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Abstract. The variational principle and the corresponding differential equation for geodesic
circles in two dimensional (pseudo)-Riemannian space are being discovered. The relation-
ship with the physical notion of uniformly accelerated relativistic particle is emphasized.
The known form of spin-curvature interaction emerges due to the presence of second or-
der derivatives in the expression for the Lagrange function. The variational equation itself
reduces to the unique invariant variational equation of constant Frenet curvature in two
dimensional (pseudo)-Euclidean geometry.
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1 Introduction

It turns out that the notion of the uniformly accelerated relativistic test particle world line [1]
coincides with the notion of the geodesic circle in pseudo-Riemannian geometry [2]. In two
dimensions both these notions may be equivalently replaced by the only condition that the first
(and the only) Frenet curvature k of the curve in the consideration keeps constant along this
curve (in physical terms, along the world line of the test particle).

In the natural parametrization by the arc length s (in physical terms, by proper time) all
the notions, mentioned above, amount to the following third order differential equation (cf.
appendix A.5):

D3xl

ds3
+ gmn

D2xm

ds2

D2xn

ds2

Dxl

ds
= 0. (1.1)

The left hand side of this equation is known in the physical literature under the name of the
Abraham vector. This vector is believed to adequately represent the notion of the relativistic
acceleration of test particle [1]. Of course, the notion of geodesic circles does not depend on any
arbitrary reparametrization s(ξ) of the independent variable along the curve in (1.1).

One may ask whether geodesic circles could be the extremals of some variational problem.
Since the equation (1.1) involves third order derivatives, it is appropriate to speak of higher order
variational calculus. Rather trying in näıve way to find a Lagrange function for the equation (1.1)
(or, better, an equivalent equation), it may happen more efficient to set a general problem of
finding all possible third order variational equations in two-dimensional space which keep the
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Frenet curvature k constant along their solutions. Of course, one may hope to solve in reasonable
fullness such an inverse problem only if restricted to certain types of the space geometry. The
natural restriction with regard to (pseudo)-Riemannian space should, of course, be that of its
local model – the (pseudo)-Euclidean space. Thus one comes to the necessity of the formulation
of the invariant inverse variational problem possessing the first integral k. This problem in
two dimensions received the ultimate answer in [3] which is quoted below as Proposition 2.
This proposition says that to obtain geodesic circles, one should, in two dimensions, necessarily
handle the Frenet curvature itself as the integrand of the variational functional.

The fashion of including Frenet curvatures into the variational integrand in physics literature,
initiated, in our opinion, by the papers of Plyushchay and Nesterenko, counts 30 years by
now. Still, sometimes it escapes the common knowledge that such quantities as, say, Frenet
curvatures, are always constants of motion along the extremals of the variational problems where
the Lagrange functions depend on nothing but the corresponding curvatures themselves [4]. This
fact being noticed long ago [5] for the (pseudo)-Euclidean case, we present it here in general
framework by means of rather trivial observation of Proposition 1. Unfortunately, only in
two dimensions the first Frenet curvature taken as the Lagrange function produces, due to its
linearity in second derivatives, a third order equation.

In Section 3.2 we deduce the variational equation from the variational functional∫
kdξ + ds

in (pseudo)-Riemannian two-dimensional space and prove that the set of its extremals includes
all geodesic circles.

Also we discovered quite an interesting fact, in our opinion, that the force on the particle,
having the same form as that produced by spin-curvature interaction, emerges as a simple result
of calculating the variation of second derivatives in the variational integrand.

2 Preliminaries

2.1 Parameter independence and Ostrohrads’kyj mechanics

The right action of the prolonged group GL(2)(R) def= J̃2
0(R, R)0 of parameter transformations

(invertible transformations of the independent variable ξ) on the second order velocities space
T 2M = {xn, un, u̇n} gives rise to the so-called fundamental fields on T 2M (cf. Appendix A.1):

ζ1 = un ∂

∂un
+ 2u̇n ∂

∂u̇n
, ζ2 = un ∂

∂u̇n
. (2.1)

A function f defined on T 2M does not depend on the change of independent variable ξ
(so-called parameter-independence) if and only if

ζ1f = 0, ζ2f = 0. (2.2)

On the other hand, a function L defined on T 2M constitutes a parameter-independent vari-
ational problem with the functional

∫
L(xn, un, u̇n)dξ if and only if the following Zermelo con-

ditions are satisfied [6, formula (8.19)]:

ζ1L = L, ζ2L = 0. (2.3)

Note 1. At this point it worths mentioning the difference between the conditions (2.2) and (2.3).
It would be instructive not to confuse the idea of the parameter independence of a variational
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problem with that of the parameter independence of Lagrange function. The Lagrange function
of a parameter-independent variational problem in not parameter-independent itself.

The formulation of Zermelo conditions in the most general case of arbitrary order and of
arbitrary number of independent variables (Zermelo–Géhéniau) may be read from [7] whereas
the corresponding proof may be found in [8] as well as in [5].

Let us introduce the generalized momenta:

p(1)
n =

∂L

∂u̇n
, pn =

∂L

∂un
− dp

(1)
n

dξ
. (2.4)

The Euler–Poisson equation is given by

En =
∂L

∂xn
− dpn

dξ
= 0. (2.5)

The Hamilton function is given by:

H = p(1)
n u̇n + pnun − L.

Lemma 1 ([5, 9]).

H = ζ1L− dζ2L

dξ
− L.

Proposition 1. If a function LII is parameter-independent and if a function LI constitutes a pa-
rameter-independent variational problem, then LII is constant along the extremals of L = LII+LI.

Proof. By Lemma 1 and in force of the properties (2.2) and (2.3) we calculate HLII+LI
=

ζ1(LII + LI) − d
dξ ζ2(LII + LI) − L = −LII. But as far as the Hamilton function is constant of

motion, so is the LII. �

2.2 Inverse variational problem for geodesic circles

As stated in the previous papers by the author, the general third-order variational equation
takes on the shape [10, 11]:

Amnün + u̇l∂ul Amnu̇n + Bmnu̇n + cm = 0, (2.6)

where the skew-symmetric matrix A, the matrix B, and a column c all depend on ξ, xn, and un,
and satisfy the following system of partial differential equations:

∂
u[mAnk] = 0,

2 B[mn] − 3D1Amn = 0,

2 ∂
u[mBn] k − 4 ∂

x[mAn] k + ∂
xk Amn + 2D1∂

uk Amn = 0,

∂
u(mcn) −D1B(mn) = 0,

2 ∂
uk ∂

u[mcn] − 4 ∂
x[mBn] k + D1

2 ∂
uk Amn + 6D1∂

x[mAnk] = 0,

4 ∂
x[mcn] − 2D1∂

u[mcn] −D1
3 Amn = 0. (2.7)

Here the differential operator D1 is the lowest order truncated operator of total derivative,
D1 = ∂ξ + ul∂xl . We refer to the appendix A.2 on some additional comments concerning the
nature of the variationality conditions (2.7).
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On the other hand, we are interested only in differential equations which enjoy the (pseudo)-
Euclidean symmetry. Because of that in two dimensions the skew-symmetric matrix A in (2.6)
is invertible, there is no problem to formulate the concept of the symmetry in the way(

X En

)∣∣
E=0

= 0, (2.8)

where E denotes the left hand side of the equation (2.6) and X stands for the infinitesimal
generator of the (pseudo)-Euclidean group.

The system of partial differential equations (2.7) together with (2.8) was solved in [3] and
the following result was established:

Proposition 2. Let some system of third order differential equations (2.6) enjoy the following
properties:

• the conditions (2.7) are satisfied;

• the system (2.6) possesses Euclidean symmetry according to (2.8);

• the Euclidean geodesics u̇ = 0 enter in the set of solutions of (2.6);

• dk

dξ
= 0 along the solutions of (2.6).

Then

En =
εnlü

l

‖u‖3 − 3
(u̇·u)
‖u‖5 εnlu̇

l + m
(u·u)u̇n − (u̇·u)un

‖u‖3 . (2.9)

In the above statement the denotation εnm stands for the skew-symmetric Levi-Civita symbol.
This expression (2.9) may be obtained as an Euler–Poisson expression for the Lagrange function

L =
emnumu̇n

‖u‖3 −m ‖u‖. (2.10)

The first addend in (2.10) is sometimes called the signed Frenet curvature [12] in E2. This, along
with the observation that in two dimensional (pseudo)-Riemannian space the Frenet curvature

k =
‖u ∧ u′‖
‖u‖3 = ±

√
|g| εknuku′n

‖u‖3 (2.11)

depends linearly on the covariant derivative u′ and thus produces at most the third order Euler–
Poisson equation, suggests the next assertion, based on Proposition 1:

Proposition 3 ([13, 3]). The variational functional with the Lagrange function

LR =
√
|g| εknuku′n

‖u‖3 −m ‖u‖ (2.12)

produces geodesic circles in two dimensional Riemannian space.

Note 2. The Lagrange function (2.10) looks like a relativistic analogue of the one recently
treated in [14].
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3 The variational equation for geodesic circles

3.1 The generalized covariant momenta

It is known that the Euler–Poisson expression (in this paper, – of the third order) (2.5) con-
stitutes a covariant geometric object. But the conventional momentum pn from (2.4) does
not. Therefore we introduce covariant momenta π and π(1) that, in the case of the Lagrange
function we shall deal with, represent some relative vectors in the following manner. First, we
assume that the Lagrange function depends on the variables u̇n exclusively through the covariant

derivative u′. Moreover, in the case handled in this article, the partial derivatives
∂L

∂u̇n
and

∂L

∂u′n
coincide. Let us introduce the “truncated” partial derivatives

∂L

∂un
=

∂L

∂un
− ∂u′q

∂un

∂L

∂u′q
, (3.1)

and, for future use,

∂L

∂xn
=

∂L

∂xn
− ∂u′q

∂xn

∂L

∂u′q
. (3.2)

Then the quantities

π(1) =
∂L

∂u′ and (3.3)

π =
∂L

∂u
− π(1)′ (see (3.1)) (3.4)

=
∂L

∂un
− 2 Γq

mnumπ(1)
q − π(1) ′

n (by virtue of (A.5)) (3.5)

may each be applied the operation of the covariant differentiation according to the formu-
lae (A.5). For example, the covariant momentum π(1) produces its covariant derivative

π(1) ′
n = π̇(1)

n − Γm
lnπ(1)

mul. (3.6)

In the above terms the quantity pn of (2.4) is expressed as follows:

pn = πn + 2 Γq
mnumπ(1)

q + π(1) ′
n (on base of (3.5))

− π̇(1)
n (on base of (3.3))

= πn + Γq
mnumπ(1)

q (on base of (3.6)). (3.7)

Differentiating (3.7) and applying (A.5) to express the ordinary derivatives of πn and un in
terms of π′ and u′ along with (3.6), gives:

ṗn =
(
π′n + Γl

mnπlu
m
)

+
∂Γl

mn

∂xk
ukumπ(1)

l

+
(
Γl

mnu′m − Γl
mnΓm

qku
quk
)
π(1)

l + Γl
mnum

(
π(1) ′

l + Γq
klπ

(1)
qu

k
)

= π′n +
(
π(1) ′

l + πl

)
Γl

mnum + π(1)
lΓl

mnu′m

+ π(1)
qu

muk

(
Γl

mnΓq
lk +

∂Γq
mn

∂xk
− Γq

lnΓl
mk

)
.

Now the Euler–Poisson expression (2.5) may be handled with the help of our “truncated” x-de-
rivative (3.2) in the following way:

En =
∂L

∂xn
− π′n −

(
π(1) ′

l + πl

)
Γl

mnum − π(1)
lΓl

mnu′m − π(1)
lu

mukRnkm
l, (3.8)

making use of the definition of the curvature tensor (A.9).
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3.2 The Euler–Poisson expression for the signed Frenet curvature

Let us carry out the previous considerations taking for the Lagrange function LII the signed
Frenet curvature:

LII =
√
|g| εmnumu′n

‖u‖3 . (3.9)

Making use of (A.7) and (A.6) one gets immediately

∂LII

∂xn
=
√
|g| Γq

qnεmku
mu′k

‖u‖3 − 3
√
|g| Γl

nmulu
m

‖u‖5 . (3.10)

The expression for π(1) is obtained from (3.3) in still easier way:

π(1)
n =

√
|g| εknuk

‖u‖3 . (3.11)

The covariant derivative of π(1) is presented by the decomposition formula (3.6). While calcu-
lating π̇(1)

n in (3.6) we profit both from (A.7) and from (A.8). Then we replace π(1)
n in (3.6)

with (3.11) to obtain:

π(1) ′
n =

√
|g|

Γq
qlu

lεknuk

‖u‖3 +
√
|g| εkn

‖u‖3

(
u′k − Γk

mlu
lum

)
− 3
√
|g| (u·u′)εknuk

‖u‖5 −
√
|g| Γl

nmεklu
kum

‖u‖3 . (3.12)

Finally, the simplification formula (A.4) may be used to produce

π(1) ′
n =

√
|g| εknu′k

‖u‖3 − 3
√
|g| (u·u′)εknuk

‖u‖5 . (3.13)

The calculation of the sum π + π(1)′ on grounds of (3.4) is straightforward:

πn + π(1) ′
n = −

√
|g| εknu′k

‖u‖3 − 3
√
|g| unεlku

lu′k

‖u‖5 .

Or, alternatively, utilizing (A.3), one obtains

πn + π(1) ′
n = 2

√
|g| εknu′k

‖u‖3 − 3
√
|g| (u·u′) εknuk

‖u‖5 . (3.14)

To calculate π, we extract (3.13) from (3.14):

πn =
√
|g| εknu′k

‖u‖3 .

Now, the Euler–Poisson expression (3.8) for the Lagrange function (3.9) by virtue of (3.10),
(3.11), and (3.14) reduces to

En(LII) = −π′n − π(1)
qRnkm

qumuk, (3.15)

where the covariant derivative of the momentum π may, if needed, be calculated through the
same procedure as the one previously applied to calculate the covariant derivative π(1) ′ in (3.12).
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Thus in the disclosed form the Euler–Poisson expression for the total Lagrange function (2.12)
would read:

ERn =
√
|g| εknu′′k

‖u‖3 − 3
√
|g| (u·u′)εknu′k

‖u‖5

+ m
(u·u) u′n − (u′ ·u) un

‖u‖3 −
√
|g|

‖u‖3 εmqRnkl
qumuluk. (3.16)

The Euler–Poisson equation, solved with respect to highest derivative, now is√
|g|
(

u′′k

‖u‖3 − 3
(u·u′)u′k

‖u‖5

)
+ m

(u·u) enku′n − (u′ ·u) enkun

‖u‖3 − enkRn = 0, (3.17)

where we used the notion of the contravariant skew-symmetric Levi-Civita symbol emn =
det[gpq] gmkgnlεkl, and introduced the shortcut

Rn =

√
|g|

‖u‖3 εmqRnkl
qumuluk (3.18)

to denote the force on the particle, evoked by the curvature of the (pseudo)-Riemannian struc-
ture. Equation (3.16) obviously generalizes that of (2.9).

Note 3. If, on the other hand, we had introduced a spin tensor Smq = π(1)
muq − π(1)

qum,
the second term on the right of formula (3.15) would have got an interpretation as the force,
evoked by the existence of quasi-classical spin, and would coincide with that present in Dixon’s
equation [15].

Proposition 4. The differential equation (3.17) describes all geodesic circles.

Proof. We have to show that, for each solution of (1.1) it is always possible to perform such
transformation of the independent variable s to ξ that after that change of variables the equa-
tion (3.17) will hold.

First, let us rewrite the differential equation of geodesic circles (1.1) in arbitrary paramet-
rization:

u′′

‖u‖3 =
u·u′′

‖u‖5 u + 3
(u·u′)
‖u‖5 u′ − 3

(u·u′)2

‖u‖7 u. (3.19)

We add to it one more equation, which will play the role of such a one, that fixes the parametriza-
tion along the curve:√

|g|
(

u·u′′

‖u‖3 − 3
(u·u′)2

‖u‖5

)
= −enk

(
m

‖u‖
u′nuk − ukRn

)
. (3.20)

This equation is consistent with the equation (3.17) because it presents nothing more than a
mere consequence of (3.17), obtained by means of the contraction with uk. Further, let us

substitute
u′′k

‖u‖3 in (3.17) from the equation (3.19):

−
√
|g|
(

u·u′′

‖u‖5 − 3
(u·u′)2

‖u‖7

)
uk = −ekn

(
(u·u) u′n + (u′ ·u) un

‖u‖3 −Rn

)
. (3.21)

It remains to insert the left hand side of (3.20) into the left hand side of (3.21) and to notice
that in two-dimensional case what comes out is the identity:

1
u·u

(
m

‖u‖
enlu′nul − enlulRn

)
uk ≡ ekn

(
m

‖u‖
u′n −m

u′ ·u
‖u‖3 un −Rn

)
. (3.22)
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To see that (3.22) is satisfied identically, it suffices to apply the simplification formula (A.3)
separately to the terms involving R and then to what remains, and to notice that unRn = 0
due to the previously introduced notation (3.18). �

A Appendix

A.1 Parameter independence and fundamental fields

The T rM : loose comments. In the variational calculus various objects depend not only on
the variables of the configuration space, but also on the velocities and on the accelerations of
the first as well as of higher orders. The space of this extended number of variables may be
introduced in different ways, as it has in fact been by different authors. In present paper we
choose to use the definition, belonging to Ehresmann [17], of the higher order velocity space
T rM = Jr

0(R,M)0 as the set of jets of mappings from a neighborhood of the origin in R to the
configuration space M = xn, which all start at the origin 0 ∈ R. This space T rM is naturally
endowed by several geometric structures. The Reader may consult the monographs [16] and [9]
on the subject. For the purposes of this paper it suffices to think about T rM as a manifold
of the variables xn, un, . . . , un

r−1, constructed of the successive derivatives of the configuration
space variables xn by the independent evolutionary one.

The fundamental f ields. The group of invertible jets J̃2
0(R, R)0 with the source as well

as the target at the origin 0 ∈ R presents an appropriate geometrical concept when speaking
about local transformations of the parameter along the curve in a manifold. Let again the
variables un = ẋn, u̇n = ẍn denote the first and the second derivatives of coordinates along the
curve xn(ξ), so that the jet j

(2)
0 x at zero is presented by the array of second-order polynomials

unξ + u̇nξ2. Another jet, j(2)σ ∈ J̃2
0(R, R)0, which is presented by the polynomial αξ + 1

2βξ2,
acts on the right upon the previous one by the composition:

j
(2)
0 x · j(2)σ = j(2)(x ◦ σ) = un ·

(
αξ + 1

2βξ2
)

+ 1
2 u̇n · (αξ + 1

2βξ2)2

= unαξ + 1
2(unβ + u̇nα2) ξ2 mod o(ξ2). (A.1)

Consider an ε-shift σε(ξ) of the transformation σ of the independent variable ξ in the local curve

expression xn(ξ). This shift is presented in J̃2
0(R, R)0 by some αε = ∂σε

∂ξ
(0) and βε = ∂2σε

∂ξ2
(0).

It evokes a corresponding flow {un
ε , u̇n

ε } ∈ T 2M induced by the action (A.1):

un
ε = αεu

n, u̇n
ε = βεu

n + αε
2u̇n.

The generator of this flow is:

un dαε

dε

∣∣∣∣
ε=0

∂

∂un
+
(

dβε

dε
un + 2αε

dαε

dε
u̇n

)∣∣∣∣
ε=0

∂

∂u̇n
. (A.2)

Now it suffices to limit ourselves to the shift σε(ξ) of the form σε(ξ) = ξ + ετ(ξ). Then the
generator (A.2) reads:

un dτ

dξ
(0)

∂

∂un
+
(

un d2τ

dξ2
(0) + 2u̇n dτ

dξ
(0)
)

∂

∂u̇n
.

Taking τ(ξ) = ξ we obtain the first fundamental field ζ1 in (2.1). Choosing τ(ξ) = 1
2ξ2 we

obtain the second fundamental field ζ2 in (2.1).
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A.2 The inverse variational problem: loose comments

The system of equations (2.7) along with the specific guise (2.6) of the Euler–Poisson equation
arises as the general solution of the so-called inverse variational problem in the calculus of
variations. This problem has been attacked by numerous authors from varying points of view
based on different approaches. Roughly speaking, the problem consists in finding out the
criterion that for an a priori given differential equation there locally exists a Lagrange function,
from which this equation follows by the variational procedure, applied to the corresponding
action functional. As far as the act of the variation of the functional may be expressed in the
form of some operator δ action on the Lagrange function L in such a way that E = δL be
a well-defined geometric object, represented in local coordinates by means of well-known system
of the Euler–Poisson expressions En, it is tempting to give such a definition of δ, wherewith the
cohomology complex property δ2 should hold. The conditions (2.7) express the fact that the
differential form Endxn is closed with respect to δ. It is not our intention in this paper to discuss
further the ways of defining the operator δ. Along with the sources [10, 11] we wish to show the
interested reader to the book by Olga Krupková [18] with the plentitude of references therein.
However, our explanation here was based on the approach of Tulczyjew [19].

A.3 Simplifications of exterior products

In two dimensions some vector and tensor skew-symmetric expressions simplify drastically.
Let an, bn denote arbitrary vectors and let Γl

mn denote for a moment an arbitrary three-index
quantity. The following two simplifications keep true if the underlying (pseudo)-Riemannian
manifold is two-dimensional:

gmnamanεlkb
l − gmnambnεlka

l + akεmnambn = 0, (A.3)

εmnambnΓl
lk − εmnΓm

lka
lbn + εmnΓm

lka
nbl = 0. (A.4)

The proof consists in the ingenuous calculation.

A.4 Formulae from (pseudo)-Riemannian geometry

Here we list some well-known relations, involving Christoffel symbols, curvature tensor, and the
covariant derivative. The latter will be denoted by the prime superscript, while to denote the
ordinary derivative the dot will be used, e.g. un = ẋn, u̇n = ẍn, etc.

a′ n = ȧn + Γn
lmamul, a′n = ȧn − Γm

lnamul, (A.5)
∂gmn

∂xk
= gmlΓl

kn + gnlΓl
km, (A.6)

∂

∂xn

√
|g| =

√
|g|Γl

ln, where g = det[gnm], (A.7)(
1

‖u‖3

)′

= −3
u·u′

‖u‖5 , (A.8)

Rkmn
l =

∂Γl
kn

∂xm
− ∂Γl

mn

∂xk
+ Γl

mqΓq
kn − Γl

kqΓq
mn. (A.9)

A.5 Characterization of geodesic circles

It is not difficult to check that the condition dk
dξ = 0 in two dimensions is equal to the equa-

tion (1.1) on the shell gmnumun = 1. More precisely, at the constraint manifold

u · u = 1, (A.10)
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u · u′ = 0, (A.11)
u′ · u′ + u · u′′ = 0, (A.12)

the differential equation

k2 ′ ≡ ±u′ ·u′′ = 0 (A.13)

is equivalent to the differential equation of the geodesic circles

u′′ + (u′ ·u′) u = 0. (A.14)

In fact, from (A.13) and (A.12) one solves for u′′:

u′′l =
εmlu

′m

εmnu′mun
u′ ·u′,

and then implementing (A.3) with the help of (A.10) and (A.11) obtains (A.14). Conversely,
the (A.13) in nothing but the (A.14) contracted with u′ at the constraint manifold (A.11).
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