
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 4 (2008), 007, 15 pages

Three Order Parameters in Quantum XZ

Spin-Oscillator Models with Gibbsian Ground States?

Teunis C. DORLAS † and Wolodymyr I. SKRYPNIK ‡

† Dublin Institute for Advanced Studies, School of Theoretical Physics,
10 Burlington Road, Dublin 4, Ireland
E-mail: dorlas@stp.dias.ie

‡ Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
E-mail: skrypnik@imath.kiev.ua

Received October 29, 2007, in final form January 08, 2008; Published online January 17, 2008
Original article is available at http://www.emis.de/journals/SIGMA/2008/007/

Abstract. Quantum models on the hyper-cubic d-dimensional lattice of spin- 1
2 particles

interacting with linear oscillators are shown to have three ferromagnetic ground state order
parameters. Two order parameters coincide with the magnetization in the first and third
directions and the third one is a magnetization in a continuous oscillator variable. The
proofs use a generalized Peierls argument and two Griffiths inequalities. The class of spin-
oscillator Hamiltonians considered manifest maximal ordering in their ground states. The
models have relevance for hydrogen-bond ferroelectrics. The simplest of these is proven to
have a unique Gibbsian ground state.
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1 Introduction

In this paper we consider quantum lattice models of oscillators interacting with spins whose vari-
ables are indexed by the sites of a hyper-cube Λ with the finite number of sites |Λ| in the
hyper-cubic lattice Zd. Interaction is considered to be short-range and translation invariant.
The corresponding Hamiltonian HΛ is expressed in terms of the oscillators variables qΛ =
(qx, x ∈ Λ) ∈ R|Λ| and spin 1

2 Pauli matrices Sl
Λ = (Sl

x, x ∈ Λ, l = 1, 3), defined in the ten-
sor product of the 2|Λ|-dimensional Euclidean space and the space of square integrable functions
L2

Λ = (⊗E2)|Λ| ⊗ L2(R|Λ|),

HΛ =
∑
x∈Λ

[
− ∂2

x + µ2(qx + ηφx(S3
Λ))2 − µ

]
+

∑
A⊆Λ

JAS
1
[A] + VΛ, µ ≥ 0, η ∈ R, (1.1)

where ∂x is the partial derivative in qx, JA and VΛ are real-valued measurable functions, the
first of which depends on qΛ and the second on S3

Λ, qΛ and the translation invariant φx is given
by (see Remark 2 in the end of the paper)

φx(sΛ) =
∑
A⊆Λ

J0(x;A)s[A], J0(x;x) = 1. (1.2)
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For products of operators, functions and variables we use the following notation: B[A] =
∏

x∈A

Bx.

The scalar product in (⊗E2)|Λ|, L2
Λ will be denoted by (·, ·)0, (·, ·), respectively. The Schwartz

space of test functions on Rn will be denoted by S(Rn).
We require that the Hamiltonian is well defined and bounded from below on (⊗E2)|Λ| ⊗

C∞
0 (R|Λ|), i.e. the tensor product of the 2|Λ|-dimensional Euclidean space and the space of

infinitely differentiable functions with compact supports. The ground state average for an
observable (operator) F is determined by

〈F 〉Λ = Z−1
Λ (ΨΛ, FΨΛ), ZΛ = (ΨΛ,ΨΛ) = ||ΨΛ||2,

where ZΛ is a partition function. For partial cases of F we have

〈q̂[A]φ[A′](S
3
Λ)〉Λ = Z−1

Λ

∫
q[A](ΨΛ(qΛ), φ[A′](S

3
Λ)ΨΛ(qΛ))0dqΛ,

where the integration is performed over R|Λ| and q̂[A] is the operator of multiplication by qx.
We will employ the orthonormal basis ψ0

Λ(sΛ) of the Euclidean space (⊗E2)|Λ|, diagonali-
zing S3

Λ, which is chosen in the following way: ψ0
Λ(sΛ) = ⊗x∈Λψ

0(sx), sx = ±1, ψ0(1) = (1, 0),
ψ0(−1) = (0, 1), S1ψ0(s) = ψ0(−s), S3ψ0(s) = sψ0(s). For F ∈ L2

Λ we have the following
decomposition

F (qΛ) =
∑
sΛ

F (qΛ; sΛ)ψ0
Λ(sΛ),

where the summation is performed over the |Λ|-fold Cartesian product (−1, 1)|Λ|of the set (−1, 1).
The Hamiltonians in (1.1) are employed in hydrogen-bond ferroelectric crystal models, consi-

dered in [1, 2, 3], and describe interaction between heavy ions (oscillators with constant fre-
quency) and protons (spins). The second term with JA = 0, |A| ≥ 2 corresponds to the energy
of protons, tunneling along hydrogen bonds from one well to another, and Jx is associated with
the tunneling frequency. The last term in the expression for our Hamiltonian VA =

∑
A⊆Λ

J1(A)S3
[A]

describes many-body interaction between protons (J1(A) is the intensity of the |A|-body inter-
action).

A rigorous analysis of a mean-field version of the Hamiltonian in (1.1) with φx(S3
Λ) given

in (1.2) that is linear in S3, Jx 6= 0, VΛ = −(µη)2
∑
x∈Λ

φ2
x(S3

Λ), JA = 0 for |A| ≥ 2 and J0(x; y)

uniformly in lattice sites proportional to |Λ|−1 was carried out in [3] in the framework of the Bo-
golyubov approximating Hamiltonian method [4] and occurrence of spin and oscillator orderings
(the corresponding order parameters are non-zero) for two-body interaction between protons at
non-zero temperatures was proved. To establish such orderings for ground states without the
mean-field limit in a general case is an important task for a theory.

The oscillator and spin orderings are established if one proves the existence of ferromagnetic
oscillator and spin long-range orders (lro’s) in ground states for the corresponding Hamiltonians.
This means that the ground state averages 〈q̂xq̂y〉Λ, 〈Sj

xS
j
y〉Λ, j = 1, 3 are bounded uniformly in Λ

from below by positive numbers . Occurrence of the ferromagnetic lro’s implies the existence of
the spin order parameters (magnetizations in the first and third directions) M l

Λ = |Λ|−1
∑
x∈Λ

Sl
x,

l = 1, 3, and the oscillator order parameter QΛ = |Λ|−1
∑
x∈Λ

qx in the thermodynamic limit

(Λ → Zd) since the ground state averages of their squares are uniformly bounded in Λ from
below by a positive number.
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In this paper we describe three classes of VΛ for which ground states or eigenstates ΨΛ of the
Hamiltonians in (1.1) are Gibbsian

ΨΛ(qΛ) =
∑
sΛ

e−
1
2
U(sΛ;qΛ)ψ0

Λ(sΛ)ψ0Λ(qΛ), (1.3)

with the linear in qΛ spin-oscillator quasi-potential energy U

U(sΛ; qΛ) = 2µη
∑
x∈Λ

qxφx(sΛ) + U0(sΛ), (1.4)

where ψ0Λ(qΛ) =
∏

x∈Λ

ψ0(qx), ψ0(q) = (µπ−1)
1
4 exp{−µ

2 q
2}, is the ground state of the free oscilla-

tor Hamiltonian, that is the first term in the right-hand side of (1.1) with η = 0. The first and the
second classes correspond to the choice U0(sΛ) = αU0(sΛ), U0(sΛ) = αU0(sΛ) +µη2

∑
x∈Λ

φ2
x(sΛ),

α ≥ 0 (the second choice makes VΛ independent of oscillator variables), respectively, and the
third class coincides with the set of finite-range VΛ if the the following conditions are satisfied:
JA = 0 for |A| ≥ 2 and |J1(A)| < 1 is sufficiently small. For the first two of them we prove the
maximal ordering in the corresponding systems (provided some simple conditions are satisfied):
magnetizations M l

Λ, l = 1, 3, QΛ are non-zero. No other ground states are known with such the
property.

Gibbsian ground states were introduced by Kirkwood and Thomas in [5] in XZ spin-1
2 models

with Hamiltonians (linear in S1) that include the spin part of (1.1), i.e. the second and third
terms, with only Jx 6= 0 and the periodic boundary condition (this boundary condition is not
essential). Matsui in [6, 7] enlarged a class of spin-1

2 XZ-type models in which Gibbsian states
exist. The method was further developed by Datta and Kennedy in [8]. An application of
classical spin systems for constructing of quantum states was given in [9].

In [10] we showed how to find VΛ for a given Gibbsian ground state and established existence
of lro’s in S1 and S3 for a wide class of the spin-1

2 XZ models (see also [11, 12]). This reference
contains the most simple proofs of the existence of lro’s in ground states of quantum many-body
systems. A reader may find a review of the results concerning several quantum orders in it (see
also [13, 14, 15]).

The ground state in (1.3) can be represented in the following equivalent form

ΨΛ(qΛ) =
∑
sΛ

F0(sΛ)ψ0
Λ(sΛ)ψ0Λ(qΛ + ηφΛ(sΛ)), (1.5)

F0 = exp
{
−1

2
U∗

}
, U∗ = U0 − µη2

∑
x∈Λ

φ2
x. (1.6)

From (1.5), orthonormality of the basis (see the beginning of the third section) and the equalities∫
ψ2

0(q)dq = 1,
∫
ψ2

0(q)qdq = 0 it follows that

〈q̂xq̂y〉Λ = η2〈φx(S3
Λ)φy(S3

Λ)〉Λ = η2〈φx(σΛ)φy(σΛ)〉∗Λ, 〈S3
xS

3
y〉Λ = 〈σxσy〉∗Λ, (1.7)

where σx(sΛ) = sx and

〈φx(σΛ)φy(σΛ)〉∗Λ = Z−1
∗Λ

∑
sΛ

|F0(sΛ)|2φx(sΛ)φy(sΛ), Z∗Λ =
∑
sΛ

|F0(sΛ)|2.

Equalities in (1.7) reduce a calculation of averages in our quantum systems to a calculation of
averages indexed by a star in Ising models and the following statement (principle) is true.
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Proposition 1. Let J0 ≥ 0 in (1.1) and ferromagnetic lro occur in the Ising model with the
potential energy U∗ given by (1.6), that is 〈σxσy〉∗Λ > 0 uniformly in Λ, then ferromagnetic lro
occurs in oscillator variables and S3 in the quantum spin-oscillator system with the Hamilto-
nian (1.1).

Another important statement is formulated as follows.

Proposition 2. If JA and VΛ do not depend on oscillator variables and Ψ0Λ =
∑
sΛ

F0(sΛ)ψ0
Λ(sΛ),

where F0 is a complex valued function, is the ground state of the the spin part of (1.1), then the
ground state ΨΛ of the Hamiltonian (1.1) is given by (1.5).

The simple proof of Proposition 2 is based on the fact that the unitary operator T−1
Λ =∏

x∈Λ

T−1
x (φ) of translation of oscillator variables on each one-dimensional subspace of (⊗C2)|Λ|,

where

(Tx(φ)F )(qΛ) =
∑
sΛ

F (qx + ηφx(sΛ), qΛ\x; sΛ)ψ0
Λ(sΛ),

maps the vector in (1.5) into the tensor product of the ground states the free oscillator Hamil-
tonian and the spin part of the Hamiltonian (1.1). Proposition 2 guarantees that our quan-
tum spin-oscillator system will possess a Gibbsian ground state if a pure spin system possesses
such state with the Hamiltonian coinciding with the spin part

∑
A⊆Λ

JAS
1
[A] + VΛ of the Hamil-

tonian (1.1). Usefulness of Gibbsian ground states is explained by comparative simplicity of
a proof of existence of lro. Our results show that Gibbsian ground states are expected to appear
in many quantum spin-oscillator systems with non-trivial interactions.

Our paper is organized as follows. In the second section we formulate our main results in two
theorems, a lemma and two propositions. The first and second theorems deal with the cases
when the spin part of the Hamiltonian (1.1) do not depend and depend on oscillator variables,
respectively. In the next sections we prove the results.

2 Main result

Proposition 2 shows that the case when JA and VΛ do not depend on oscillator variables is the
simplest. The existence of the Gibbsian ground state will yield a proof of lro via Proposition 1
for it. We know from [10] that if

VΛ = −
∑
A⊆Λ

JAe
−α

2
W0A(S3

Λ), W0A(sΛ) = U0(sΛ\A,−sA)− U0(sΛ). (2.1)

then the ground state of the spin part of the Hamiltonian (1.1) is Gibbsian with F0 = e−
α
2

U0 in
Proposition 2.

Theorem 1. Let JA, VΛ be independent of oscillator variables, (2.1) hold and U0 be determined
from the equality U0 = αU0 + µη2

∑
x∈Λ

φ2
x. Then

I. ΨΛ, given by (1.3), (1.4), is an eigenfunction of the Hamiltonian (1.1) with the zero eigen-
value and is its (unique) ground state if JA ≤ 0 (if the uniform bound Jx ≤ J− < 0 holds);

II. lro in S3 and oscillator lro occurs if J0(x,A) ≥ 0 and lro occurs in a classical spin system
with the potential energy U0;

III. lro in S1 occurs if lim
Λ→Zd

W0A(sΛ) exists for |A| = 2 and is uniformly bounded.
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The second item follows from Propositions 1 and 2. The proofs of items I and III can be
recovered easily from the proof of the next theorem (see also [10]).

The following Proposition is proved without difficulty with the help of Proposition 2 and the
results of [5] concerning an existence of the Gibbsian ground state for a XZ spin-1

2 model.

Proposition 3. Let VΛ not depend on oscillator variables, φx be finite range, JA = 0 for |A| ≥ 2,
the potential |J1(A)| ≤ 1 be sufficiently small and the periodic boundary condition in the spin
variables hold. Then there exists a function U0 such that ΨΛ, given by (1.3), (1.4), is a unique
ground state of the Hamiltonian (1.1).

Items II, III of Theorem 1 for VΛ = −(µη)2
∑
x∈Λ

φ2
x(S3

Λ) do not follow from [5] since lro is

proved there for nearest-neighbor interaction (note that this VΛ determines non-nearest neighbor
interaction even if φx determines such).

It turns out that Gibbsian ground states exist, also, for JA depending on qΛ if

VΛ = −
∑
A⊆Λ

JAe
− 1

2
WA(S3

Λ), WA(S3
Λ) = U(S3A

Λ ; qΛ)− U(S3
Λ; qΛ), (2.2)

where S3A
Λ = (−S3

A, S
3
Λ\A). The analog of Theorem 1 can be proved for such VΛ but its proof

is more involved since this operator is unbounded. Negative JA generate positive function VΛ

in (2.2) and this enables us to prove the following lemma for the case when VΛ depends on
oscillator variables.

Lemma 1. Let VΛ be given by (2.2) and have a domain D(VΛ), JA be bounded negative functions
and U in (2.2) coincide with U in (1.4) in which U0 = αU0. Then HΛ is positive definite and
essentially self-adjoint on the set (⊗C2)|Λ|⊗S(R|Λ|)∩D(VΛ) that contains (⊗C2)|Λ|⊗C∞

0 (R|Λ|)
and item I of Theorem 1 is true.

Remark 1. If the functions JA are only negative then statement II still holds and ΨΛ is the
ground state of the self-adjoint extension of the Hamiltonian preserving positive definiteness.

The most simple translation invariant short-range U0 is ferromagnetic

U0(sΛ) = −
∑
A⊆Λ

J0
As[A], J0

A ≥ 0, (2.3)

where J0
A = 0 for odd |A|. The following theorem establishes analogs of items II–III of Theorem 1

for the case of VΛ given by (2.2).

Theorem 2. Let all the conditions of Lemma 1 be satisfied, J0 ≥ 0, J0(x;A) = 0 for even |A|,
J0(0; 1), J0

0,1 ≥ J̄ and U0 be given by (2.3). Then
I. For a sufficiently large β = (η2µ+α)J̄ > 1 there exist ground state lro’s in S3 and oscillator

variables for d ≥ 2;
II. Let the positive constants C, Bj, j = 0, 1, 2, independent of Λ, exist such that |φx(sΛ)| ≤ C

|W0A(sΛ)| ≤ B0, W
(j)
A (sΛ) ≤ Bj ,

W
(j)
A (sΛ) =

∑
x′∈Λ

|φj
x′(s

A
Λ)− φj

x′(sΛ)|, j = 1, 2,

where |A| = 2. Then ground state ferromagnetic lro in S1 occurs in arbitrary dimension d.
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If U0 = 0 then VΛ from (2.2) is given by

VΛ = −
∑
A⊆Λ

JAv[A], vx = coshux + S3
x sinhux, ux = 2ηµφx(qΛ).

This equality follows from the equalities

WA(S3
Λ) = −2

∑
x∈A

uxS
3
x, eaS3

= cosh a+ S3 sinh a, (S3)2 = I.

In the simplest case the conditions of item II of Theorem 2 can be checked without difficulty.

Proposition 4. Let φx be linear in S3 in (1.2) and ||J0||1 =
∑
x
|J0(x)| < ∞, where the sum-

mation is performed over Zd. Then the conditions of item II of Theorem 2 are satisfied.

Note that if one uses the Pauli matrices with 1
2 instead of the unity as matrix elements

then VΛ should be changed by adding to W0A and WA in (2.1) and (2.2), respectively, the
number −|A| ln 2.

The expression for VΛ in (2.1) can be calculated for certain U0 (see [10]). If one chooses the
anti-ferromagnetic U0 in (2.2), specifically,

U0(sΛ) = α−1µη2
∑
x∈Λ

φ2
x(sΛ) +

∑
〈x,y〉∈Λ

sxsy, α > 0

then it can be easily proved that the spin lro in the third direction will be anti-ferromagnetic,
generating a staggered magnetization (spins at the even and odd sublattices take different va-
lues).

The interesting and important property of the Hamiltonians with VΛ given by (2.1), (2.2) is
that they are simply related to generators of stationary Markovian processes (see, also, [16]).
We believe that it is possible to apply the same mathematical technique for proving existence
of order and phase transitions in equilibrium quantum systems and non-equilibrium stochastic
systems (see [17]).

3 Proof of Lemma 1

For our purpose it is convenient to pass to a new representation. It is determined by the Hilbert
space of sequences of functions F (qΛ; sΛ), sx = ±1, which are found in the expansion of the
vector F ∈ L2

Λ mentioned at the beginning of the introduction, with the scalar product

(F1, F2) =
∑
sΛ

∫
F1(qΛ; sΛ)F2(qΛ; sΛ)dqΛ,

(F1(qΛ), F2(qΛ))0 =
∑
sΛ

F1(qΛ; sΛ)F2(qΛ; sΛ),

where the integration is performed over R|Λ|. Here we took into account the orthonormality of
the basis, i.e. the equality

(Ψ0
Λ(sΛ),Ψ0

Λ(s′Λ))0 = δ(sΛ; s′Λ) =
∏
x∈Λ

δsx,s′x ,

where δs,s′ is the Kronecker delta. Let

hx = −∂2
x + µ2(qx + ηφx(S3

Λ))2 − µ,
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h0
x = −∂2

x + µ2q2x − µ = (−∂x + µqx)(∂x + µqx)

and

hΛ =
∑
x∈Λ

hx, h0
Λ =

∑
x∈Λ

h0
x,

then

hx = Tx(φ)h0
xT

−1
x (φ), hΛ = TΛh

0
ΛT

−1
Λ .

Here we took into account that differentiation commutes with TΛ. This means that the Hamil-
tonian H̃Λ = T−1

Λ HΛTΛ = h0
Λ + ṼΛ is decomposed into the sum of the free oscillator Hamiltonian

and a pure spin XZ-type Hamiltonian ṼΛ if JA, VΛ do not depend on oscillator variables.
Our Hamiltonian is rewritten as follows

HΛ = hΛ +
∑
A⊆Λ

JAP[A], PA = S1
[A] − e−

1
2
WA(S3

Λ).

The remarkable fact is that the symmetric operator PA and the harmonic operator hx have both
common eigenvector ΨΛ with the zero eigenvalue (see Remark 3 in the end of the paper). Note
that the space of ground states of the operator hx (eigenfunctions with the zero eigenvalue) is
2|Λ|-fold degenerate since S3

x is diagonal and the Laplacian is translation invariant. From (1.5)
and the definition of Tx(φ) if follows that T−1

x (φ)ΨΛ is equal to ψ0(qx) multiplied by a function
independent of qx

T−1
x (φ)ΨΛ =

∑
sΛ

e−
1
2
U∗(sΛ)ψ0

Λ(sΛ)ψ0Λ(qΛ\x + ηφΛ\x(sΛ\x))ψ0(qx).

Hence h0
xT

−1
x (φ)ΨΛ = 0 and hxΨΛ = Tx(φ)h0

xT
−1
x (φ)ΨΛ = 0. The proof that ΨΛ is an eigenvec-

tor with the zero eigenvalue of PA is inspired by our previous paper [10]. For simplicity we will
omit qΛ in the expression for U in (1.4). Taking into consideration the equalities

S1
[A]ψ

0
Λ(sΛ) = ψ0

Λ(sA
Λ) = ψ0

Λ(sΛ\A,−sA), S3
xψ

0
Λ(sΛ) = sxψ

0
Λ(sΛ),

we obtain

(ψ0Λ)−1PAΨΛ =
∑
sΛ

(ψ0
Λ(sΛ\A,−sA)− e−

1
2
WA(sΛ)ψ0

Λ(sΛ))e−
1
2
U(sΛ)

=
∑
sΛ

(ψ0
Λ(sΛ\A,−sA)e−

1
2
U(sΛ) − ψ0

Λ(sΛ)e−
1
2
U(sA

Λ ))

=
∑
sΛ

(e−
1
2
U(sA

Λ ) − e−
1
2
U(sA

Λ ))ψ0
Λ(sΛ) = 0.

Here we changed signs of the spin variables sA in the first term in the sum in sΛ.
Positive definiteness of the Hamiltonian follows from the following proposition.

Proposition 5. The operator −PA is positive definite on D(VΛ).

Proof. VΛ is an operator of multiplication by infinite differentiable functions on each one-
dimensional spin subspace and its domain contains (⊗C2)|Λ|⊗C∞

0 (R|Λ|). This domain coincides
with the direct sum of 2|Λ| copies of of L2(R|Λ|, e|q|0dqΛ), where |q|0 =

∑
x∈Λ

|qx||φx|.
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The scalar product in the Hilbert space L2
Λ is given by (F1, F2) =

∫
(F1(qΛ), F2(qΛ)) dqΛ,

where the integration is performed over R|Λ|. We have to show that −(PAF (qΛ), F (qΛ))0 ≥ 0.
Let us define the operator

P+
A = e

1
2
U(S3

Λ)PAe
− 1

2
U(S3

Λ).

It is not difficult to check on the basis ψ0
Λ that

P+
A = e−

1
2
WA(S3

Λ)(S1
[A] − I),

where I is the unit operator. Here we used the following equality

e−
1
2
U(S3A

Λ )S1
[A] = S1

[A]e
− 1

2
U(S3

Λ).

For the operator P+
A we have

P+
A F =

∑
sΛ

(P+
A F )(qΛ; sΛ)ψ0

Λ(sΛ)

and

(P+
A F )(qΛ; sΛ) = −e−

1
2
WA(sΛ)(F (qΛ; sΛ)− F (qΛ; sA

Λ)).

It is convenient to introduce the new scalar product

(F1, F2)U = (e−U(S3
Λ)F1, F2) =

∑
sΛ

∫
F1(qΛ, sΛ)F2(qΛ, sΛ)e−U(sΛ)dqΛ

=
∫

(F1(qΛ), F2(qΛ))0UdqΛ =
∫

(e−U(S3
Λ)F1(qΛ), F2(qΛ))0dqΛ.

The operator P+
A is symmetric with respect to the new scalar product since

(P+
A F1(qΛ), F2(qΛ))0U = (PAe

− 1
2
U(S3

Λ)F1(qΛ), e−
1
2
U(S3

Λ)F2(qΛ))0. (3.1)

It is not difficult to check that

−(P+
A F (qΛ), F (qΛ))0U =

∑
sΛ

e−
1
2
[U(sΛ)+U(sA

Λ )](F (qΛ; sΛ)− F (qΛ; sA
Λ))F (qΛ; sΛ)

=
1
2

∑
sΛ

e−
1
2
[U(sΛ)+U(sA

Λ )](F (qΛ; sΛ)− F (qΛ; sA
Λ))2 ≥ 0. (3.2)

Here we took into account that the function under the sign of exponent is invariant under
changing signs of the spin variables sA. From (3.1), (3.2) it follows that −PA ≥ 0. �

From Proposition 5 it follows that H1
Λ =

∑
A⊆Λ

JAPA is positive definite since for the nega-

tive JA we have

(H1
ΛF, F ) =

∑
A⊆Λ

∫
JA(qΛ)(PAF (qΛ), F (qΛ))0dqΛ ≥ 0.

The fact that the Hamiltonian is essentially self-adjoint is derived from the following propo-
sition (see example X.9.3 in [18]).
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Proposition 6. The operator −∆ + µ2x2 + V + (y, x), where (y, x) is the Euclidean scalar

product of x = xj, j = 1, . . . , n with the constant vector y, ∆ =
n∑

j=1

∂
∂xj

, µ 6= 0 if y 6= 0, V is

the operator of multiplication by a non-negative function V (x) ∈ L2(Rn, e−x2
dx), x2 = (x, x),

is essentially self-adjoint on S(Rn) ∩D(V ), i.e. the intersection of the Schwartz space and the
domain of V .

Proof. The following two inequalities are valid

µ2||x2ψ|| ≤ ||(−∆ + V + µ2x2)ψ||+ 2µ2n||ψ||, (y, x) ≤ εx2 +
n

4ε
|y|2, (3.3)

where µ is a real number, |y| = max
j

|y|j , || · || is the scalar product in the Hilbert space of

square integrable functions. We tacitly assume that x2 means the operator of multiplication of
a squared variable. The first inequality follows from the inequalities (∂j = ∂

∂xj
)

(−∆ + V + µ2x2)2 ≥ (µ2x2)2 − µ2(∆x2 + x2∆),

−(∂2
j x

2
k + x2

k∂
2
j ) = −(2xk∂

2
j xk + 2δj,k) ≥ −2δj,k,

−(∆x2 + x2∆) ≥ −
n∑

j=1

(∂2
j x

2
j + x2

j∂
2
j ).

Here we took into account that V is positive and [∂j , xk] = ∂jxk − xk∂j = δj,k. As a result

||(y, x)ψ|| ≤ a||(−∆ + V + µ2x2)ψ||+ b||ψ||, a = µ−2ε, b = n(2 +
|y|2

4ε
).

For µ 6= 0 number a can be arbitrary small and from the Kato–Rellich theorem [18] it follows
that the essential domain of −∆ + V + µ2x2 + (y, x) coincides with the essential domain of
−∆+V+µ2x2. But the last one coincides with S(Rn)∩D(V ) [18, Theorem X.59]. Inequality (3.3)
is sufficient, also, for the proof of the proposition in the case µ = y = 0 (this is explained in
Example X.3 in [18]). �

Since S3
Λ is a diagonal operator on (⊗C2)|Λ| the operator

−
∑
x∈Λ

∂2
x + µ2

∑
x∈Λ

q2x + VΛ + 2ηµ2
∑
x∈Λ

qxφx(S3
Λ)

is the direct sum of 2|Λ| copies of the minus |Λ|-dimensional Laplacian plus the three functions
coinciding with the three functions in Proposition 6. From Proposition 6 it follows that this
operator is essentially self-adjoint on the set (⊗C2)|Λ|⊗S(R|Λ|)∩D(VΛ) that contains (⊗C2)|Λ|⊗
C∞

0 (R|Λ|). The same is true for the Hamiltonian since operator (ηµ)2
∑
x∈Λ

φ2
x(S3

Λ) and the operator

depending on S1
Λ in its expression are bounded.

The operators hΛ, H1
Λ are positive definite on the dense set (⊗C2)|Λ|⊗S(R|Λ|)∩D(VΛ) which

is the essential set for HΛ. This implies that HΛ is positive definite on its domain D(HΛ) and ΨΛ

is its ground state.

Proof of uniqueness. We have to establish that the symmetric semigroup P t
Λ, generated

by −HΛ, maps non-negative functions into (strictly) positive functions (increases positivity) and
this will imply that the ground state is unique (see Theorem XIII.44 in [18]). We will establish
this property with the help of a perturbation expansion. The kernel of the semigroup P t

1,
generated by hΛ + VΛ, is expressed in terms of the Feynman–Kac (FK) formula [18, 19]

P t
1(qΛ, sΛ; q′Λ, s

′
Λ) = δsΛ,s′Λ

∫
P t

qΛ,q′Λ
(dwΛ) exp

−
t∫

0

V +
Λ (wΛ(τ), sΛ)dτ

 ,
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where V +
Λ (qΛ; sΛ) = VΛ(qΛ; sΛ)+

∑
x∈Λ

[µ2(qx+ηφx(sΛ))2−µ], P t
qΛ,q′Λ

(dwΛ) =
∏

x∈Λ

P t
qx,q′x

(dwx) is the

conditional Wiener measure and wΛ(t) is the sequence of continuous paths. The semigroup P t

is represented as a perturbation series in powers of V0

V0 = −
∑
A⊆Λ

JAS
1
[A].

This series is convergent in the uniform operator norm [20] since V0 is a bounded operator. Its
perturbation expansion is given by

P t =
∑
n≥0

P t
n, P t

n =
∫

0≤τ1≤τ2≤···≤τn≤t

dτ1 · · · dτnP τ1
1

n+1∏
j=2

(V0P
τj−τj−1

1 ),

where τn+1 = t . We now use the following simple inequality∫ t

0
|V +

Λ (wΛ(τ), sΛ)|dτ

≤ V̄ (wΛ) = |J |Λ
∫ t

0

[
exp

{
αŪ0 + 2ηµ

∑
x∈Λ

φ̄x|wx(τ)|

}
+

∑
x∈Λ

(µ2(|wx(τ)|+ ηφ̄x)2 − µ)

]
dτ,

where Ū0 = max
sΛ

U0(sΛ), |J |Λ = sup
qΛ

∑
A⊆Λ

|JA| , φ̄x = max
sΛ

|φx(sΛ)|. Let

P̄ t
1(qΛ; qΛ) =

∫
P t

qΛ,q′Λ
(dwΛ)e−V̄ (wΛ), V− = −J−

∑
x∈Λ

S1
x

then it follows from the positivity of the the kernel P t
1 and V0 that

P t(qΛ, sΛ; q′Λ, s
′
Λ) ≥ P̄ t

1(qΛ; qΛ)
∑
n≥0

tn

n!
V n
− (sΛ; s′Λ). (3.4)

Here we utilized the semigroup property of P̄ t, the inequalities ea ≥ e−|a|, V0 ≥ V−,

(V0P
τj−τj−1

1 )(qΛ, sΛ; q′Λ, s
′
Λ) ≥ P̄ τj−τj−1(qΛ; q′Λ)V−(sΛ; , s′Λ).

Now, it is easily proved as in [10] that the matrix V− is irreducible. As a result there exists
a positive integer n such that and that V n

− , has positive non-diagonal elements [21, 22]. Hence
the kernel in the left-hand side of (3.4) is positive.

4 Order parameters

In this section we will prove Theorem 2, i.e. occurrence of different types of lro in the considered
quantum systems. In the proof we will rely on the following basic theorem.

Theorem 3. Let the ferromagnetic short-range potential energy U of the classical spin-1 Ising
model on the hyper-cubic lattice Zd with the partition function ZΛ =

∑
sΛ

exp{−βU(sΛ)} be

given by

U(sΛ) = −
∑
A⊆Λ

ϕ(A)s[A], (4.1)
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where ϕ(A) ≥ 0. Let, also, the uniform bound ϕ(x, y) ≥ ϕ̄ > 0 for nearest neighbors x, y hold
and ϕ(A) = 0 for A with odd number of sites. Then for a sufficiently large ϕ̄β > 1 and the
dimension d ≥ 2 there is the ferromagnetic lro, that is, for the Gibbsian two point spin average
the uniform in Λ bound holds

〈σxσy〉Λ > 0,

where σx(sΛ) = sx and the magnetization (an order parameter) MΛ = |Λ|−1
∑
x∈Λ

sx is non-zero

in the thermodynamic limit Λ → Zd.

The proof of this theorem is based on an application of the generalized Peierls principle
(argument). It will be given in the end of this section (see, also, [17, 26]. The next theorem is
the consequence of the basic theorem.

Proof of item I of Theorem 2. Condition (1.2) shows that

∑
x∈Λ

φ2
x(sΛ) = |Λ|+ 2

∑
A⊆Λ

J2(A)s[A] +
∑
x∈Λ

 ∑
x 6∈A⊆Λ

J0(x;A)s[A]

2

.

where J2(x ∪A) = J0(x;A) and J2(A) = 0 for odd |A|. The last term is equal to∑
x∈Λ

∑
x 6∈A⊆Λ

J2
0 (x;A) + 2

∑
x∈Λ

∑
x 6∈A1,A2⊆Λ

J0(x;A1)J0(x;A2)s[A1∆A2],

where s∅ = 1 and A1∆A2 = (A1 ∪ A2)\(A1 ∩ A2). Due to translation invariance of interaction
the first term is bounded by |Λ|

∑
A

J2
0 (0;A), where the summation is performed over Zd, and

this expression is finite since the interaction is short-range. Hence subtracting a finite constant
proportional to |Λ| from U∗ one sees that the result admits representation (4.1) with positive J∗
instead of ϕ such that J∗(A) = 0 for odd |A| and for nearest neighbors x, y the inequality
J∗(x, y) ≥ (2η2µ+ α)J̄ . The first Griffiths inequality and (1.2) with J0 ≥ 0 imply that

η−2〈q̂xq̂y〉Λ = 〈φx(σΛ)φy(σΛ))〉∗Λ ≥ 〈σxσy〉∗Λ,

where σx(sΛ) = sx. It is obvious that the following equality also holds

〈S3
xS

3
y〉Λ = 〈σxσy〉∗Λ.

The basic theorem and Proposition 1 imply occurrence of ferromagnetic lro in S3 and oscillator
lro. �

Proof of item II of Theorem 2. Let ψΛ(qΛ; sΛ) = ψ0
Λ(sΛ)ψ0Λ(qΛ). Then (1.3) and the defi-

nition of S1 imply that

S1
xS

1
yΨΛ(qΛ) =

∑
sΛ

e−
1
2
U(sΛ;qΛ)ψΛ(qΛ; sx,y

Λ ) =
∑
sΛ

e−
1
2
U(sx,y

Λ ;qΛ)ψΛ(qΛ; sΛ).

Taking into account also the orthonormality of the basis one obtains

〈S1
xS

1
y〉Λ = Z−1

Λ

∑
sΛ

∫
e−

1
2
[U(sx,y

Λ ;qΛ)+U(sΛ;qΛ)]ψ2
0Λ(qΛ)dqΛ

= Z−1
Λ

∑
sΛ

e

η2µ
4

∑
x′∈Λ

(φx′ (sΛ)+φx′ (s
x,y
Λ ))2

e−
α
2
[U0(sx,y

Λ )+U0(sΛ)]



12 T.C. Dorlas and W.I. Skrypnik

≥ e−
α
2

B0Z−1
Λ

∑
sΛ

e

η2µ
4

∑
x′∈Λ

(φx′ (sΛ)+φx′ (s
x,y
Λ ))2

e−αU0(sΛ).

We also have∑
x′∈Λ

(φx′(sΛ) + φx′(s
x,y
Λ ))2

=
∑
x′∈Λ

[3φ2
x′(sΛ) + φ2

x′(s
x,y
Λ )] + 2

∑
x′∈Λ

φx′(sΛ)[−φx′(sΛ) + φx′(s
x,y
Λ )]

=
∑
x′∈Λ

4φ2
x′(sΛ) +

∑
x′∈Λ

[−φ2
x′(sΛ) + φ2

x′(s
x,y
Λ )] + 2

∑
x′∈Λ

φx′(sΛ)[−φx′(sΛ) + φx′(s
x,y
Λ )]

≥ 4
∑
x′∈Λ

φ2
x′(sΛ)−B2 − 2CB1.

This yields

〈S1
xS

1
y〉Λ ≥ e−

η2µ
4

(B2+2B1)e−
α
2

B0Z−1
Λ

∑
sΛ

e
η2µ

∑
x′∈Λ

φ2
x′ (sΛ)

e−αU0(sΛ)

= e−
η2µ
4

(B2+2CB1)e−
α
2

B0 . �

Proof of Proposition 4. It is obvious that |φx(sΛ)| ≤ ||J0||1 and that

|φx′(s
x,y
Λ )− φx′(sΛ)| = | − 2[syJ0(y − x′) + sxJ0(x− x′)]| ≤ 2[|J0(y − x′)|+ |J0(x− x′)|].

As a result W (1)
x,y (sΛ) ≤ 4||J0||1. Further

|φ2
x′(s

x,y
Λ )− φ2

x′(sΛ)| =

∣∣∣∣∣
[ ∑

z∈Λ\(x,y)

J0(z − x′)sz − syJ0(y − x′)− sxJ0(x− x′)

]2

−

[ ∑
z∈Λ\(x,y)

J0(z − x′)sz + syJ0(y − x′) + sxJ0(x− x′)

]2∣∣∣∣∣
=

∣∣∣∣∣− 4
∑

z∈Λ\(x,y)

J0(z − x′)sz(syJ0(y − x′) + sxJ0(x− x′))

∣∣∣∣∣
≤ 4

∑
z∈Λ

|J0(z − x′)|(|J0(y − x′)|+ |J0(x− x′)|) ≤ 4||J0||1(|J0(y − x′)|+ |J0(x− x′)|).

Hence W (2)
x,y (sΛ) ≤ 8||J0||21. �

Proof of Theorem 3. Let χ±x = 1
2(1± σx) then one obtains

4〈χ+
x χ

−
y 〉Λ = 1 + 〈σx〉Λ − 〈σy〉Λ − 〈σxσy〉Λ.

Since the systems are invariant under the transformation of changing signs of spins the third
and the second terms in the right-hand side of last equality are equal to zero and

〈σxσy〉Λ = 1− 4〈χ+
x χ

−
y 〉Λ.

Hence if

〈χ+
x χ

−
y 〉Λ <

1
4

(4.2)
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then the ferromagnetic lro occurs, i.e.

〈σxσy〉Λ ≥ a > 0, (4.3)

where a is independent of Λ. If one succeeds in proving that there exists a positive function E0(β)
and positive constants a, a′ independent of Λ such that

〈χ+
x χ

−
y 〉Λ ≤ a′eE0(β) (4.4)

and proves that E0 is increasing at infinity then (4.2), (4.3) will hold for a sufficiently large
inverse temperature β. The Peierls principle reduces the derivation of (4.4) to the derivation of
the contour bound. �

Peierls principle. Let the contour bound hold

〈
∏

〈x,y〉∈Γ

χ+
x χ

−
y 〉Λ ≤ e−|Γ|E , (4.5)

where 〈·〉Λ denotes the Gibbs average for the spin system confined to a compact domain Λ,
Γ is a set of the nearest neighbors, adjacent to the (connected) contour, i.e. a boundary of the
connected set of unit hypercubes centered at lattice sites. Then (4.4) is valid with E0 = a′′E,
where a′′ is a positive constant independent of Λ.

Proof of contour bound. Bricmont and Fontain derived the contour bound for the spin sys-
tems with the potential energy (4.1) with the help of the second Griffiths [23] and Jensen
inequalities [24] (see also [25, 26])

〈σ[A]σ[B]〉Λ[Γ] − 〈σ[A]〉Λ[Γ]〈σ[B]〉Λ[Γ] ≥ 0,
∫
efdµ ≥ exp

{∫
fdµ

}
,

where dµ is a probability measure on a measurable space. Their proof starts form the inequality

χ+
x χ

−
y = e−

β
2
σxσye

β
2
σxσyχ+

x χ
−
y ≤ e−

β
2
σxσyχ+

x χ
−
y ≤ e−

β
2
σxσy .

As a result (β′ = ϕ̄β)

〈
∏

〈x,y〉∈Γ

χ+
x χ

−
y 〉Λ ≤ 〈e

−β′
2

∑
〈x,y〉∈Γ

σxσy

〉Λ = 〈e
β′
2

∑
〈x,y〉∈Γ

σxσy

〉−1
Λ[Γ]

≤ e
−β′

2

∑
〈x,y〉∈Γ

〈σxσy〉Λ[Γ]

= e−EΓ ,

where 〈·, ·〉Λ[Γ] is the average corresponding to the potential energy

UΓ(qΛ) = U(sΛ) +
ϕ̄

2

∑
〈x,y〉∈Γ

sxsy.

In the last line we applied the Jensen inequality. From the second Griffiths inequality it follows
that the average 〈σxσy〉Λ[Γ] is a monotone increasing function in ϕA. So, in the potential energy
determining this average we can put ϕA = 0, except A = 〈x, y〉 and leave the coefficient ϕ̄ in
front of the bilinear nearest-neighbor pair potential in (4.1) without increasing the average. This
leads to

〈σxσy〉Λ[Γ] ≥ 〈σσ′〉 = Z−1
2

(
β′

2

) ∑
s1,s2=±1

s1s2e
β′
2

s1s2 , Z2(β) =
∑

s1,s2=±1

e
β′
2

s1s2 .
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That is,

EΓ ≥ |Γ|E, E = 2−1β′〈σσ′〉

or

E = β(e2
−1β′ − e−2−1β′)(e2

−1β′ + e−2−1β′)−1 ≥ 2−1β′(1− e−β′).

Here we used in the denominator the inequality e−2−1β′ ≤ e2
−1β′ . Obviously, E tends to infinity

if β′ tends to infinity. This implies (4.5). �

5 Discussion

We showed that in the considered lattice spin-boson models with JA ≤ 0 ground states are
Gibbsian and the ground state averages for special observables are reduced to averages in classical
Ising models. This means that existence of ground states order parameters is connected with
existence of order parameters in the associated Ising models and that a breakdown of symmetries
in the quantum systems is determined by a breakdown of symmetries in Ising models. We
considered the free boundary conditions implying that for the cases of the perturbation VΛ,
considered in the two theorems, the ground state averages of qx, S3

x are zero, that is 〈q̂x〉Λ = 0,
〈S3

x〉Λ = 0 if the associated Ising potential energy is an even function. In order to make such the
averages non-zero (explicit symmetry breaking) one has to introduce special boundary conditions
(quasi-averages) which have to single out pure Gibbsian states in the associated Ising models. It
is known [28] that for the two-dimensional ferromagnetic Ising nearest-neighbor model there are
two boundary conditions which generate pure states and that every other state is a convex linear
combination of these two states. A discussion of a construction of ground states in lattice spin
and fermion quantum systems with an explicit symmetry breaking a reader may find in [29].

Remark 2. Translation invariance means that

Jx1,...,xn = J0,x2−x1,...,xn−x1 , J0(x;x1, . . . , xn) = J0(0;x1 − x, . . . , xn − x)

where J , J0 are symmetric functions. The short-range character of interaction means that

max
x

∑
A

|Jx,A| <∞, max
x

∑
A

|J0(x;A)| <∞.

Remark 3. If only one-point sets are left in the sum for VΛ then the expression for HΛ can be
rewritten in the following way

HΛ =
∑
x∈Λ

Hx.

The property of the ground state ΨΛ to be a ground state with the zero eigenvalue of a local
Hamiltonian Hx was found earlier for special isotropic anti-ferromagnetic Heisenberg chains with
valence bond ground state in [27].
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