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Abstract. Let L be the basic (level one vacuum) representation of the affine Kac–Moody
Lie algebra ĝ. The m-th space Fm of the PBW filtration on L is a linear span of vectors
of the form x1 · · ·xlv0, where l ≤ m, xi ∈ ĝ and v0 is a highest weight vector of L. In this
paper we give two descriptions of the associated graded space Lgr with respect to the PBW
filtration. The “top-down” description deals with a structure of Lgr as a representation
of the abelianized algebra of generating operators. We prove that the ideal of relations is
generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest
root θ. The “bottom-up” description deals with the structure of Lgr as a representation
of the current algebra g ⊗ C[t]. We prove that each quotient Fm/Fm−1 can be filtered by
graded deformations of the tensor products of m copies of g.
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1 Introduction

Let g be a finite-dimensional simple Lie algebra, ĝ be the corresponding affine Kac–Moody Lie
algebra (see [21, 25]). Let L be the basic representation of ĝ, i.e. an irreducible level one module
with a highest weight vector v0 satisfying condition (g⊗ C[t]) · v0 = 0. The PBW filtration F•
on the space L is defined as follows:

F0 = Cv0, Fm+1 = Fm + span{x · w : x ∈ ĝ, w ∈ Fm}.

This filtration was introduced in [13] as a tool of study of vertex operators acting on the space
of Virasoro minimal models (see [8]). In this paper we study the associated graded space
Lgr = F0 ⊕ F1/F0 ⊕ · · · . We describe the space Lgr from two different points of view: via
“top-down” and “bottom-up” operators (the terminology of [24]).

On one hand, the space Lgr is a module over the Abelian Lie algebra gab⊗t−1C[t−1], where gab

is an Abelian Lie algebra whose underlying vector space is g. The module structure is induced
from the action of the algebra of generating “top-down” operators g⊗ t−1C[t−1] on L. Thus Lgr

can be identified with a polynomial ring on the space gab⊗ t−1C[t−1] modulo certain ideal. Our
first goal is to describe this ideal explicitly.

On the other hand, all spaces Fm are stable with respect to the action of the subalgebra of
annihilating operators g⊗C[t] (the “bottom-up” operators). This gives g⊗C[t] module structure

?This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. The full collection
is available at http://www.emis.de/journals/SIGMA/Kac-Moody algebras.html
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on each quotient Fm/Fm−1. Our second goal is to study these modules. We briefly formulate
our results below.

For x ∈ g let x(z) =
∑

i<0(x ⊗ ti)z−i be a generating function of the elements x ⊗ ti ∈ ĝ,
i < 0. These series are also called fields. They play a crucial role in the theory of vertex operator
algebras (see [15, 22, 3]). We will need the field which corresponds to the highest root θ of g.
Namely, let eθ ∈ g be a highest weight vector in the adjoint representation. It is well known
(see for instance [3]) that the coefficients of eθ(z)2 vanish on L. It follows immediately that the
same relation holds on Lgr. We note also that the Lie algebra g ' g⊗ 1 acts naturally on Lgr.
The following theorem is one of the central results of our paper.

Theorem 1. Lgr is isomorphic to the quotient of the universal enveloping algebra U(gab ⊗
t−1C[t−1]) by the ideal I, which is the minimal g ⊗ 1 invariant ideal containing all coefficients
of the series eθ(z)2.

This proves the level one case of the conjecture from [10]. We note that for g = sl2 this
theorem was proved in [13]. The generalization of this theorem for higher levels and g = sl2 is
conjectured in [10].

In order to prove this theorem and to make a connection with the “bottom-up” description
we study the intersection of the PBW filtration with certain Demazure modules inside L. Recall
(see [7]) that by definition a Demazure module D(λ) ↪→ L is generated by extremal vector of
the weight λ with an action of the universal enveloping algebra of the Borel subalgebra of ĝ.
We will only need the Demazure modules D(Nθ). These modules are invariant with respect
to the current algebra g ⊗ C[t] and provide a filtration on L by finite-dimensional spaces:
D(θ) ↪→ D(2θ) ↪→ · · · = L (see [18, 19]; some special cases are also contained in [12, 23]). Let
Fm(N) = D(Nθ) ∩ Fm be an intersection of the Demazure module with the m-th space of the
PBW filtration. This gives a filtration on D(Nθ). In order to describe the filtration F•(N) we
use a notion of the fusion product of g⊗C[t] modules (see [17, 11]) and the Fourier–Littelmann
results [19].

We recall that there exist two versions of the fusion procedure for modules over the current
algebras. The first version constructs a graded g⊗C[t] module V1∗· · ·∗VN starting from the tensor
product of cyclic g⊗C[t] modules Vi. The other version also produces a graded g⊗C[t] module
V1∗∗ · · ·∗∗VN , but in this case all Vi are cyclic g modules. (We note that second version is a special
case of the first one). The fusion modules provide a useful tool for the study of the representation
theory of current and affine algebras (see [1, 2, 4, 16, 2, 23, 9, 10, 14, 19]). In particular,
Fourier and Littelmann proved that there exists an isomorphism of g⊗ C[t] modules D(Nθ) '
D(θ) ∗ · · · ∗D(θ) (N times). Using this theorem and the ∗∗-version of the fusion procedure, we
endow the space D(Nθ) with a structure of the representation of the toroidal current algebra
g ⊗ C[t, u] (see [20, 26] and references therein for some details on the representation theory of
the toroidal algebras). This allows to prove our second main theorem:

Theorem 2. The g ⊗ C[t] module Fm(N)/Fm−1(N) can be filtered by
(
N
m

)
copies of the

m-th fusion power of the adjoint representation of g. In particular, dim Fm(N)/Fm−1(N) =(
N
m

)
(dim g)m.

The paper is organized as follows. In Section 2 we give the definition of the PBW filtration
and of the induced filtration on Demazure modules. In Section 3 we study tensor products
of cyclic g ⊗ C[t] modules endowed with a structure of representations of toroidal algebra.
In particular, we show that fusion product D(1)∗∗N is well defined. In Section 4 the results
of Section 3 are applied to the module D(N). We prove a graded version of the inequality
dim Fm(N)/Fm−1(N) ≥

(
N
m

)
(dim g)m. In Section 5 the functional realization of the dual space

(Lgr)∗ is given. In Section 6 we combine all results of the previous sections and prove Theorems 1
and 2. We finish the paper with a list of the main notations.
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2 The PBW filtration

In this section we recall the definition and basic properties of the PBW filtration (see [13]).
Let g be a simple Lie algebra, ĝ be the corresponding affine Kac–Moody Lie algebra:

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ Cd.

Here K is a central element, d is a degree element ([d, x⊗ ti] = −ix⊗ ti) and

[x⊗ ti, y ⊗ tj ] = [x, y]⊗ ti+j + iδi+j,0(x, y)K,

x, y ∈ g, (·, ·) is a Killing form. Let L be the basic representation of the affine Lie algebra, i.e.
level one highest weight irreducible module with a highest weight vector v0 satisfying

(g⊗ C[t]) · v0 = 0, Kv0 = v0, dv0 = 0, U
(
g⊗ t−1C[t−1]

)
· v0 = L.

The operator d ∈ ĝ defines a graded character of any subspace V ↪→ L by the formula

chqV =
∑
n≥0

qn dim{v ∈ V : dv = nv}.

For x ∈ g we introduce a generating function x(z) =
∑

i>0(x ⊗ t−i)zi of the elements x ⊗ ti,
i < 0. We will mainly deal with the function eθ(z), where θ is the highest weight of g and eθ ∈ g

is a highest weight element. All coefficients∑
i+j=n
i,j≤−1

(eθ ⊗ ti)(eθ ⊗ tj)

of the square of the series eθ(z) are known to vanish on L (this follows from the vertex operator
realization of L [15, Theorem A]). Equivalently, eθ(z)2 = 0 on L.

In what follows we will need a certain embedding of the basic ŝl2 module into L. Namely,
let slθ2 be a Lie algebra spanned by a sl2-triple eθ, fθ and hθ, where eθ and fθ are highest
and lowest weight vectors in the adjoint representation of g. Then the restriction map defines
a structure of ŝlθ2 module on L. In particular, the space U(ŝlθ2) · v0 is isomorphic to the basic
representation of ŝl2, since the defining relations (eθ ⊗ t−1)2v0 = 0 and (slθ2 ⊗ 1)v0 = 0 are
satisfied (see [25, Lemma 2.1.7]).

We now define the PBW filtration F• on L. Namely, let

F0 = Cv0, Fm+1 = Fm + span{(x⊗ t−i)w, x ∈ g, i > 0, w ∈ Fm}.

Then F• is an increasing filtration converging to L. We denote the associated graded space
by Lgr:

Lgr =
⊕
m≥0

Lgr
m, Lgr

m = grmF• = Fm/Fm−1.

In what follows we denote by gab an Abelian Lie algebra with the underlying vector space
isomorphic to g. We endow gab with a structure of g module via the adjoint action of g on itself.

Lemma 1. The action of g ⊗ C[t] on L induces an action of the same algebra on Lgr. The
action of g⊗ t−1C[t−1] on L induces an action of the algebra gab ⊗ t−1C[t−1] on Lgr.
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Proof. All spaces Fm are invariant with respect to the action of g ⊗ C[t], since the condition
(g ⊗ C[t]) · v0 = 0 is satisfied. Hence we obtain an induced action on the quotient spaces
Fm/Fm−1.

Operators x ⊗ ti, i < 0 do not preserve Fm but map it to Fm+1. Therefore, each element
x ⊗ ti, i < 0 produce an operator acting from Lgr

m to Lgr
m+1. An important property of these

operators on Lgr is that they mutually commute, since the composition (x ⊗ ti)(y ⊗ tj) acts
from Fm to Fm+2 but the commutator [x⊗ ti, y ⊗ tj ] = [x, y]⊗ ti+j maps Fm to Fm+1. Lemma
is proved. �

The goal of our paper is to describe the structure of Lgr as a representation of g ⊗ C[t] and
of gab ⊗ t−1C[t−1]. It turns out that these two structures are closely related.

Lemma 2. Let I ↪→ U(gab ⊗ t−1C[t−1]) be the minimal g-invariant ideal containing all coeffi-
cients of the series eθ(z)2. Then there exists a surjective homomorphism

U
(
gab ⊗ t−1C[t−1]

)
/I → Lgr (1)

of gab ⊗ t−1C[t−1] modules mapping 1 to v0.

Proof. Follows from the relation eθ(z)2v0 = 0. �

One of our goals is to prove that the homomorphism (1) is an isomorphism.
Recall (see [18]) that L is filtered by finite-dimensional Demazure modules [7]. A Demazure

module D is generated by an extremal vector with the action of the algebra of generating
operators. We will only need special class of Demazure modules. Namely, for N ≥ 0 let vN ∈ L
be the vector of weight Nθ defined by

vN =
(
eθ ⊗ t−N

)N
v0.

We recall that Nθ is an extremal weight for L and thus vN spans weight Nθ subspace of L.
Let D(N) ↪→ L be the Demazure module generated by vector vN . Thus D(N) is cyclic g⊗C[t]
module with cyclic vector vN . It is known (see [25, 18]) that these modules are embedded into
each other and the limit coincides with L:

D(1) ↪→ D(2) ↪→ · · · = L.

We introduce an induced PBW filtration on D(N):

F0(N) ↪→ F1(N) ↪→ · · · = D(N), Fm(N) = D(N) ∩ Fm. (2)

Obviously, each space Fm(N) is g⊗ C[t] invariant.

Lemma 3. FN (N) = D(N), but FN−1(N) 6= D(N).

Proof. First equality holds since (eθ⊗t−N )Nv0 = vN and D(N) is cyclic. In addition vN /∈ FN−1

because all weights of Fm (as a representation of g ' g⊗ 1) are less than or equal to mθ. �

Consider the associated graded object

grF (N) =
∞⊕

m=0

grmF (N), grmF (N) = Fm(N)/Fm−1(N).

We note that each space grmF (N) has a natural structure of g⊗ C[t] module.
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3 tN -f iltration

In this section we describe the filtration (2) using the generalization of the fusion product of
g ⊗ C[t] modules from [17] and a theorem of [19]. We first recall the definition of the fusion
product of g⊗ C[t] modules.

Let V be a g⊗C[t] module, c be a complex number. We denote by V (c) a g⊗C[t] module which
coincides with V as a vector space and the action is twisted by the Lie algebra homomorphism

φ(c) : g⊗ C[t] → g⊗ C[t], x⊗ tk 7→ x⊗ (t + c)k.

Let V1, . . . , VN be cyclic representations of the current algebra g ⊗ C[t] with cyclic vectors
v1, . . . , vN . Let c1, . . . , cN be a set of pairwise distinct complex numbers. The fusion product
V1(c1) ∗ · · · ∗ VN (cN ) is a graded deformation of the usual tensor product V1(c1)⊗ · · · ⊗ VN (cN ).
More precisely, let U(g⊗C[t])s be a natural grading on the universal enveloping algebra coming
from the counting of the t degree. Because of the condition ci 6= cj for i 6= j, the tensor product⊗N

i=1 Vi(ci) is a cyclic U(g ⊗ C[t]) module with a cyclic vector ⊗N
i=1vi. Therefore, the grading

on U(g⊗ C[t]) induces an increasing fusion filtration

U(g⊗ C[t])≤s · (v1 ⊗ · · · ⊗ vN ) (3)

on the tensor product.

Definition 1. The fusion product V1(c1) ∗ · · · ∗ VN (cN ) of g⊗ C[t] modules Vi is an associated
graded g ⊗ C[t] module with respect to the filtration (3) on the tensor product V1(c1) ⊗ · · · ⊗
VN (cN ). We denote the m-th graded component by grm(V1(c1) ∗ · · · ∗ VN (cN )).

We note that in many special cases the g⊗C[t] module structure of the fusion product does
not depend on the parameters ci (see for example [1, 5, 11, 19, 16]). We then omit the parameters
ci and denote the corresponding fusion product simply by V1 ∗ · · · ∗ VN .

In what follows we will need a special but important case of the procedure described above.
Namely, let Vi be cyclic g modules. One can extend the g module structure to the g ⊗ C[t]
module structure by letting g ⊗ tC[t] to act by zero. We denote the corresponding g ⊗ C[t]
modules by V i.

Definition 2. Let V1, . . . , VN be a set of cyclic g modules. Then a g ⊗ C[t] module V1(c1) ∗
∗ · · · ∗ ∗VN (cN ) is defined by the formula:

V1(c1) ∗ ∗ · · · ∗ ∗VN (cN ) = V 1(c1) ∗ · · · ∗ V N (cN ).

We denote the m-th graded component by grm(V1(c1) ∗ ∗ · · · ∗ ∗VN (cN )).

Remark 1. The fusion procedure described in Definition 2 can be reformulated as follows. One
starts with a tensor product of evaluation g⊗C[t] modules Vi(ci), where x⊗ tk acts on Vi by ck

i x
(we evaluate t at the point ci). Then one constructs the fusion filtration and associated graded
module (according to Definition 1).

Remark 2. Let us stress the main difference between Definitions 1 and 2. Definition 1 gets as
an input a set of cyclic representations of the current algebra g⊗ C[t] and as a result produces
a t-graded g⊗C[t] module. The input of Definition 2 is a set of cyclic g modules and an output
is again a t-graded g⊗ C[t] module.

We now recall a theorem from [19] which uses the fusion procedure to construct the Demazure
module D(N) starting from D(1).
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Theorem 3 ([19]). The N -th fusion power D(1)∗N is independent on the evaluation parame-
ters ci. The g⊗ C[t] modules D(1)∗N and D(N) are isomorphic.

We recall that as a g module D(1) is isomorphic to the direct sum of trivial and adjoint
representations, D(1) ' C⊕ g. The trivial representation is annihilated by g⊗C[t], the adjoint
representation is annihilated by g⊗ t2C[t] and g⊗ C[t] maps g to C.

Our idea is to combine the theorem above and Definition 2 with g being the current algebra
g ⊗ C[u] (see also [4], where Definition 2 is used in affine settings). Definition 2 works for
arbitrary g and produces a representation of an algebra with an additional current variable. In
particular, starting from the g ⊗ C[u] modules Vi = D(1) and an N tuple of pairwise distinct
complex numbers c1, . . . , cN one gets a new bi-graded g⊗C[t, u] module. The resulting module
can be obtained from the Demazure module D(N) by a rather simple procedure which we are
going to describe now.

Let V1, . . . , VN be cyclic representations of the algebra g⊗C[t]/〈t2〉. Hence V1(c1)∗· · ·∗VN (cN )
is a cyclic g⊗C[t]/〈t2N 〉 module. We consider a decreasing filtration U(g⊗C[t])j on the universal
enveloping algebra defined by

U(g⊗ C[t])0 = U(g⊗ C[t]), U(g⊗ C[t])j+1 =
(
g⊗ tNC[t]

)
U(g⊗ C[t])j . (4)

This filtration induces a decreasing filtration Gj on the fusion product V1(c1) ∗ · · · ∗ VN (cN )
(since it is cyclic U(g ⊗ C[t]) module). G• will be also referred to as a tN -filtration. Consider
the associated graded space

grG• =
N⊕

j=0

grjG•, grjG• = Gj/Gj+1. (5)

Since each space Gj is g ⊗ C[t] invariant one gets a structure of g ⊗ C[t]/〈tN 〉 module on each
space Gj/Gj+1. In addition an element from g ⊗ tNC[t]/〈t2N 〉 produces a degree 1 operator
on (5) mapping grjG• to grj+1G•. We thus obtain a structure of g ⊗ C[t, u]/〈tN , u2〉 module
on (5), where g ⊗ uC[t] denotes an algebra of degree one operators on grG• coming from the
action of g⊗ tNC[t]/〈t2N 〉.

On the other hand let us consider the modules Vi as representations of the Lie algebra
g ⊗ C[u]/〈u2〉 (simply replacing t by u). We denote these modules as V u

i . Then the bi-graded
tensor product V u

1 (c1)∗∗ · · · ∗ ∗V u
N (cN ) is a representation of the Lie algebra g⊗C[t, u]/〈tN , u2〉.

Proposition 1. We have an isomorphism of g⊗ C[t, u]/〈tN , u2〉 modules

grG• ' V u
1 (c1) ∗ ∗ · · · ∗ ∗V u

N (cN ). (6)

Proof. The idea of the proof is as follows. We start with the tensor product V1 ⊗ · · · ⊗ VN

and apply the fusion filtration. Afterwards we apply the tN -filtration G•. Combining these
operations with certain changes of basis of current algebra we arrive at the definition of the
bi-graded module V u

1 ∗ ∗ · · · ∗ ∗V u
N . We give details below.

For an element x⊗ti ∈ g⊗C[t] let (x⊗ti)(j) be the operator on the tensor product V1⊗· · ·⊗VN

defined by

(x⊗ ti)(j) = Id⊗j−1 ⊗ (x⊗ ti)⊗ Id⊗N−j ,

i.e. (x⊗ ti)(j) acts as x⊗ ti on Vj and as an identity operator on the other factors. In order to
construct the fusion product one starts with the operators

A(x⊗ ti) =
N∑

j=1

(
x⊗ (t + cj)i

)(j)
, (7)
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where cj are pairwise distinct numbers. These operators define an action of the algebra g⊗C[t]
on the tensor product V1(c1)⊗ · · · ⊗ VN (cN ). Since x⊗ ti with i > 1 vanish on Vj we obtain

A(x⊗ ti) =
N∑

j=1

ci
j(x⊗ 1)(j) +

N∑
j=1

ici−1
j (x⊗ t)(j).

The next step is to pass to the associated graded module with respect to the fusion filtration.
By definition, operators of the form

A
(
x⊗ tk

)
+ linear combination of A

(
x⊗ tl

)
, l < k (8)

act on the associated graded module in the same way as A(x⊗ tk) (the lower degree term vanish
after passing to the associated graded space). We are going to fix special linear changes in (8)
for N ≤ k < 2N which make the expressions for A(x⊗ tk) simpler.

Let α0, α1, . . . , αN−1 be numbers such that for all 1 ≤ j ≤ N

cN
j +

N−1∑
i=0

αic
i
j = 0.

We state that

A
(
x⊗ tN+s

)
+

N−1∑
i=0

αiA
(
x⊗ ts+i

)
=

N∑
j=1

cs
j(x⊗ t)(j)

∏
k 6=j

(cj − ck) (9)

for all 0 ≤ s ≤ N − 1. Let

f(x) = xN + αN−1x
N−1 + · · ·+ α0.

Then f(x) =
∏N

k=1(x− ck). Therefore, for the derivative cs
jf

′(cj) one gets

cs
jf

′(cj) = NcN+s−1
j +

N−1∑
i=0

iαic
i+s−1
j = cs

j

∏
k 6=j

(cj − ck).

This proves (9).
Using formula (9), we replace operators A(x ⊗ ti), 0 ≤ i < 2N by operators B(x ⊗ ti) as

follows

B
(
x⊗ ti

)
=

N∑
j=1

ci
j(x⊗ 1)(j) +

N∑
j=1

ici−1
j (x⊗ t)(j), 0 ≤ i < N, (10)

B
(
x⊗ tN+i

)
=

N∑
i=1

cs
i (x⊗ t)(i)

∏
k 6=j

(cj − ck), 0 ≤ i < N,

thus performing the linear change (8). So we redefine half of the operators A(x⊗ ti) and leave
the other half unchanged.

In order to construct the left hand side of (6) one first applies the fusion filtration to the
algebra of operators B(x ⊗ ti) and afterwards proceeds with the tN -filtration. The last step
means that the subtraction of a linear combination of the operators B(x ⊗ tN+i), 0 ≤ i < N
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from B(x ⊗ ti), 0 ≤ i < N does not change the structure of the resulting module. Redefining
the operators (10) we arrive at the following operators:

C
(
x⊗ ti

)
=

N∑
j=1

ci
j(x⊗ 1)(j), 0 ≤ i < N,

C
(
x⊗ tN+i

)
=

N∑
i=j

ci
j(x⊗ t)(j), 0 ≤ i < N.

Note that we can remove constants
∏

k 6=j(cj − ck) from B(x⊗ tN+i) since this procedure corre-
sponds simply to rescaling the variable t in each Vi.

Summarizing all the formulas above we arrive at the following two steps construction of the
left hand side of (6):

• apply the fusion procedure to the operators C(x⊗ ti), 0 ≤ i < 2N ,

• attach a u-degree 1 to each of the operators C(x⊗ tN+i), 0 ≤ i < 0.

In order to construct the right hand side of (6) one uses the same procedure with C(x⊗ tN+i)
being operators which correspond to x ⊗ uti (see (4) and (5)). Thus we have shown that the
associated graded to the fusion product with respect to the tN -filtration is isomorphic to the
module V1 ∗ ∗ · · · ∗ ∗VN . Proposition is proved. �

Corollary 1. The fusion product D(1) ∗ ∗ · · · ∗ ∗D(1) does not depend on the evaluation para-
meters.

Corollary 2. The fusion product of the adjoint representations

g(c1) ∗ ∗ · · · ∗ ∗g(cN )

is independent of the parameters c1, . . . , cN .

Proof. By definition, the zeroth graded component with respect to the t grading of the module

D(1)(c1) ∗ ∗ · · · ∗ ∗D(1)(cN )

is isomorphic to the fusion product g(c1) ∗ ∗ · · · ∗ ∗g(cN ). From the Proposition above we obtain
an isomorphism

g(c1) ∗ ∗ · · · ∗ ∗g(cn) ' D(N)/(g⊗ tNC[t])D(N)

for any c1, . . . , cn. Thus the left hand side is independent of ci. �

We finish this section introducing an “energy” operator d̄ on the fusion product. The opera-
tor d̄ acts by a constant m on the graded component

grm(V1(c1) ∗ · · · ∗ VN (cN )).

The operator d̄ defines a graded character of V1(c1)∗· · ·∗Vn(cn) by the standard formula formula

chqV1(c1) ∗ · · · ∗ Vn(cn) =
∑
n≥0

qn dim{v : d̄v = nv}.

An analogous formula defines a character of V1(c1) ∗ ∗ · · · ∗ ∗Vn(cn). We note that this grading
has nothing to do with the Cartan grading coming from the action of the Cartan subalgebra.
We do not consider the latter grading in this paper.
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Remark 3. Let Vi ' D(1) for all i. Then the fusion module is independent on the evaluation
parameters and D(1)∗N is isomorphic to the Demazure module D(N) (see [19]). By the very
definition we have an embedding D(N) ↪→ L. Thus both operators d and d̄ are acting on D(N),
satisfying the relations

[d, x⊗ ti] = −ix⊗ ti, [d̄, x⊗ ti] = ix⊗ ti.

Since dvN = N2vN and d̄vN = 0 we have a simple identity d̄ = N2 − d.

4 Demazure modules

In this section we study the fusion filtration on the tensor product D(1)⊗N and the induced
PBW filtration on the Demazure modules D(N). We also derive some connections between
these filtrations.

Let Du(1) be the g ⊗ C[u]/〈u2〉 module obtained from D(1) by substituting u instead of t.
In particular, (Du(1))∗∗N is a (t, u) bi-graded representation of the algebra g⊗ C[t, u]/〈tN , u2〉.
Here t-grading is exactly the fusion grading grjD

u(1)∗ · · · ∗Du(1) and the u-grading comes from
the grading on Du(1), which assigns degree zero to g and degree one to Cv0. We consider the
decomposition

(Du(1))∗∗N =
N⊕

m=0

W (m)

into the graded components with respect to the u-grading. (The u-grading is bounded from above
by N since the u-grading in each of D(1) could be either 0 or 1). Note that each space W (m) is
a representation of g⊗ C[t]. We want to show that W (m) can be filtered by certain number of
copies of the fusion product g∗∗N−m. The precise statement is given in the following proposition.

Proposition 2. Let Du(1)∗∗N be a bi-graded tensor product of N copies of g⊗C[u]-module D(1).
Then

• For any 0 ≤ m ≤ N the g ⊗ C[t] module W (m) can be filtered by
(
N
m

)
copies of the

g⊗ C[t]-module g∗∗N−m.

• The cyclic vectors of the modules g∗∗N−m above are the images of the vectors(
fθ ⊗ uti1

)
· · ·
(
fθ ⊗ utim

)
vN , 0 ≤ i1 ≤ · · · ≤ im ≤ N −m. (11)

Remark 4. We first give a non rigorous, but conceptual explanation of the statement of the
proposition above. Recall that Du(1) is isomorphic to g ⊕ C as a g module. Let v1, v0 ∈ D(1)
be highest weight vectors of g and C respectively. Then (fθ ⊗ u)v1 = v0 and (fθ ⊗ u)2v0 = 0.
Therefore, after making the fusion Du(1)∗∗N , the tensor product of N copies of 2-dimensional
vector space span{v0, v1} will be deformed into the N -fold fusion product of two-dimensional
representations of the algebra C[fθ]. The set of vectors (11) represents a basis of this fusion
product (see [6, 11]). Hence Du(1)∗N is equal to the U(g ⊗ C[t]) span of the vectors of the
form (11). We now want to describe the space U(g ⊗ C[t]) · wm, where wm is of the form (11)
with exactly m factors. Note that wm is a linear combination of the vectors of the form

vi1 ⊗ · · · ⊗ viN ,

where iα equal 0 or 1 and the number of α such that iα = 0 is equal to m. This means that the
space U(g⊗C[t]) ·wm is embedded into the direct sum of

(
N
m

)
copies of the tensor product g⊗m.
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Hence it is natural to expect that after passing to the associated graded object with respect to
the fusion filtration one arrives at the fusion product g∗∗m. This is not exactly true. In order
to make the statement precise one additional filtration is needed (that is the reason why W (m)
is not the direct sum of the fusion products, but rather can be filtered by these modules).

We now give the proof of Proposition 2.

Proof. As a starting point we note the isomorphism of g⊗ C[t]-modules

W (0) ' g∗∗N .

In fact, D(1) ' g ⊕ Cv0 with cyclic vector being the highest weight vector of g. The algebra
g⊗ u maps C to zero and g to C. In particular,

(fθ ⊗ u) · v1 = v0.

Hence if we do not apply operators with positive powers of u (i.e. we consider the space W (0))
we arrive at the usual fusion product of N copies of g.

We now introduce a decreasing filtration W j(m) such that the associated graded object is
isomorphic to the direct sum of

(
N
m

)
copies of g∗∗m. Let

wi1,...,im =
(
fθ ⊗ uti1

)
. . .
(
fθ ⊗ utim

)
vN , 0 ≤ i1 ≤ · · · ≤ im ≤ N −m.

We set

Wn(m) = U(g⊗ C[t]) · span{wi1,...,im : i1 + · · ·+ im ≥ n}.

In particular, W 0(m) = W (m) and each space Wn(m) is g ⊗ C[t] invariant. We state that the
associated graded space

W 0(m)/W 1(m)⊕W 1(m)/W 2(m)⊕ · · · (12)

is isomorphic to the direct sum of
(
N
m

)
copies of the modules g∗∗N−m. Moreover the highest

weight vectors of these modules are exactly the images of wi1,...,im . We prove this statement for
m = 1. The proof for other m is very similar.

For m = 1 we have

wi = fθ ⊗ uti =
N∑

j=1

ci
jv
⊗j−1
1 ⊗ v0 ⊗ v⊗N−j

1 , i = 0, . . . , N − 1.

We want to show that

W i(1)/W i+1(1) ' g∗∗N−1, W i(1) = U(g⊗ C[t]) · span{wi, . . . , wN−1}.

Let αi,j , 1 ≤ i, j ≤ N be some numbers. Denote

W̃ i(1) = U(g⊗ C[t]) · span


N∑

j=1

αi+1,jwi, . . . ,

N∑
j=1

αN,jwN−1

 .

We state that

W i(1)/W i+1(1) ' W̃ i(1)/W̃ i+1(1) (13)
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as g⊗C[t] modules. In fact, adding to wi a linear combination of wj with j < i does not change
the g⊗C[t] module structure because of the fusion filtration. Because of the filtration (12), this
is still true if one adds a linear combination of wj with j > i. Thus we conclude that we can
replace each vector wi by an arbitrary linear combination. In particular, there exist numbers αi,j

such that

N∑
j=1

αi−1,jwi = v⊗i
0 ⊗ v1 ⊗ v⊗N−1−i

0 .

Since v1 is a highest weight vector of the adjoint representation of g and v0 spans the trivial
representation, we arrive at the fact that

W̃ i(1)/W̃ i+1(1) ' g∗∗N−1.

Because of the isomorphism (13), the m = 1 case of the proposition is proved. �

We are now going to connect the filtrations G•(N) and the induced PBW filtration F•(N)
on the Demazure modules D(N). We use Proposition 1 for Vi = D(1).

Lemma 4. Gm is a subspace of FN−m(N).

Proof. We first note that for the cyclic vector vN ∈ D(N) we have

vN =
(
eθ ⊗ t−N

)N
v0. (14)

Therefore, G0 = FN (N) = D(N) and our Lemma is true for m = 0.
In general, we need to prove that(

x1 ⊗ tN+i1
)
· · ·
(
xm ⊗ tN+im

)
v ∈ FN−m (15)

for any v ∈ D(N) and x1, . . . , xm ∈ g, i1, . . . , im ≥ 0. Since v ∈ D(N) there exists an element
r ∈ U(g⊗C[t]) such that v = rvN . Because of (14), the inclusion (15) follows from the following
statement:(

x1 ⊗ tN+i1
)
· · ·
(
xm ⊗ tN+im

)(
y1 ⊗ tj1

)
· · ·
(
ym ⊗ tjm

)(
eθ ⊗ t−N

)N
v0 ∈ FN−m (16)

for arbitrary xα, yβ ∈ g and iα, jβ, n ≥ 0. Since (g⊗ C[t]) · v0 = 0 the expression(
y1 ⊗ tj1

)
· · ·
(
yn ⊗ tjn

)(
eθ ⊗ t−N

)N
v0

is equal to a linear combination of the vectors of the form(
z1 ⊗ t−N+l1

)
· · ·
(
zN ⊗ t−N+lN

)
v0

where zi ∈ g and li ≥ 0. One can easily see that because of the condition (g ⊗ C[t])v0 = 0 the
expression of the form(

x⊗ tN+i
)(

z1 ⊗ t−N+l1
)
· · ·
(
zN ⊗ t−N+lN

)
v0

can be rewritten as a linear combination of the monomials of the form(
z1 ⊗ t−N+l1

)
· · ·
(
zN−1 ⊗ t−N+1+lN−1

)
v0.

Iterating this procedure we arrive at (16). This proves (15) and hence our lemma is proved. �
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Recall a notation for q-binomial coefficients(
n

m

)
q

=
(q)n

(q)m(q)n−m
, (q)a = (1− q) · · · (1− qa).

For two q series f(q) =
∑

fnqn and g(q) =
∑

gnqn we write f ≥ g if fn ≥ gn for all n.

Corollary 3. The following character inequality holds:

chqgrmF•(N) ≥ qm2

(
N

m

)
q

chq−1g∗∗m. (17)

Proof. Because of the Lemma above, it suffices to show that

chqG
m/Gm+1 = q(N−m)2

(
N

m

)
q

chq−1g∗∗N−m.

Note that dvN = N2vN . Therefore, the graded character of the space of cyclic vectors wi1,...,im

from Proposition 2 (where the q-degree of u is fixed to be equal to N according to Proposi-

tion 1) is given by qm2

(
N

m

)
q

. Multiplying by the d̄ character of g∗∗N−m with respect to d̄ (see

Remark 3), we arrive at our Corollary. �

Corollary 4. The following character inequality holds:

chqgrmF• ≥ qm2 1
(q)m

chq−1g∗∗m. (18)

Proof. Follows from limit formulas

lim
N→∞

D(N) = L, lim
N→∞

(
N

m

)
q

=
1

(q)m
. �

Remark 5. In the next section we prove that (18) is an equality. In Section 6 we prove that (17)
is also an equality.

5 Dual functional realization

We now consider the restricted dual space to the “expected” PBW filtered space Lgr. Let

Uab = C[gab ⊗ t−1C[t−1]]

be a space of polynomial functions on the space gab⊗ t−1C[t−1] (recall that gab is an Abelian Lie
algebra with the underlying vector space isomorphic to g). The algebra Uab is an abelinization
of the universal enveloping algebra U(g ⊗ t−1C[t−1]) of the Lie algebra of generating operators
(due to the PBW theorem). We note that g acts on the space gab ⊗ t−1C[t−1] via the adjoint
representation on gab.

Let I ∈ Uab be the minimal g invariant ideal, which contains all coefficients of eθ(z)2, i.e. all
elements of the form∑

1≤i≤n

(
eθ ⊗ t−i

)(
eθ ⊗ t−n−1+i

)
, n = 1, 2, . . . .

Denote

L′ = Uab/I.
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This space can be decomposed according to the number of variables in a monomial:

L′ =
∞⊕

m=0

L′m =
∞⊕

m=0

span
{
x1 ⊗ ti1 · · ·xm ⊗ tim , xi ∈ gab

}
.

The operator d ∈ ĝ induces a degree operator on L′. We denote this operator by the same
symbol. There exists a surjective homomorphism of gab ⊗ t−1C[t−1] modules L′ → Lgr (see
Lemma 2). Our goal is to show that L′ ' Lgr. Let (L′m)∗ be a restricted dual space:

(L′m)∗ =
⊕
n≥0

(L′m,n)∗, L′m,n = {v ∈ L′m : dv = nv}.

We construct the functional realization of L′m using currents

x(z) =
∑
i>0

(
x⊗ t−i

)
zi

for x ∈ g. Following [13] we consider a map

αm : (L′m)∗ → C[z1, . . . , zm]⊗ g⊗m, φ 7→ rφ

from the dual space (L′m)∗ to the space of polynomials in m variables with values in the m-th
tensor power of the space g. This map is given by the formula

〈rφ, x1 ⊗ · · · ⊗ xm〉 = φ(x1(z1) · · ·xm(zm)),

where brackets in the left hand side denote the product of non degenerate Killing forms on n
factors g. Our goal is to describe the image of αm. We first formulate the conditions on rφ,
which follow from the definition of L′ and then prove that these conditions determine the image
of αm. We prepare some notations first.

Consider the decomposition of the tensor square g⊗ g into the direct sum of g modules:

g⊗ g = V2θ ⊕
∧2

g⊕ S2g/V2θ. (19)

Here V2θ is a highest weight g-module with a highest weight 2θ embedded into S2g via the map

V2θ ' U(g) · (eθ ⊗ eθ) ↪→ S2g.

Lemma 5. For the module g ∗ ∗g we have

gr0(g ∗ ∗g) = V2θ, gr1(g ∗ ∗g) =
∧2

g, gr2(g ∗ ∗g) = S2g/V2θ

and all other graded components vanish.

Proof. We first show that grn(g ∗ ∗g) = 0 for n > 2. Let c1, c2 be evaluation constants which
appear in Definition 2 of the fusion product. Recall that g ∗ ∗g is independent of the evaluation
parameters. So we can set c1 = 1, c2 = 0. Then the second space of the fusion filtration is
given by

U(g) · (span{[x1, [x2, eθ]], x1, x2 ∈ g} ⊗ eθ) , (20)

where U(g) acts on the tensor product g⊗ g diagonally. But [fθ, [fθ, eθ]] = −2fθ and hence

span{[x1, [x2, eθ]], x1, x2 ∈ g} = g



14 E. Feigin

(since the left hand side is invariant with respect to the subalgebra of g of annihilating operators
and contains the lowest weight vector fθ of the adjoint representation). Therefore, (20) coincides
with g⊗ g.

We now compute three nontrivial graded components gr0(g ∗ ∗g), gr1(g ∗ ∗g) and gr2(g ∗ ∗g).
From the definition of the fusion filtration we have

gr0(g ∗ ∗g) = U(g) · (eθ ⊗ eθ) ' V (2θ).

We now redefine the evaluation parameters by setting c1 = 1, c2 = −1. Then the formula for
the operators x⊗ t acting on g⊗g is given by x⊗ Id− Id⊗x. These operators map S2(g) to

∧2g

and vice versa.We conclude that

gr1(g ∗ ∗g) ↪→
∧2

g, gr2(g ∗ ∗g) ↪→ S2(g).

Now our Lemma follows from the equality grn(g ∗ ∗g) = 0 for n > 2. �

Lemma 6. For any φ ∈ (L′m)∗ the image rφ is divisible by the product z1 · · · zm and satisfies
the vanishing condition

〈rφ, V2θ ⊗ g⊗m−2〉z1=z2 = 0 (21)

and the symmetry condition

σr = r, σ ∈ Sm, (22)

where the permutation group Sm acts simultaneously on the set of variables z1, . . . , zm and on
the tensor product g⊗m.

Proof. The product z1 · · · zm comes from the condition that the highest weight vector is anni-
hilated by g ⊗ C[t], so for any x ∈ g the series x(z) starts with z. The condition (21) follows
from the relation eθ(z)2 = 0 and g-invariance of the ideal I. The symmetry condition follows
from the commutativity of the algebra Uab. �

We denote by

Vm ↪→ z1 · · · zmC[z1, . . . , zm]⊗ g⊗m

the space of functions satisfying conditions (21) and (22). In the following lemma we endow Vm

with structures of representation of the ring of symmetric polynomials

P sym
m = C[z1, . . . , zm]Sm

and of the current algebra g⊗ C[t].

Lemma 7. There exists natural structures of representations of P sym
m and of g ⊗ C[t] on Vm

defined by the following rule:

• P sym
m acts on Vm by multiplication on the first tensor factor.

• Lie algebra g⊗ C[t] acts on Vm by the formula

x⊗ tk acts as
n∑

i=1

zk
i ⊗ x(i).

The actions of P sym
m and of g⊗ C[t] commute.
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Proof. A direct computation. �

Lemma 7 gives a structure of g⊗ C[t] module on the quotient space Vm/P sym
m+ Vm, where the

subscript + denotes the space of polynomials of positive degree. We will show that the dual to
this module is isomorphic to g∗∗m. We first consider the m = 2 case.

Lemma 8. We have an isomorphism of representations of g⊗ C[t](
V2/P sym

+ V2

)∗ ' g ∗ ∗g.

Proof. Let r be an element of V2. Using the decomposition (19), we write r = r0 + r1 + r2,
where

r0 ∈ z1z2C[z1, z2]⊗ V2θ,

r1 ∈ z1z2C[z1, z2]⊗ Λ2g,

r2 ∈ z1z2C[z1, z2]⊗ S2g/V2θ.

Then the conditions (21) and (22) are equivalent to

r0 ∈ z1z2(z1 − z2)2P sym ⊗ V2θ,

r1 ∈ z1z2(z1 − z2)P sym ⊗ Λ2g,

r2 ∈ z1z2P
sym ⊗ S2g/V2θ.

Therefore, the dual quotient space (V2/P sym
+ V2)∗ is isomorphic to g ∗ ∗g as a vector space. It is

straightforward to check that the g⊗ C[t] modules structures are also isomorphic. �

We will also need a nonsymmetric version of the space Vm/P sym
m+ Vm. Namely, let Wm be a

subspace of z1 · · · zmC[z1, . . . , zm]⊗ g⊗m satisfying

Fzi=zj ↪→ C[z1, . . . , zm]|z1=z2 ⊗ µi,j

(
S2g/V2θ ⊗ g⊗m−2

)
, (23)

∂ziFzi=zj ↪→ C[z1, . . . , zm]|z1=z2 ⊗ µi,j

(
S2(g)/V2θ ⊗ g⊗m−2

)
(24)

for all 1 ≤ i < j ≤ m, where µi,j is an operator on the tensor power g⊗m which inserts the first
two factors on the i-th and j-th places respectively:

µi,j(v1 ⊗ v2 ⊗ v2 ⊗ · · · ⊗ vn) = v3 ⊗ · · · ⊗ vi−1 ⊗ v1 ⊗ vi ⊗ · · · ⊗ vj−2 ⊗ v2 ⊗ vj−1 · · · ⊗ vn.

The natural action of the polynomial ring Pm = C[z1, . . . , zm] commutes with the action of the
current algebra, defined as in Lemma 7. Therefore, we obtain a structure of g ⊗ C[t] module
on the quotient space Wm/Pm+Wm, where Pm+ is the ring of positive degree polynomials. As
proved in [13], Lemma 5.8, the symmetric and nonsymmetric constructions produce the same
module (see Proposition 3 below for the precise statement). We illustrate this in the case n = 2.

Lemma 9. (W2/P2+W2)∗ ' g ∗ ∗g.

Proof. We use the decomposition r = r0 + r1 + r2 as in Lemma 8 for r ∈ Wm. The condi-
tions (23) and (24) are equivalent to the following conditions on ri:

r0 ∈ (z1 − z2)2z1z2C[z1, z2]⊗ V2θ,

r1 ∈ (z1 − z2)z1z2C[z1, z2]⊗ Λ2g,

r2 ∈ z1z2C[z1, z2]⊗ S2g/V2θ.

After passing to the quotient with respect to the action of the algebra P2+ we arrive at the
isomorphism of vector spaces (W2/P2+W2)∗ ' g ∗ g. It is straightforward to check that this is
an isomorphism of g⊗ C[t] modules. �
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The following Proposition is proved in [13, Lemma 5.8] for g = sl2.

Proposition 3. There exists an isomorphism of g⊗ C[t]-modules

Vm/P sym
m+ Vm ' Wm/Pm+Wm.

Proof. The proof of the general case differs from the one from [13] by the replacement of the
decomposition of the tensor square of the adjoint representation of sl2 by the general decompo-
sition (19). �

Remark 6. We note that the definition of the space Wm is a bit more involved than the
definition of Vm. The reason is that the polynomials used to construct Wm are not symmetric.
In particular, this forces to add the condition (24) in order to get the isomorphism Vm/P sym

m+ Vm '
Wm/Pm+Wm.

Proposition 4. The module Wm/P+Wm is cocyclic with a cocyclic vector being the class of

rm = z1 · · · zm

∏
1≤i<j≤m

(zi − zj)2 ⊗ (eθ)⊗m.

Proof. We first show that if r ∈ Wm is a nonzero element satisfying r ∈ Vmθ⊗C[z1, . . . , zm] then
either r ∈ Pm+Wm or there exists an element of the universal enveloping algebra of g⊗C[t] which
sends r to rm (here we embed Vmθ into g⊗m as an irreducible component containing (eθ)⊗m).
In fact, from conditions (23), (24) and the assumption r ∈ Vmθ ⊗C[z1, . . . , zm] we obtain that r
is divisible by the product

∏
1≤i<j≤m(zi − zj)2. If r /∈ Pm+Wm then we obtain

r = x⊗
∏

1≤i<j≤m

(zi − zj)2

with some x ∈ Vmθ. Since Vmθ is irreducible the U(g) orbit of x contains (eθ)⊗m.
Thus it suffices to show that any element r ∈ Wm/P+Wm is contained in the U(g ⊗ C[t])

orbit of the image of Vmθ ⊗ C[z1, . . . , zm] in the quotient space. We prove that if (a ⊗ t)r = 0
for all a ∈ g then r ∈ Vmθ ⊗ Pm. This would imply the previous statement since Wm/Pm+Wm

is finite-dimensional.
So let r ∈ Wm be some element and r̄ ∈ Wm/Pm+Wm be its class. Assume that (a⊗ t)r = 0

for all a ∈ g. We first show that r ∈ V2θ⊗g⊗n−2⊗Pm. In fact, there exists a polynomial l ∈ Pm

such that the following holds in Wm:

(a⊗ t)r = l(z1, . . . , zm)r1

for some r1 ∈ Wm. Consider the space of functions W 1,2
m which satisfy conditions (23) and (24)

only for i = 1, j = 2. (In particular, Wm ↪→ W 1,2
m ). We have an isomorphism of g⊗C[t] modules

W 1,2
m ' W2 ⊗ g⊗m−2 ⊗ C[z3, . . . , zm].

The equality (a⊗ t)r = lr1 gives

(
a(1) ⊗ z1 + a(2) ⊗ z2

)
r = lr1 −

(
m∑

i=3

a(i) ⊗ zi

)
r.

Using Lemma 9, we obtain r ∈ V2θ ⊗ g⊗n−2 ⊗ Pm.
The same procedure can be done for all pairs 1 ≤ i < j ≤ n. Now our proposition follows

from the following equality in g⊗n:⋂
1≤i<j≤n

µi,jV2θ ⊗ g⊗n−2 = Vnθ. �
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The dual module (Wm/PmWm)∗ is cyclic. We denote by r′m a cyclic vector which corresponds
to the cocyclic vector rm.

Proposition 5. There exists a surjective homomorphism of g⊗ C[t] modules

g∗∗m → (Wm/Pm+Wm)∗ (25)

sending a cyclic vector e⊗m
θ to r′m.

Proof. A relation in the fusion product means that some expression of the form∑
αi1...is

(
x1 ⊗ ti1

)
· · ·
(
xs ⊗ tis

)
(26)

with fixed t degree can be expressed in g⊗m via a linear combination of monomials of lower
t-degree. The coefficients of the expression of (26) in terms of the lower degree monomials are
polynomials in evaluation parameters c1, . . . , cn. Therefore, by the very definition of the action
of Pm on Wm, the operator of the form (26), which is a relation in the fusion product, vanishes
on (Wm/Pm+Wm)∗. �

Note that Wm and Vm are naturally graded by the degree grading on Pm (P sym
m ). This grading

defines a graded character of the space Vm/P sym
m+ .

Corollary 5. chqVm/Pm+Vm ≤ qm2
chq−1g∗∗m.

Proof. Follows from Proposition 5 and Proposition 3. Note that the factor m2 is a degree of
the cyclic vector r′m. �

Remark 7. In the next section we combine Corollary 5 with Corollary 4 in order to compute
the character of Lgr.

6 Proofs of the main statements

Proposition 6. chq(Lm)∗ ≤ chqVm ≤ qm2
chq−1g∗∗m/(q)m.

Proof. We know that

chqL
∗
m ≤ ch(L′m)∗ = chqVm.

Because of the surjection (25), the character of V ∗
m is smaller than or equal to qm2

chq−1g∗∗m/(q)m

(since 1/(q)m is the character of the space of symmetric polynomials in m variables). This proves
the Proposition. �

Theorem 4. Lm ' L′m.

Proof. Corollary 4 provides an inequality

chqLm ≥ qm2

(q)m
chq−1g∗∗m.

Now from Proposition 6 we obtain

qm2

(q)m
chq−1g∗∗m ≤ chqLm ≤ chqL

′
m ≤ qm2

(q)m
chq−1g∗∗m.

Theorem is proved. �
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Corollary 6. The dual module (Vm/P sym
m+ Vm)∗ and g∗∗m are isomorphic as g⊗ C[t] modules.

Proof. Follows from Propositions 5, 3 and Theorem 4. �

Corollary 7. We have an isomorphism of gab ⊗ C[t−1] modules

Lgr ' U
(
gab ⊗ C[t−1]

)
/I,

where I is the minimal g invariant ideal containing the coefficients of the current eθ(z)2 = 0.

Remark 8. Corollary 7 is a generalization of the sl2 case from [13]. It also proves a level 1
conjecture from [10].

Corollary 8. The action of the polynomial ring P sym
m on Vm is free.

Proof. Follows from the isomorphism (Lm/P sym
m+ )∗ ' g∗∗m and the character equality

chqLm =
qm2

(q)m
chq−1g∗∗m = qm2

chqP
sym
m · chq−1g∗∗m. �

Recall the vectors

wi1,...,im =
(
eθ ⊗ ti1

)
· · ·
(
eθ ⊗ tim

)
v0 ∈ L.

Let w̄i1,...,im ∈ Lm be the images of these vectors.

Corollary 9. Lm is generated by the set of vectors

w̄i1,...,im , −m ≥ i1 ≥ · · · ≥ im (27)

with the action of the algebra U(g⊗ C[t]).

Proof. Recall the element

rm = z1 · · · zm

∏
1≤i<j≤m

(zi − zj)2 ⊗ e⊗N
θ ∈ Vm.

Since rm is a cocyclic vector of Vm/P sym
m+ and the polynomial algebra acts freely on Vm, we

obtain that the space P sym
m+ rm is a cocyclic subspace of Vm, which means that for any vector

v ∈ Vm the space U(g⊗C[t]) ·v has a nontrivial intersection with P sym
m+ rm. We note that P sym

m+ rm

coincides with the subspace of Vm of g weight mθ. Dualizing this construction we obtain that
the subspace of Lm of g weight −mθ is U(g⊗C[t]) cyclic. This space is linearly spanned by the
set (27). Corollary is proved. �

Corollary 10. The space grmF•(N) is generated by the set of vectors

w̄i1,...,im , −m ≥ i1 ≥ · · · ≥ im ≥ −N (28)

with the action of the algebra U(g⊗ C[t]).

Proof. Introduce an increasing filtration J• on Lm:

Jn = U(g⊗ C[t]) · span
{
w̄i1,...,im : −i1 − · · · − im ≤ m2 + n

}
.

Corollary 6 provides an isomorphism of g⊗ C[t] modules

U(g⊗ C[t]) · w̄i1,...,im/ (J−i1−···−im−1 ∩U(g⊗ C[t]) · w̄i1,...,im) ' g∗∗m.
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Thus, since all vectors of the form (28) belong to Fm(N), we obtain

dim grmF•(N) ≥
(

N

m

)
(dim g)m.

Because of the equality

dim D(N) = (1 + dim g)N =
N∑

m=0

(
N

m

)
(dim g)m,

we conclude that dim grmF•(N) =
(
N
m

)
(dim g)m and hence the whole space grmF•(N) is gene-

rated by the vectors (28). �

Proposition 7. The induced PBW filtration F•(N) ↪→ D(N) coincides with the tN -filtration G•,
i.e. Fm(N) = GN−m.

Proof. Recall (see Lemma 4) that GN−m ↪→ Fm(N). Since v0 is proportional to (fθ ⊗ tN )NvN ,
we obtain that w̄i1,...,im ∈ GN−m for −m ≥ i1 ≥ · · · ≥ im ≥ −N . Therefore, Corollary 10 gives
Fm(N) ↪→ GN−m. Proposition is proved. �

Corollary 11. The graded component grmF•(N) is filtered by
(
N
m

)
copies of g∗∗m. The character

of the space of cyclic vectors of those fusions is equal to qm2

(
N

m

)
q

.

We summarize all above in the following theorem:

Theorem 5. Let F• be the PBW filtration on the level one vacuum ĝ module L. Then

a) grmF• is filtered by the fusion modules g∗∗m.

b) The character of the space of cyclic vectors of these g∗∗m is equal to qm2

(q)m
.

c) The induced PBW filtration on Demazure modules D(N) coincides with the double fusion
filtration coming from Theorem 3.

d) The defining relation in Lgr is eθ(z)2 = 0.

A list of the main notations

g – simple finite-dimensional algebra;

ĝ – corresponding affine Kac–Moody algebra;

θ – highest weight of the adjoint representation of g;

eθ, fθ ∈ g – highest and lowest weight vectors of the adjoint representation;

L – the basic (vacuum level one) representation of ĝ;

v0 ∈ L – a highest weight vector of L;

vN ∈ L – an extremal vector of the weight Nθ;

D(N) ↪→ L – Demazure module with a cyclic vector vN ;

grmA• – m-th graded component of the associated graded space with respect to the
filtration A•;

F• – (increasing) PBW filtration on L;
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F•(N) = F• ∩D(N) – induced PBW filtration on D(N);

G• – (decreasing) tN -filtration on D(N);

V1 ∗ · · · ∗ VN – associated graded g ⊗ C[t] module with respect to the fusion filtration on
the tensor product of cyclic g⊗ C[t] modules;

V1 ∗ ∗ · · · ∗ ∗VN – associated graded g ⊗ C[t] module with respect to the fusion filtration
on the tensor product of cyclic g modules;

grm(V1 ∗ · · · ∗ VN ) – m-th graded component with respect to the fusion filtration;

chq – a graded character defined by the operator d;

chq – a graded character defined by the operator d̄.

Acknowledgements

EF thanks B. Feigin and P. Littelmann for useful discussions. This work was partially supported
by the RFBR Grants 06-01-00037, 07-02-00799 and NSh-3472.2008.2, by Pierre Deligne fund
based on his 2004 Balzan prize in mathematics, by Euler foundation and by Alexander von
Humboldt Fellowship.

References

[1] Ardonne E., Kedem R., Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas,
J. Algebra 308 (2007), 270–294, math.RT/0602177.

[2] Ardonne E., Kedem R., Stone M., Fusion products, Kostka polynomials and fermionic characters of ŝu(r +
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