Zero Action on Perfect Crystals for $\boldsymbol{U}_{q}\left(G_{2}^{(1)}\right)^{\star}$

Kailash C. MISRA ${ }^{\dagger}$, Mahathir MOHAMAD ${ }^{\ddagger}$ and Masato OKADO ${ }^{\ddagger}$
\dagger Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205, USA
E-mail: misra@unity.ncsu.edu
\ddagger Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
E-mail: mahathir'75@yahoo.com, okado@sigmath.es.osaka-u.ac.jp
Received November 13, 2009, in final form March 03, 2010; Published online March 09, 2010 doi:10.3842/SIGMA.2010.022

Abstract

The actions of 0-Kashiwara operators on the $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal B_{l} in [Yamane S., J. Algebra 210 (1998), 440-486] are made explicit by using a similarity technique from that of a $U_{q}^{\prime}\left(D_{4}^{(3)}\right)$-crystal. It is shown that $\left\{B_{l}\right\}_{l \geq 1}$ forms a coherent family of perfect crystals.

Key words: combinatorial representation theory; quantum affine algebra; crystal bases
2010 Mathematics Subject Classification: 05E99; 17B37; 17B67; 81R10; 81R50

1 Introduction

Let \mathfrak{g} be a symmetrizable Kac-Moody algebra. Let I be its index set for simple roots, P the weight lattice, $\alpha_{i} \in P$ a simple root $(i \in I)$, and $h_{i} \in P^{*}(=\operatorname{Hom}(P, \mathbb{Z}))$ a simple coroot $(i \in I)$. To each $i \in I$ we associate a positive integer m_{i} and set $\tilde{\alpha}_{i}=m_{i} \alpha_{i}, \tilde{h}_{i}=h_{i} / m_{i}$. Suppose $\left(\left\langle\tilde{h}_{i}, \tilde{\alpha}_{j}\right\rangle\right)_{i, j \in I}$ is a generalized Cartan matrix for another symmetrizable Kac-Moody algebra $\tilde{\mathfrak{g}}$. Then the subset \tilde{P} of P consisting of $\lambda \in P$ such that $\left\langle\tilde{h}_{i}, \lambda\right\rangle$ is an integer for any $i \in I$ can be considered as the weight lattice of $\tilde{\mathfrak{g}}$. For a dominant integral weight λ let $B^{\mathfrak{g}}(\lambda)$ be the highest weight crystal with highest weight λ over $U_{q}(\mathfrak{g})$. Then, in [5] Kashiwara showed the following. (The theorem in [5] is more general.)
Theorem 1. Let λ be a dominant integral weight in \tilde{P}. Then, there exists a unique injective map $S: B^{\tilde{\mathfrak{g}}}(\lambda) \rightarrow B^{\mathfrak{g}}(\lambda)$ such that

$$
w t S(b)=w t b, \quad S\left(e_{i} b\right)=e_{i}^{m_{i}} S(b), \quad S\left(f_{i} b\right)=f_{i}^{m_{i}} S(b) .
$$

In this paper, we use this theorem to examine the so-called Kirillov-Reshetikhin crystal. Let \mathfrak{g} be the affine algebra of type $D_{4}^{(3)}$. The generalized Cartan matrix $\left(\left\langle h_{i}, \alpha_{j}\right\rangle\right)_{i, j \in I}(I=\{0,1,2\})$ is given by

$$
\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -3 \\
0 & -1 & 2
\end{array}\right)
$$

Set $\left(m_{0}, m_{1}, m_{2}\right)=(3,3,1)$. Then, $\tilde{\mathfrak{g}}$ defined above turns out to be the affine algebra of type $G_{2}^{(1)}$. Their Dynkin diagrams are depicted as follows

$$
D_{4}^{(3)}: \begin{array}{lll}
0 & 1 & 2 \\
\circ & \circ & G_{2}^{(1)}: \quad \begin{array}{l}
0 \\
\circ
\end{array} \quad 1 \\
\circ \rightleftharpoons \circ
\end{array}
$$

[^0]For $G_{2}^{(1)}$ a family of perfect crystals $\left\{B_{l}\right\}_{l \geq 1}$ was constructed in [7]. However, the crystal elements there were realized in terms of tableaux given in [2], and it was not easy to calculate the action of 0-Kashiwara operators on these tableaux. On the other hand, an explicit action of these operators was given on perfect crystals $\left\{\hat{B}_{l}\right\}_{l \geq 1}$ over $U_{q}^{\prime}\left(D_{4}^{(3)}\right)$ in [6]. Hence, it is a natural idea to use Theorem 1 to obtain the explicit action of e_{0}, f_{0} on B_{l} from that on $\hat{B}_{l^{\prime}}$ with suitable l^{\prime}. We remark that Kirillov-Reshetikhin crystals are parametrized by a node of the Dynkin diagram except 0 and a positive integer. Both B_{l} and \hat{B}_{l} correspond to the pair $(1, l)$.

Our strategy to do this is as follows. We define V_{l} as an appropriate subset of $\hat{B}_{3 l}$ that is closed under the action of $\hat{e}_{i}^{m_{i}}, \hat{f}_{i}^{m_{i}}$ where \hat{e}_{i}, \hat{f}_{i} stand for the Kashiwara operators on $\hat{B}_{3 l}$. Hence, we can regard V_{l} as a $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal. We next show that as a $U_{q}\left(G_{2}^{(1)}\right)_{\{0,1\}}\left(=U_{q}\left(A_{2}\right)\right)$-crystal and as a $U_{q}\left(G_{2}^{(1)}\right)_{\{1,2\}}\left(=U_{q}\left(G_{2}\right)\right)$-crystal, V_{l} has the same decomposition as B_{l}. Then, we can conclude from Theorem 6.1 of $[6]$ that V_{l} is isomorphic to the $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal B_{l} constructed in [7] (Theorem 2).

The paper is organized as follows. In Section 2 we review the $U_{q}^{\prime}\left(D_{4}^{(3)}\right)$-crystal \hat{B}_{l}. We then construct a $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal V_{l} in $\hat{B}_{3 l}$ with the aid of Theorem 1 and see it coincides with B_{l} given in [7] in Section 3. Minimal elements of B_{l} are found and $\left\{B_{l}\right\}_{l \geq 1}$ is shown to form a coherent family of perfect crystals in Section 4. The crystal graphs of B_{1} and B_{2} are included in Section 5.

2 Review on $U_{q}^{\prime}\left(D_{4}^{(3)}\right)$-crystal \hat{B}_{l}

In this section we recall the perfect crystal for $U_{q}^{\prime}\left(D_{4}^{(3)}\right)$ constructed in [6]. Since we also consider $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystals later, we denote it by \hat{B}_{l}. Kashiwara operators e_{i}, f_{i} and $\varepsilon_{i}, \varphi_{i}$ on \hat{B}_{l} are denoted by \hat{e}_{i}, \hat{f}_{i} and $\hat{\varepsilon}_{i}, \hat{\varphi}_{i}$. Readers are warned that the coordinates x_{i}, \bar{x}_{i} and steps by Kashiwara operators in [6] are divided by 3 here, since it is more convenient for our purpose. As a set

$$
\hat{B}_{l}=\left\{\begin{array}{l|l}
b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right) \in\left(\mathbb{Z}_{\geq 0} / 3\right)^{6} & \left.\begin{array}{l}
3 x_{3} \equiv 3 \bar{x}_{3}(\bmod 2) \\
\sum_{i=1,2}\left(x_{i}+\bar{x}_{i}\right)+\left(x_{3}+\bar{x}_{3}\right) / 2 \leq l / 3
\end{array}\right\} . ~ . ~ . ~
\end{array}\right\}
$$

In order to define the actions of Kashiwara operators \hat{e}_{i} and \hat{f}_{i} for $i=0,1,2$, we introduce some notations and conditions. Set $(x)_{+}=\max (x, 0)$. For $b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right) \in \hat{B}_{l}$ we set

$$
\begin{equation*}
s(b)=x_{1}+x_{2}+\frac{x_{3}+\bar{x}_{3}}{2}+\bar{x}_{2}+\bar{x}_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{1}=\bar{x}_{1}-x_{1}, \quad z_{2}=\bar{x}_{2}-\bar{x}_{3}, \quad z_{3}=x_{3}-x_{2}, \quad z_{4}=\left(\bar{x}_{3}-x_{3}\right) / 2 \tag{2.2}
\end{equation*}
$$

Now we define conditions $\left(E_{1}\right)-\left(E_{6}\right)$ and $\left(F_{1}\right)-\left(F_{6}\right)$ as follows

$$
\begin{align*}
& \left(F_{1}\right) \quad z_{1}+z_{2}+z_{3}+3 z_{4} \leq 0, \quad z_{1}+z_{2}+3 z_{4} \leq 0, \quad z_{1}+z_{2} \leq 0, \quad z_{1} \leq 0 \\
& \left(F_{2}\right) \quad z_{1}+z_{2}+z_{3}+3 z_{4} \leq 0, \quad z_{2}+3 z_{4} \leq 0, \quad z_{2} \leq 0, \quad z_{1}>0 \\
& \left(F_{3}\right) \quad z_{1}+z_{3}+3 z_{4} \leq 0, \quad z_{3}+3 z_{4} \leq 0, \quad z_{4} \leq 0, \quad z_{2}>0, \quad z_{1}+z_{2}>0 \\
& \left(F_{4}\right) \quad z_{1}+z_{2}+3 z_{4}>0, \quad z_{2}+3 z_{4}>0, \quad z_{4}>0, \quad z_{3} \leq 0, \quad z_{1}+z_{3} \leq 0 \tag{2.3}\\
& \left(F_{5}\right) \quad z_{1}+z_{2}+z_{3}+3 z_{4}>0, \quad z_{3}+3 z_{4}>0, \quad z_{3}>0, \quad z_{1} \leq 0 \\
& \left(F_{6}\right) \\
& z_{1}+z_{2}+z_{3}+3 z_{4}>0, \quad z_{1}+z_{3}+3 z_{4}>0, \quad z_{1}+z_{3}>0, \quad z_{1}>0
\end{align*}
$$

The conditions $\left(F_{1}\right)-\left(F_{6}\right)$ are disjoint and they exhaust all cases. $\left(E_{i}\right)(1 \leq i \leq 6)$ is defined from $\left(F_{i}\right)$ by replacing $>($ resp. $\leq)$ with \geq (resp. $<$). We also define

$$
\begin{equation*}
A=\left(0, z_{1}, z_{1}+z_{2}, z_{1}+z_{2}+3 z_{4}, z_{1}+z_{2}+z_{3}+3 z_{4}, 2 z_{1}+z_{2}+z_{3}+3 z_{4}\right) . \tag{2.4}
\end{equation*}
$$

Then, for $b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right) \in \hat{B}_{l}, \hat{e}_{i} b, \hat{f}_{i} b, \hat{\varepsilon}_{i}(b), \hat{\varphi}_{i}(b)$ are given as follows

$$
\begin{align*}
& \hat{e}_{0} b= \begin{cases}\left(x_{1}-1 / 3, \ldots\right) & \text { if }\left(E_{1}\right), \\
\left(\ldots, x_{3}-1 / 3, \bar{x}_{3}-1 / 3, \ldots, \bar{x}_{1}+1 / 3\right) & \text { if }\left(E_{2}\right), \\
\left(\ldots, x_{3}-2 / 3, \ldots, \bar{x}_{2}+1 / 3, \ldots\right) & \text { if }\left(E_{3}\right), \\
\left(\ldots, x_{2}-1 / 3, \ldots, \bar{x}_{3}+2 / 3, \ldots\right) & \text { if }\left(E_{4}\right), \\
\left(x_{1}-1 / 3, \ldots, x_{3}+1 / 3, \bar{x}_{3}+1 / 3, \ldots\right) & \text { if }\left(E_{5}\right), \\
\left(\ldots, \bar{x}_{1}+1 / 3\right) & \text { if }\left(E_{6}\right),\end{cases} \\
& \hat{f}_{0} b= \begin{cases}\left(x_{1}+1 / 3, \ldots\right) & \text { if }\left(F_{1}\right), \\
\left(\ldots, x_{3}+1 / 3, \bar{x}_{3}+1 / 3, \ldots, \bar{x}_{1}-1 / 3\right) & \text { if }\left(F_{2}\right), \\
\left(\ldots, x_{3}+2 / 3, \ldots, \bar{x}_{2}-1 / 3, \ldots\right) & \text { if }\left(F_{3}\right), \\
\left(\ldots, x_{2}+1 / 3, \ldots, \bar{x}_{3}-2 / 3, \ldots\right) & \text { if }\left(F_{4}\right), \\
\left(x_{1}+1 / 3, \ldots, x_{3}-1 / 3, \bar{x}_{3}-1 / 3, \ldots\right) & \text { if }\left(F_{5}\right), \\
\left(\ldots, \bar{x}_{1}-1 / 3\right) & \text { if }\left(F_{6}\right) .\end{cases} \\
& \hat{e}_{1} b= \begin{cases}\left(\ldots, \bar{x}_{2}+1 / 3, \bar{x}_{1}-1 / 3\right) & \text { if } z_{2} \geq\left(-z_{3}\right)_{+}, \\
\left(\ldots, x_{3}+1 / 3, \bar{x}_{3}-1 / 3, \ldots\right) & \text { if } z_{2}<0 \leq z_{3}, \\
\left(x_{1}+1 / 3, x_{2}-1 / 3, \ldots\right) & \text { if }\left(z_{2}\right)_{+}<\left(-z_{3}\right),\end{cases} \\
& \hat{f}_{1} b= \begin{cases}\left(x_{1}-1 / 3, x_{2}+1 / 3, \ldots\right) & \text { if }\left(z_{2}\right)_{+} \leq\left(-z_{3}\right), \\
\left(\ldots, x_{3}-1 / 3, \bar{x}_{3}+1 / 3, \ldots\right) & \text { if } z_{2} \leq 0<z_{3}, \\
\left(\ldots, \bar{x}_{2}-1 / 3, \bar{x}_{1}+1 / 3\right) & \text { if } z_{2}>\left(-z_{3}\right)_{+},\end{cases} \\
& \hat{e}_{2} b= \begin{cases}\left(\ldots, \bar{x}_{3}+2 / 3, \bar{x}_{2}-1 / 3, \ldots\right) & \text { if } z_{4} \geq 0, \\
\left(\ldots, x_{2}+1 / 3, x_{3}-2 / 3, \ldots\right) & \text { if } z_{4}<0,\end{cases} \\
& \hat{f}_{2} b= \begin{cases}\left(\ldots, x_{2}-1 / 3, x_{3}+2 / 3, \ldots\right) & \text { if } z_{4} \leq 0, \\
\left(\ldots, \bar{x}_{3}-2 / 3, \bar{x}_{2}+1 / 3, \ldots\right) & \text { if } z_{4}>0,\end{cases} \\
& \hat{\varepsilon}_{0}(b)=l-3 s(b)+3 \max A-3\left(2 z_{1}+z_{2}+z_{3}+3 z_{4}\right) \text {, } \\
& \hat{\varphi}_{0}(b)=l-3 s(b)+3 \max A, \\
& \hat{\varepsilon}_{1}(b)=3 \bar{x}_{1}+3\left(\bar{x}_{3}-\bar{x}_{2}+\left(x_{2}-x_{3}\right)_{+}\right)_{+}, \tag{2.5}\\
& \hat{\varphi}_{1}(b)=3 x_{1}+3\left(x_{3}-x_{2}+\left(\bar{x}_{2}-\bar{x}_{3}\right)_{+}\right)_{+} \text {, } \\
& \hat{\varepsilon}_{2}(b)=3 \bar{x}_{2}+\frac{3}{2}\left(x_{3}-\bar{x}_{3}\right)_{+}, \quad \hat{\varphi}_{2}(b)=3 x_{2}+\frac{3}{2}\left(\bar{x}_{3}-x_{3}\right)_{+} .
\end{align*}
$$

If $\hat{e}_{i} b$ or $\hat{f}_{i} b$ does not belong to \hat{B}_{l}, namely, if x_{j} or \bar{x}_{j} for some j becomes negative or $s(b)$ exceeds $l / 3$, we should understand it to be 0 . Forgetting the 0 -arrows,

$$
\hat{B}_{l} \simeq \bigoplus_{j=0}^{l} B^{G_{2}^{\dagger}}\left(j \Lambda_{1}\right),
$$

where $B^{G_{2}^{\dagger}}(\lambda)$ is the highest weight $U_{q}\left(G_{2}^{\dagger}\right)$-crystal of highest weight λ and G_{2}^{\dagger} stands for the simple Lie algebra G_{2} with the reverse labeling of the indices of the simple roots (α_{1} is the short
root). Forgetting 2-arrows,

$$
\hat{B}_{l} \simeq \bigoplus_{i=0}^{\left\lfloor\frac{l}{2}\right\rfloor} \bigoplus_{\substack{i \leq j_{0}, j_{1} \leq l-i \\ j_{0}, j_{1} l=l-i(\bmod 3)}} B^{A_{2}}\left(j_{0} \Lambda_{0}+j_{1} \Lambda_{1}\right),
$$

where $B^{A_{2}}(\lambda)$ is the highest weight $U_{q}\left(A_{2}\right)$-crystal (with indices $\{0,1\}$) of highest weight λ.

$3 \quad U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal

In this section we define a subset V_{l} of $\hat{B}_{3 l}$ and see it is isomorphic to the $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal B_{l}. The set V_{l} is defined as a subset of $\hat{B}_{3 l}$ satisfying the following conditions:

$$
\begin{equation*}
x_{1}, \bar{x}_{1}, x_{2}-x_{3}, \bar{x}_{3}-\bar{x}_{2} \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

For an element $b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right)$ of V_{l} we define $s(b)$ as in (2.1). From (3.1) we see that $s(b) \in\{0,1, \ldots, l\}$.

Lemma 1. For $0 \leq k \leq l$

$$
\sharp\left\{b \in V_{l} \mid s(b)=k\right\}=\frac{1}{120}(k+1)(k+2)(2 k+3)(3 k+4)(3 k+5) .
$$

Proof. We first count the number of elements $\left(x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}\right)$ satisfying the conditions of coordinates as an element of V_{l} and $x_{2}+\left(x_{3}+\bar{x}_{3}\right) / 2+\bar{x}_{2}=m(m=0,1, \ldots, k)$. According to $(a, b, c, d)(a, d \in\{0,1 / 3,2 / 3\}, b, c \in\{0,1 / 3,2 / 3,1,4 / 3,5 / 3\})$ such that $x_{2} \in \mathbb{Z}+a, x_{3} \in 2 \mathbb{Z}+b$, $\bar{x}_{3} \in 2 \mathbb{Z}+c, \bar{x}_{2} \in \mathbb{Z}+d$, we divide the cases into the following 18:
(i) $(0,0,0,0)$,
(ii) $(0,0,2 / 3,2 / 3)$,
(iii) $(0,0,4 / 3,1 / 3)$,
(iv) $(0,1,1 / 3,1 / 3)$,
(v) $(0,1,1,0)$,
(vi) $(0,1,5 / 3,2 / 3)$,
(vii) $(1 / 3,1 / 3,1 / 3,1 / 3)$,
(viii) $(1 / 3,1 / 3,1,0)$,
(ix) $(1 / 3,1 / 3,5 / 3,2 / 3)$,
(x) $(1 / 3,4 / 3,0,0)$,
(xi) $(1 / 3,4 / 3,2 / 3,2 / 3)$,
(xii) $(1 / 3,4 / 3,4 / 3,1 / 3)$,
(xiii) $(2 / 3,2 / 3,0,0)$,
(xiv) $(2 / 3,2 / 3,2 / 3,2 / 3)$,
(xv) ($2 / 3,2 / 3,4 / 3,1 / 3$),
(xvi) $(2 / 3,5 / 3,1 / 3,1 / 3)$,
(xvii) $(2 / 3,5 / 3,1,0)$,
(xviii) $(2 / 3,5 / 3,5 / 3,2 / 3)$.

The number of elements $\left(x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}\right)$ in a case among the above such that $a+(b+c) / 2+d=e$ ($e=0,1,2,3$) is given by $f(e)=\binom{m-e+3}{3}$. Since there is one case with $e=0$ (i) and $e=3$ (xviii) and 8 cases with $e=1$ and $e=2$, the number of $\left(x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}\right)$ such that $x_{2}+\left(x_{3}+\bar{x}_{3}\right) / 2+\bar{x}_{2}=m$ is given by

$$
f(0)+8 f(1)+8 f(2)+f(3)=\frac{1}{2}(2 m+1)\left(3 m^{2}+3 m+2\right) .
$$

For each $\left(x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}\right)$ such that $x_{2}+\left(x_{3}+\bar{x}_{3}\right) / 2+\bar{x}_{2}=m(m=0,1, \ldots, k)$ there are $(k-m+1)$ cases for $\left(x_{1}, \bar{x}_{1}\right)$, so the number of $b \in V_{l}$ such that $s(b)=k$ is given by

$$
\sum_{m=0}^{k} \frac{1}{2}(2 m+1)\left(3 m^{2}+3 m+2\right)(k-m+1) .
$$

A direct calculation leads to the desired result.

We define the action of operators $e_{i}, f_{i}(i=0,1,2)$ on V_{l} as follows.

$$
\begin{aligned}
& \begin{cases}\left(x_{1}-1, \ldots\right) & \text { if }\left(E_{1}\right), \\
\left(\ldots, x_{3}-1, \bar{x}_{3}-1, \ldots, \bar{x}_{1}+1\right) & \text { if }\left(E_{2}\right),\end{cases} \\
& e_{0} b= \begin{cases}\left(\ldots, x_{2}-\frac{2}{3}, x_{3}-\frac{2}{3}, \bar{x}_{3}+\frac{4}{3}, \bar{x}_{2}+\frac{1}{3}, \ldots\right) & \text { if }\left(E_{3}\right) \text { and } z_{4}=-\frac{1}{3}, \\
\left(\ldots, x_{2}-\frac{1}{3}, x_{3}-\frac{4}{3}, \bar{x}_{3}+\frac{2}{3}, \bar{x}_{2}+\frac{2}{3}, \ldots\right) & \text { if }\left(E_{3}\right) \text { and } z_{4}=-\frac{2}{3}, \\
\left(\ldots, x_{3}-2, \ldots, \bar{x}_{2}+1, \ldots\right) & \text { if }\left(E_{3}\right) \text { and } z_{4} \neq-\frac{1}{3},-\frac{2}{3}, \\
\left(\ldots, x_{2}-1, \ldots, \bar{x}_{3}+2, \ldots\right) & \text { if }\left(E_{4}\right), \\
\left(x_{1}-1, \ldots, x_{3}+1, \bar{x}_{3}+1, \ldots\right) & \text { if }\left(E_{5}\right), \\
\left(\ldots, \bar{x}_{1}+1\right) & \text { if }\left(E_{6}\right),\end{cases} \\
& \left(\left(x_{1}+1, \ldots\right) \quad \text { if }\left(F_{1}\right),\right. \\
& \left(\ldots, x_{3}+1, \bar{x}_{3}+1, \ldots, \bar{x}_{1}-1\right) \quad \text { if }\left(F_{2}\right), \\
& \left(\ldots, x_{3}+2, \ldots, \bar{x}_{2}-1, \ldots\right) \quad \text { if }\left(F_{3}\right) \text {, } \\
& f_{0} b= \begin{cases}\left(\ldots, x_{2}+\frac{1}{3}, x_{3}+\frac{4}{3}, \bar{x}_{3}-\frac{2}{3}, \bar{x}_{2}-\frac{2}{3}, \ldots\right) & \text { if }\left(F_{4}\right) \text { and } z_{4}=\frac{1}{3}, \\
\left(\ldots, x_{2}+\frac{2}{3}, x_{3}+\frac{2}{3}, \bar{x}_{3}-\frac{4}{3}, \bar{x}_{2}-\frac{1}{3}, \ldots\right) & \text { if }\left(F_{4}\right) \text { and } z_{4}=\frac{2}{3}, \\
\left(\ldots, x_{2}+1, \ldots, \bar{x}_{3}-2, \ldots\right) & \text { if }\left(F_{4}\right) \text { and } z_{4} \neq \frac{1}{3}, \frac{2}{3}, \\
\left(x_{1}+1, \ldots, x_{3}-1, \bar{x}_{3}-1, \ldots\right) & \text { if }\left(F_{5}\right), \\
\left(\ldots, \bar{x}_{1}-1\right) & \text { if }\left(F_{6}\right),\end{cases} \\
& e_{1} b= \begin{cases}\left(\ldots, \bar{x}_{2}+1, \bar{x}_{1}-1\right) & \text { if } \bar{x}_{2}-\bar{x}_{3} \geq\left(x_{2}-x_{3}\right)_{+}, \\
\left(\ldots, x_{3}+1, \bar{x}_{3}-1, \ldots\right) & \text { if } \bar{x}_{2}-\bar{x}_{3}<0 \leq x_{3}-x_{2}, \\
\left(x_{1}+1, x_{2}-1, \ldots\right) & \text { if }\left(\bar{x}_{2}-\bar{x}_{3}\right)_{+}<x_{2}-x_{3},\end{cases} \\
& f_{1} b= \begin{cases}\left(x_{1}-1, x_{2}+1, \ldots\right) & \text { if }\left(\bar{x}_{2}-\bar{x}_{3}\right)_{+} \leq x_{2}-x_{3}, \\
\left(\ldots, x_{3}-1, \bar{x}_{3}+1, \ldots\right) & \text { if } \bar{x}_{2}-\bar{x}_{3} \leq 0<x_{3}-x_{2}, \\
\left(\ldots, \bar{x}_{2}-1, \bar{x}_{1}+1\right) & \text { if } \bar{x}_{2}-\bar{x}_{3}>\left(x_{2}-x_{3}\right)_{+},\end{cases} \\
& e_{2} b= \begin{cases}\left(\ldots, \bar{x}_{3}+\frac{2}{3}, \bar{x}_{2}-\frac{1}{3}, \ldots\right) & \text { if } \bar{x}_{3} \geq x_{3}, \\
\left(\ldots, x_{2}+\frac{1}{3}, x_{3}-\frac{2}{3}, \ldots\right) & \text { if } \bar{x}_{3}<x_{3},\end{cases} \\
& f_{2} b= \begin{cases}\left(\ldots, x_{2}-\frac{1}{3}, x_{3}+\frac{2}{3}, \ldots\right) & \text { if } \bar{x}_{3} \leq x_{3}, \\
\left(\ldots, \bar{x}_{3}-\frac{2}{3}, \bar{x}_{2}+\frac{1}{3}, \ldots\right) & \text { if } \bar{x}_{3}>x_{3} .\end{cases}
\end{aligned}
$$

We now set $\left(m_{0}, m_{1}, m_{2}\right)=(3,3,1)$.

Proposition 1.

(1) For any $b \in V_{l}$ we have $e_{i} b, f_{i} b \in V_{l} \sqcup\{0\}$ for $i=0,1,2$.
(2) The equalities $e_{i}=\hat{e}_{i}^{m_{i}}$ and $f_{i}=\hat{f}_{i}^{m_{i}}$ hold on V_{l} for $i=0,1,2$.

Proof. (1) can be checked easily.
For (2) we only treat f_{i}. To prove the $i=0$ case consider the following table

	$\left(F_{1}\right)$	$\left(F_{2}\right)$	$\left(F_{3}\right)$	$\left(F_{4}\right)$	$\left(F_{5}\right)$	$\left(F_{6}\right)$
z_{1}	$-1 / 3$	$-1 / 3$	0	0	$-1 / 3$	$-1 / 3$
z_{2}	0	$-1 / 3$	$-1 / 3$	$2 / 3$	$1 / 3$	0
z_{3}	0	$1 / 3$	$2 / 3$	$-1 / 3$	$-1 / 3$	0
z_{4}	0	0	$-1 / 3$	$-1 / 3$	0	0

This table signifies the difference $\left(z_{j}\right.$ for $\left.\hat{f}_{0} b\right)-\left(z_{j}\right.$ for $\left.b\right)$ when b belongs to the case $\left(F_{i}\right)$. Note that the left hand sides of the inequalities of each $\left(F_{i}\right)(2.3)$ always decrease by $1 / 3$. Since $z_{1}, z_{2}, z_{3} \in \mathbb{Z}, z_{4} \in \mathbb{Z} / 3$ for $b \in V_{l}$, we see that if b belongs to $\left(F_{i}\right), \hat{f}_{0} b$ and $\hat{f}_{0}^{2} b$ also belong to (F_{i}) except two cases: (a) $b \in\left(F_{4}\right)$ and $z_{4}=1 / 3$, and (b) $b \in\left(F_{4}\right)$ and $z_{4}=2 / 3$. If (a) occurs, we have $\hat{f}_{0} b, \hat{f}_{0}^{2} b \in\left(F_{3}\right)$. Hence, we obtain $f_{0}=\hat{f}_{0}^{3}$ in this case. If (b) occurs, we have $\hat{f}_{0} b \in\left(F_{4}\right)$, $\hat{f}_{0}^{2} b \in\left(F_{3}\right)$. Therefore, we obtain $f_{0}=\hat{f}_{0}^{3}$ in this case as well.

In the $i=1$ case, if b belongs to one of the 3 cases, $\hat{f}_{1} b$ and $\hat{f}_{1}^{2} b$ also belong to the same case. Hence, we obtain $f_{1}=\hat{f}_{1}^{3}$. For $i=2$ there is nothing to do.

Proposition 1, together with Theorem 1, shows that V_{l} can be regarded as a $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal with operators $e_{i}, f_{i}(i=0,1,2)$.

Proposition 2. As a $U_{q}\left(G_{2}^{(1)}\right)_{\{1,2\}}$-crystal

$$
V_{l} \simeq \bigoplus_{k=0}^{l} B^{G_{2}}\left(k \Lambda_{1}\right)
$$

where $B^{G_{2}}(\lambda)$ is the highest weight $U_{q}\left(G_{2}\right)$-crystal of highest weight λ.
Proof. For a subset J of $\{0,1,2\}$ we say b is J-highest if $e_{j} b=0$ for any $j \in J$. Note from (2.5) that $b_{k}=(k, 0,0,0,0,0)(0 \leq k \leq l)$ is $\{1,2\}$-highest of weight $3 k \Lambda_{1}$ in $\hat{B}_{3 l}$. By setting $\mathfrak{g}=G_{2}^{\dagger}$ ($=G_{2}$ with the reverse labeling of indices), $\left(m_{1}, m_{2}\right)=(3,1), \tilde{\mathfrak{g}}=G_{2}$ in Theorem 1 , we know that the connected component generated from b_{k} by $f_{1}=\hat{f}_{1}^{3}$ and $f_{2}=\hat{f}_{2}$ is isomorphic to $B^{G_{2}}\left(k \Lambda_{1}\right)$. Hence by Proposition 1 (1) we have

$$
\begin{equation*}
\bigoplus_{k=0}^{l} B^{G_{2}}\left(k \Lambda_{1}\right) \subset V_{l} \tag{3.2}
\end{equation*}
$$

Now recall Weyl's formula to calculate the dimension of the highest weight representation. In our case we obtain

$$
\sharp B^{G_{2}}\left(k \Lambda_{1}\right)=\frac{1}{120}(k+1)(k+2)(2 k+3)(3 k+4)(3 k+5) .
$$

However, this is equal to $\sharp\left\{b \in V_{l} \mid s(b)=k\right\}$ by Lemma 1. Therefore, \subset in (3.2) should be $=$, and the proof is completed.

Proposition 3. As a $U_{q}\left(G_{2}^{(1)}\right)_{\{0,1\}}$-crystal

$$
V_{l} \simeq \bigoplus_{i=0}^{\lfloor l / 2\rfloor} \bigoplus_{i \leq j_{0}, j_{1} \leq l-i} B^{A_{2}}\left(j_{0} \Lambda_{0}+j_{1} \Lambda_{1}\right)
$$

where $B^{A_{2}}(\lambda)$ is the highest weight $U_{q}\left(A_{2}\right)$-crystal (with indices $\{0,1\}$) of highest weight λ.
Proof. For integers i, j_{0}, j_{1} such that $0 \leq i \leq l / 2, i \leq j_{0}, j_{1} \leq l-i$, define an element $b_{i, j_{0}, j_{1}}$ of V_{l} by

$$
b_{i, j_{0}, j_{1}}= \begin{cases}\left(0, y_{1}, 3 y_{0}-2 y_{1}+i, y_{0}+i, y_{0}+j_{0}, 0\right) & \text { if } j_{0} \leq j_{1} \\ \left(0, y_{0}, y_{0}+i, 2 y_{1}-y_{0}+i, 2 y_{0}-y_{1}+j_{0}, 0\right) & \text { if } j_{0}>j_{1}\end{cases}
$$

Here we have set $y_{a}=\left(l-i-j_{a}\right) / 3$ for $a=0,1$. From (2.5) one notices that $b_{i, j_{0}, j_{1}}$ is $\{0,1\}$ highest of weight $3 j_{0} \Lambda_{0}+3 j_{1} \Lambda_{1}$ in $\hat{B}_{3 l}$. For instance, $\hat{\varepsilon}_{0}\left(b_{i, j_{0}, j_{1}}\right)=0$ and $\hat{\varphi}_{0}\left(b_{i, j_{0}, j_{1}}\right)=3 j_{0}$ since
$s\left(b_{i, j_{0}, j_{1}}\right)=l$ and $\max A=2 z_{1}+z_{2}+z_{3}+3 z_{4}=j_{0}$. By setting $\mathfrak{g}=\tilde{\mathfrak{g}}=A_{2},\left(m_{0}, m_{1}\right)=(3,3)$ in Theorem 1, the connected component generated from $b_{i, j_{0}, j_{1}}$ by $f_{i}=\hat{f}_{i}^{3}(i=0,1)$ is isomorphic to $B^{A_{2}}\left(j_{0} \Lambda_{0}+j_{1} \Lambda_{1}\right)$. Hence, by Proposition 1 (1) we have

$$
\bigoplus_{i=0}^{\lfloor l / 2\rfloor} \bigoplus_{i \leq j_{0}, j_{1} \leq l-i} B^{A_{2}}\left(j_{0} \Lambda_{0}+j_{1} \Lambda_{1}\right) \subset V_{l}
$$

However, from Proposition 2 one knows that

$$
\sharp V_{l}=\sum_{k=0}^{l} \sharp B^{G_{2}}\left(k \Lambda_{1}\right) .
$$

Moreover, it is already established in [7] that

$$
\sum_{k=0}^{l} \sharp B^{G_{2}}\left(k \Lambda_{1}\right)=\sum_{i=0}^{\lfloor l / 2\rfloor} \sum_{i \leq j_{0}, j_{1} \leq l-i} \sharp B^{A_{2}}\left(j_{0} \Lambda_{0}+j_{1} \Lambda_{1}\right) .
$$

Therefore, the proof is completed.
Theorem 6.1 in [6] shows that if two $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystals decompose into $\bigoplus_{0 \leq k \leq l} B^{G_{2}}\left(k \Lambda_{1}\right)$ as $U_{q}\left(G_{2}\right)$-crystals, then they are isomorphic to each other. Therefore, we now have
Theorem 2. V_{l} agrees with the $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystal B_{l} constructed in [7]. The values of $\varepsilon_{i}, \varphi_{i}$ with our representation are given by

$$
\begin{align*}
& \varepsilon_{0}(b)=l-s(b)+\max A-\left(2 z_{1}+z_{2}+z_{3}+3 z_{4}\right), \quad \varphi_{0}(b)=l-s(b)+\max A, \\
& \varepsilon_{1}(b)=\bar{x}_{1}+\left(\bar{x}_{3}-\bar{x}_{2}+\left(x_{2}-x_{3}\right)_{+}\right)_{+}, \quad \varphi_{1}(b)=x_{1}+\left(x_{3}-x_{2}+\left(\bar{x}_{2}-\bar{x}_{3}\right)_{+}\right)_{+}, \tag{3.3}\\
& \varepsilon_{2}(b)=3 \bar{x}_{2}+\frac{3}{2}\left(x_{3}-\bar{x}_{3}\right)_{+}, \quad \varphi_{2}(b)=3 x_{2}+\frac{3}{2}\left(\bar{x}_{3}-x_{3}\right)_{+} .
\end{align*}
$$

4 Minimal elements and a coherent family

The notion of perfect crystals was introduced in [3] to construct the path realization of a highest weight crystal of a quantum affine algebra. The crystal B_{l} was shown to be perfect of level l in [7]. In this section we obtain all the minimal elements of B_{l} in the coordinate representation and also show $\left\{B_{l}\right\}_{l \geq 1}$ forms a coherent family of perfect crystals. For the notations such as $P_{c l}$, $\left(P_{c l}^{+}\right)_{l}$, see [3].

4.1 Minimal elements

From (3.3) we have

$$
\begin{aligned}
\langle c, \varphi(b)\rangle & =\varphi_{0}(b)+2 \varphi_{1}(b)+\varphi_{2}(b) \\
& =l+\max A+2\left(z_{3}+\left(z_{2}\right)_{+}\right)_{+}+\left(3 z_{4}\right)_{+}-\left(z_{1}+z_{2}+2 z_{3}+3 z_{4}\right),
\end{aligned}
$$

where $z_{j}(1 \leq j \leq 4)$ are given in (2.2) and A is given in (2.4). The following lemma was proven in [6], although \mathbb{Z} is replaced with $\mathbb{Z} / 3$ here.

Lemma 2. For $\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in(\mathbb{Z} / 3)^{4}$ set

$$
\psi\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\max A+2\left(z_{3}+\left(z_{2}\right)_{+}\right)_{+}+\left(3 z_{4}\right)_{+}-\left(z_{1}+z_{2}+2 z_{3}+3 z_{4}\right) .
$$

Then we have $\psi\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \geq 0$ and $\psi\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=0$ if and only if $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=$ ($0,0,0,0$).

From this lemma, we have $\langle c, \varphi(b)\rangle-l=\psi\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \geq 0$. Since $\langle c, \varphi(b)-\varepsilon(b)\rangle=0$, we also have $\langle c, \varepsilon(b)\rangle \geq l$.

Suppose $\langle c, \varepsilon(b)\rangle=l$. It implies $\psi=0$. Hence from the lemma one can conclude that such element $b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right)$ should satisfy $x_{1}=\bar{x}_{1}, x_{2}=x_{3}=\bar{x}_{3}=\bar{x}_{2}$. Therefore the set of minimal elements $\left(B_{l}\right)_{\min }$ in B_{l} is given by

$$
\left(B_{l}\right)_{\min }=\left\{(\alpha, \beta, \beta, \beta, \beta, \alpha) \mid \alpha \in \mathbb{Z}_{\geq 0}, \beta \in\left(\mathbb{Z}_{\geq 0}\right) / 3,2 \alpha+3 \beta \leq l\right\} .
$$

For $b=(\alpha, \beta, \beta, \beta, \beta, \alpha) \in\left(B_{l}\right)_{\text {min }}$ one calculates

$$
\varepsilon(b)=\varphi(b)=(l-2 \alpha-3 \beta) \Lambda_{0}+\alpha \Lambda_{1}+3 \beta \Lambda_{2} .
$$

4.2 Coherent family of perfect crystals

The notion of a coherent family of perfect crystals was introduced in [1]. Let $\left\{B_{l}\right\}_{l \geq 1}$ be a family of perfect crystals B_{l} of level l and $\left(B_{l}\right)_{\min }$ be the subset of minimal elements of B_{l}. Set $J=\left\{(l, b) \mid l \in \mathbb{Z}_{>0}, b \in\left(B_{l}\right)_{\min }\right\}$. Let σ denote the isomorphism of $\left(P_{c l}^{+}\right)_{l}$ defined by $\sigma=\varepsilon \circ \varphi^{-1}$. For $\lambda \in P_{c l}, T_{\lambda}$ denotes a crystal with a unique element t_{λ} defined in [4]. For our purpose the following facts are sufficient. For any $P_{c l}$-weighted crystal B and $\lambda, \mu \in P_{c l}$ consider the crystal

$$
T_{\lambda} \otimes B \otimes T_{\mu}=\left\{t_{\lambda} \otimes b \otimes t_{\mu} \mid b \in B\right\} .
$$

The definition of T_{λ} and the tensor product rule of crystals imply

$$
\begin{array}{ll}
\tilde{e}_{i}\left(t_{\lambda} \otimes b \otimes t_{\mu}\right)=t_{\lambda} \otimes \tilde{e}_{i} b \otimes t_{\mu}, & \tilde{f}_{i}\left(t_{\lambda} \otimes b \otimes t_{\mu}\right)=t_{\lambda} \otimes \tilde{f}_{i} b \otimes t_{\mu}, \\
\varepsilon_{i}\left(t_{\lambda} \otimes b \otimes t_{\mu}\right)=\varepsilon_{i}(b)-\left\langle h_{i}, \lambda\right\rangle, & \varphi_{i}\left(t_{\lambda} \otimes b \otimes t_{\mu}\right)=\varphi_{i}(b)+\left\langle h_{i}, \mu\right\rangle, \\
w t\left(t_{\lambda} \otimes b \otimes t_{\mu}\right)=\lambda+\mu+w t b . &
\end{array}
$$

Definition 1. A crystal B_{∞} with an element b_{∞} is called a limit of $\left\{B_{l}\right\}_{l \geq 1}$ if it satisfies the following conditions:

- $w t b_{\infty}=0, \varepsilon\left(b_{\infty}\right)=\varphi\left(b_{\infty}\right)=0$,
- for any $(l, b) \in J$, there exists an embedding of crystals

$$
f_{(l, b)}: \quad T_{\varepsilon(b)} \otimes B_{l} \otimes T_{-\varphi(b)} \longrightarrow B_{\infty}
$$

sending $t_{\varepsilon(b)} \otimes b \otimes t_{-\varphi(b)}$ to b_{∞},

- $B_{\infty}=\bigcup_{(l, b) \in J} \operatorname{Im} f_{(l, b)}$.

If a limit exists for the family $\left\{B_{l}\right\}$, we say that $\left\{B_{l}\right\}$ is a coherent family of perfect crystals.
Let us now consider the following set

$$
B_{\infty}=\left\{\begin{array}{l|l}
b=\left(\nu_{1}, \nu_{2}, \nu_{3}, \bar{\nu}_{3}, \bar{\nu}_{2}, \bar{\nu}_{1}\right) \in(\mathbb{Z} / 3)^{6} & \begin{array}{l}
\nu_{1}, \bar{\nu}_{1}, \nu_{2}-\nu_{3}, \bar{\nu}_{3}-\bar{\nu}_{2} \in \mathbb{Z} \\
3 \nu_{3} \equiv 3 \bar{\nu}_{3}(\bmod 2)
\end{array}
\end{array}\right\},
$$

and set $b_{\infty}=(0,0,0,0,0,0)$. We introduce the crystal structure on B_{∞} as follows. The actions of $e_{i}, f_{i}(i=0,1,2)$ are defined by the same rule as in Section 3 with x_{i} and \bar{x}_{i} replaced with ν_{i} and $\bar{\nu}_{i}$. The only difference lies in the fact that $e_{i} b$ or $f_{i} b$ never becomes 0 , since we allow a coordinate to be negative and there is no restriction for the sum $s(b)=\sum_{i=1}^{2}\left(\nu_{i}+\bar{\nu}_{i}\right)+\left(\nu_{3}+\bar{\nu}_{3}\right) / 2$. For $\varepsilon_{i}, \varphi_{i}$ with $i=1,2$ we adopt the formulas in Section 3. For $\varepsilon_{0}, \varphi_{0}$ we define

$$
\varepsilon_{0}(b)=-s(b)+\max A-\left(2 z_{1}+z_{2}+z_{3}+3 z_{4}\right), \quad \varphi_{0}(b)=-s(b)+\max A,
$$

where A is given in (2.4) and $z_{1}, z_{2}, z_{3}, z_{4}$ are given in (2.2) with x_{i}, \bar{x}_{i} replaced by $\nu_{i}, \bar{\nu}_{i}$. Note that $\mathrm{w} t b_{\infty}=0$ and $\varepsilon_{i}\left(b_{\infty}\right)=\varphi_{i}\left(b_{\infty}\right)=0$ for $i=0,1,2$.

Let $b_{0}=(\alpha, \beta, \beta, \beta, \beta, \alpha)$ be an element of $\left(B_{l}\right)_{\min }$. Since $\varepsilon\left(b_{0}\right)=\varphi\left(b_{0}\right)$, one can set $\sigma=\mathrm{id}$. Let $\lambda=\varepsilon\left(b_{0}\right)$. For $b=\left(x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}\right) \in B_{l}$ we define a map

$$
f_{\left(l, b_{0}\right)}: \quad T_{\lambda} \otimes B_{l} \otimes T_{-\lambda} \longrightarrow B_{\infty}
$$

by

$$
f_{\left(l, b_{0}\right)}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right)=b^{\prime}=\left(\nu_{1}, \nu_{2}, \nu_{3}, \bar{\nu}_{3}, \bar{\nu}_{2}, \bar{\nu}_{1}\right),
$$

where

$$
\begin{array}{ll}
\nu_{1}=x_{1}-\alpha, & \bar{\nu}_{1}=\bar{x}_{1}-\alpha, \\
\nu_{j}=x_{j}-\beta, & \bar{\nu}_{j}=\bar{x}_{j}-\beta \quad(j=2,3) .
\end{array}
$$

Note that $s\left(b^{\prime}\right)=s(b)-(2 \alpha+3 \beta)$. Then we have

$$
\begin{aligned}
\omega t\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right) & =\omega t b=w t b^{\prime}, \\
\varphi_{0}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right) & =\varphi_{0}(b)+\left\langle h_{0},-\lambda\right\rangle \\
& =\varphi_{0}\left(b^{\prime}\right)+(l-s(b))+s\left(b^{\prime}\right)-(l-2 \alpha-3 \beta)=\varphi_{0}\left(b^{\prime}\right), \\
\varphi_{1}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right) & =\varphi_{1}(b)+\left\langle h_{1},-\lambda\right\rangle=\varphi_{1}\left(b^{\prime}\right)+\alpha-\alpha=\varphi_{1}\left(b^{\prime}\right), \\
\varphi_{2}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right) & =\varphi_{2}(b)+\left\langle h_{2},-\lambda\right\rangle=\varphi_{2}\left(b^{\prime}\right)+3 \beta-3 \beta=\varphi_{2}\left(b^{\prime}\right) .
\end{aligned}
$$

$\varepsilon_{i}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right)=\varepsilon_{i}\left(b^{\prime}\right)(i=0,1,2)$ also follows from the above calculations.
From the fact that $\left(z_{j}\right.$ for $\left.b\right)=\left(z_{j}\right.$ for $\left.b^{\prime}\right)$ it is straightforward to check that if $b, e_{i} b \in B_{l}$ (resp. $\left.b, f_{i} b \in B_{l}\right)$, then $f_{\left(l, b_{0}\right)}\left(e_{i}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right)\right)=e_{i} f_{\left(l, b_{0}\right)}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right)$ (resp. $f_{\left(l, b_{0}\right)}\left(f_{i}\left(t_{\lambda} \otimes\right.\right.$ $\left.\left.\left.b \otimes t_{-\lambda}\right)\right)=f_{i} f_{\left(l, b_{0}\right)}\left(t_{\lambda} \otimes b \otimes t_{-\lambda}\right)\right)$. Hence $f_{\left(l, b_{0}\right)}$ is a crystal embedding. It is easy to see that $f_{\left(l, b_{0}\right)}\left(t_{\lambda} \otimes b_{0} \otimes t_{-\lambda}\right)=b_{\infty}$. We can also check $B_{\infty}=\bigcup_{(l, b) \in J} \operatorname{Im} f_{(l, b)}$. Therefore we have shown that the family of perfect crystals $\left\{B_{l}\right\}_{l \geq 1}$ forms a coherent family.

5 Crystal graphs of B_{1} and B_{2}

In this section we present crystal graphs of the $U_{q}^{\prime}\left(G_{2}^{(1)}\right)$-crystals B_{1} and B_{2} in Figs. 1 and 2. In the graphs $b \xrightarrow{i} b^{\prime}$ stands for $b^{\prime}=f_{i} b$. Minimal elements are marked as $*$. Recall that as a $U_{q}\left(G_{2}\right)$-crystal

$$
B_{1} \simeq B(0) \oplus B\left(\Lambda_{1}\right), \quad B_{2} \simeq B(0) \oplus B\left(\Lambda_{1}\right) \oplus B\left(2 \Lambda_{1}\right)
$$

We give the table that relates the numbers in the crystal graphs to our representation of elements according to which $U_{q}\left(G_{2}\right)$-components they belong to.
$B(0): \phi^{*}=(0,0,0,0,0,0)$
$B\left(\Lambda_{1}\right)$:

$$
\begin{aligned}
1 & =(1,0,0,0,0,0) \boxed{2}=(0,1,0,0,0,0) \quad 3=\left(0, \frac{2}{3}, \frac{2}{3}, 0,0,0\right) \boxed{4}=\left(0, \frac{1}{3}, \frac{4}{3}, 0,0,0\right) \\
5 & =\left(0, \frac{1}{3}, \frac{1}{3}, 1,0,0\right) 6^{*}=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) \boxed{7}=(0,0,1,1,0,0) \boxed{8}=\left(0,0,1, \frac{1}{3}, \frac{1}{3}, 0\right) \\
9 & =\left(0,0,0, \frac{4}{3}, \frac{1}{3}, 0\right) 10=\left(0,0,0, \frac{2}{3}, \frac{2}{3}, 0\right) \boxed{11}=(0,0,0,0,1,0) \boxed{12}=(0,0,0,0,0,1) \\
13 & =(0,0,2,0,0,0) 14=(0,0,0,2,0,0)
\end{aligned}
$$

Figure 1. Crystal graph of $B_{1} \cdot \swarrow$ is f_{1} and \searrow is f_{2}.

$B\left(2 \Lambda_{1}\right)$:

$15=(2,0,0,0,0,0)$	$16=(1,1,0,0,0,0) 17=\left(1, \frac{2}{3}, \frac{2}{3}, 0,0,0\right)$	$18=\left(1, \frac{1}{3}, \frac{4}{3}, 0,0,0\right)$
$19=\left(1, \frac{1}{3}, \frac{1}{3}, 1,0,0\right)$	$20=\left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) 21=(1,0,1,1,0,0)$	$22=\left(1,0,1, \frac{1}{3}, \frac{1}{3}, 0\right)$
$23=\left(1,0,0, \frac{4}{3}, \frac{1}{3}, 0\right)$	$\overline{24}=\left(1,0,0, \frac{2}{3}, \frac{2}{3}, 0\right) 25=(1,0,0,0,1,0)$	$26^{*}=(1,0,0,0,0,1)$
$27=(1,0,2,0,0,0)$	$28=(1,0,0,2,0,0) \quad 29=(0,2,0,0,0,0)$	$30=\left(0, \frac{5}{3}, \frac{2}{3}, 0,0,0\right)$
$31=\left(0, \frac{4}{3}, \frac{4}{3}, 0,0\right.$	$32=\left(0, \frac{4}{3}, \frac{1}{3}, 1,0,0\right) 33=\left(0, \frac{4}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right)$	$34=(0,1,1,1,0,0)$
$35=\left(0,1,1, \frac{1}{3}, \frac{1}{3}, 0\right)$	$36=\left(0,1,0, \frac{4}{3}, \frac{1}{3}, 0\right) 37=\left(0,1,0, \frac{2}{3}, \frac{2}{3}, 0\right)$	$38=(0,1,0,0,1,0)$
$39=(0,1,0,0,0,1)$	$40=(0,1,2,0,0,0) 41=(0,1,0,2,0,0)$	$42=\left(0, \frac{2}{3}, \frac{2}{3}, 0,1,0\right)$
$43=\left(0, \frac{1}{3}, \frac{4}{3}, 0,1,0\right)$	$44=\left(0, \frac{1}{3}, \frac{1}{3}, 1,1,0\right) 45=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{4}{3}, 0\right)$	$46=(0,0,1,1,1,0)$
$47=\left(0,0,1, \frac{1}{3}, \frac{4}{3}, 0\right)$	$48=\left(0,0,0, \frac{4}{3}, \frac{4}{3}, 0\right) 49=\left(0,0,0, \frac{2}{3}, \frac{5}{3}, 0\right)$	$50=(0,0,0,0,2,0)$
$51=(0,0,0,0,1,1)$	$52=(0,0,2,0,1,0) 53=(0,0,0,2,1,0)$	$54=\left(0, \frac{2}{3}, \frac{2}{3}, 0,0,1\right)$
$55=\left(0, \frac{1}{3}, \frac{4}{3}, 0,0,1\right)$	$56=\left(0, \frac{1}{3}, \frac{1}{3}, 1,0,1\right) 57=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1\right)$	$58=(0,0,1,1,0,1)$
$59=\left(0,0,1, \frac{1}{3}, \frac{1}{3}, 1\right)$	$60=\left(0,0,0, \frac{4}{3}, \frac{1}{3}, 1\right) 61=\left(0,0,0, \frac{2}{3}, \frac{2}{3}, 1\right)$	$62=(0,0,0,0,0,2)$
$\boxed{63}=(0,0,2,0,0,1)$	$64=(0,0,0,2,0,1) 65=\left(0, \frac{2}{3}, \frac{8}{3}, 0,0,0\right)$	$\underline{66}=\left(0, \frac{1}{3}, \frac{10}{3}, 0,0,0\right)$
$67=\left(0, \frac{1}{3}, \frac{7}{3}, 1,0,0\right)$	$68=\left(0, \frac{1}{3}, \frac{7}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) 69=(0,0,3,1,0,0)$	$70=\left(0,0,3, \frac{1}{3}, \frac{1}{3}, 0\right)$
$71=\left(0,0,2, \frac{4}{3}, \frac{1}{3}, 0\right)$	$72=\left(0,0,2, \frac{2}{3}, \frac{2}{3}, 0\right) 73=(0,0,4,0,0,0)$	$74=(0,0,2,2,0,0)$
$75=\left(0, \frac{2}{3}, \frac{2}{3}, 2,0,0\right)$	$76=\left(0, \frac{1}{3}, \frac{4}{3}, 2,0,0\right) 77=\left(0, \frac{1}{3}, \frac{1}{3}, 3,0,0\right)$	$78=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{7}{3}, \frac{1}{3}, 0\right)$
$79=(0,0,1,3,0,0)$	$80=\left(0,0,1, \frac{7}{3}, \frac{1}{3}, 0\right) 81=\left(0,0,0, \frac{10}{3}, \frac{1}{3}, 0\right)$	$82=\left(0,0,0, \frac{8}{3}, \frac{2}{3}, 0\right)$
$83=(0,0,0,4,0,0)$	$84=\left(0, \frac{2}{3}, \frac{5}{3}, 1,0,0\right) 85=\left(0, \frac{1}{3}, \frac{4}{3}, \frac{4}{3}, \frac{1}{3}, 0\right)$	$86=\left(0,0,1, \frac{5}{3}, \frac{2}{3}, 0\right)$
$87=\left(0, \frac{2}{3}, \frac{5}{3}, \frac{1}{3}, \frac{1}{3}, 0\right)$	$88=\left(0, \frac{2}{3}, \frac{2}{3}, \frac{4}{3}, \frac{1}{3}, 0\right) 89=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{5}{3}, \frac{2}{3}, 0\right)$	$90^{*}=\left(0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, 0\right)$
$91=\left(0, \frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{2}{3}, 0\right)$		

Comparing our crystal graphs with those in [7] we found that some 2-arrows are missing in Fig. 3 of [7].

Figure 2. Crystal graph of B_{2}. \searrow is f_{0}, \swarrow is f_{1} and others are f_{2}.

Acknowledgements

KCM thanks the faculty and staff of Osaka University for their hospitality during his visit in August, 2009 and acknowledges partial support from NSA grant H98230-08-1-0080. MM would like to thank Universiti Tun Hussein Onn Malaysia for supporting this study. MO would like to thank the organizers of the conference "Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems" held during March 30 - April 3, 2009 at Glasgow for a warm hospitality and acknowledges partial support from JSPS grant No. 20540016.

References

[1] Kang S.-J., Kashiwara M., Misra K.C., Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994), 299-325.
[2] Kang S.-J., Misra K.C., Crystal bases and tensor product decompositions of $U_{q}\left(G_{2}\right)$-module, J. Algebra 163 (1994), 675-691.
[3] Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., Vol. 16, World Sci. Publ., River Edge, NJ, 1992, 449-484.
[4] Kashiwara M., Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
[5] Kashiwara M., Similarity of crystal bases, in Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., Vol. 194, Amer. Math. Soc., Providence, RI, 1996, 177-186.
[6] Kashiwara M., Misra K.C., Okado M., Yamada D., Perfect crystals for $U_{q}\left(D_{4}^{(3)}\right)$, J. Algebra 317 (2007), 392-423, math.QA/0610873.
[7] Yamane S., Perfect crystals of $U_{q}\left(G_{2}^{(1)}\right)$, J. Algebra 210 (1998), 440-486, q-alg/9712012.

[^0]: *This paper is a contribution to the Proceedings of the Workshop "Geometric Aspects of Discrete and UltraDiscrete Integrable Systems" (March 30 - April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html

