

(∂xh−1)(∂xh1)
h−1

3 +
1
4

(∂2
xh−1)h1

h−1
3 − 1

4
∂2

xh1

h−1
2 ,

∂0h1 =
(∂xh−1)h1

2

2h−1
3 − 15

8
h1(∂xh−1)3

h−1
6 +

15
8

(∂xh−1)2∂xh1

h−1
5 +

5
4
h1(∂2

xh−1)∂xh−1

h−1
5

− 3
4

(∂xh−1)∂2
xh1

h−1
4 − h1∂xh1

2h−1
2 − (∂2

xh−1)∂xh1

2h−1
4 − h1∂

3
xh−1

8h−1
4 +

∂3
xh1

8h−1
3 . (14)

One can see that the field h0 does not affect the evolution of the system. This is true also for the
following times of the reduction because the currents themselves do not depend on h0. Actually,
by direct computation, we can show that the current J (0) do not depend on h0. By (12) all the
successive currents do not depend on h0.

The more compact way to write the system is

∂0α = Dα
γ

α
, ∂0β = −D2

α

γ

α
, ∂0γ = αD3

α

γ

α
, (15)

where α = h−1, γ = h−1h1, β = h0 and Dα = ∂x · (1/2α).
The conserved densities for (15) are given by the condition (13) written in terms of the

generator h of the Faà di Bruno polynomials (9):

1
2α2

h(2) −
(
αx

2α3
+

β

α2

)
h(1) +

(
βx

2α2
+

γ

α2
− βαx

2α3
− β2

α2

)
h(0) =

z4

2
. (16)
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The local CH can be obtained from this equation system under the constraint:

γ =
mxx

8m
− 5m2

x

32m2
+

1
8
, β = −∂x ln(m1/4), α =

√
m

which reduces (15) to (7), i.e.:

∂0m =
1
4

(
∂x − ∂3

x

) 1√
m
.

The same reduction transforms (16) into (6). An important property of (15) is related to its
associated dispersionless system:

∂0α =
1
2
∂x

y

α2
, ∂0β = 0, ∂0γ = 0.

This trivial system is bi-Hamiltonian w.r.t. the Poisson tensors:

P d
1 =

1
2

∂x 0 0
0 0 0
0 0 0

 , P d
0 =

1
2

 0 0 ∂xα
0 0 0
α∂x 0 γ∂x + ∂xγ


and the Hamiltonians H1 = −

∫
(γ/α) dx and H0 =

∫
(γ2/2α3) dx. The metric associated to P d

1

is obviously degenerate, then this dispersionless system is not of “Dubrovin–Novikov type” [9].
This is an important difference between this reduction and the KdV equation because it is not
possible to include that system into the Dubrovin’s classification scheme.

6 Conclusion

In this paper we have studied the KP system related to the Camassa–Holm hierarchy [3]. This
system seems very different from the standard KP case. The first difference is in the fact that
the evolution of the currents (12) is not contained in the space J+ which plays the role of the
projection on the positive part of the Sato Grassmannian naturally defined by the currents.

The second difference is that the first reduction, obtained fixing the first current, is not an
integrable system whose dispersionless part is related to a non-degenerate metric. This could
be seen as a motivation why they do not enter in the Dubrovin classification scheme [10].

In the paper we have defined, in a restricted case, a function ψ, and we conjecture that its
generalizations are the Baker–Akhiezer functions for the KP-CH integrable reductions. We are
studying also whether in our case ψ is an eigenfunction of a suitable Lax operator which can
be used to construct a zero curvature equation. The open question that we will address is as
follows: Are the local symmetries of CH bilinear?
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