Zero Action on Perfect Crystals for $U_q(G_2^{(1)})^{\star}$

Kailash C. MISRA †. Mahathir MOHAMAD ‡ and Masato OKADO ‡

† Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205, USA

E-mail: misra@unity.ncsu.edu

[‡] Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

E-mail: mahathir75@yahoo.com, okado@sigmath.es.osaka-u.ac.jp

Received November 13, 2009, in final form March 03, 2010; Published online March 09, 2010 doi:10.3842/SIGMA.2010.022

Abstract. The actions of 0-Kashiwara operators on the $U_q'(G_2^{(1)})$ -crystal B_l in [Yamane S., J. Algebra **210** (1998), 440–486] are made explicit by using a similarity technique from that of a $U_q'(D_4^{(3)})$ -crystal. It is shown that $\{B_l\}_{l\geq 1}$ forms a coherent family of perfect crystals.

Key words: combinatorial representation theory; quantum affine algebra; crystal bases

2010 Mathematics Subject Classification: 05E99; 17B37; 17B67; 81R10; 81R50

1 Introduction

Let \mathfrak{g} be a symmetrizable Kac-Moody algebra. Let I be its index set for simple roots, P the weight lattice, $\alpha_i \in P$ a simple root $(i \in I)$, and $h_i \in P^*(= \operatorname{Hom}(P, \mathbb{Z}))$ a simple coroot $(i \in I)$. To each $i \in I$ we associate a positive integer m_i and set $\tilde{\alpha}_i = m_i \alpha_i$, $\tilde{h}_i = h_i/m_i$. Suppose $(\langle \tilde{h}_i, \tilde{\alpha}_j \rangle)_{i,j \in I}$ is a generalized Cartan matrix for another symmetrizable Kac-Moody algebra $\tilde{\mathfrak{g}}$. Then the subset \tilde{P} of P consisting of $\lambda \in P$ such that $\langle \tilde{h}_i, \lambda \rangle$ is an integer for any $i \in I$ can be considered as the weight lattice of $\tilde{\mathfrak{g}}$. For a dominant integral weight λ let $B^{\mathfrak{g}}(\lambda)$ be the highest weight crystal with highest weight λ over $U_q(\mathfrak{g})$. Then, in [5] Kashiwara showed the following. (The theorem in [5] is more general.)

Theorem 1. Let λ be a dominant integral weight in \tilde{P} . Then, there exists a unique injective map $S: B^{\tilde{\mathfrak{g}}}(\lambda) \to B^{\mathfrak{g}}(\lambda)$ such that

$$\operatorname{wt} S(b) = \operatorname{wt} b, \qquad S(e_i b) = e_i^{m_i} S(b), \qquad S(f_i b) = f_i^{m_i} S(b).$$

In this paper, we use this theorem to examine the so-called Kirillov–Reshetikhin crystal. Let \mathfrak{g} be the affine algebra of type $D_4^{(3)}$. The generalized Cartan matrix $(\langle h_i, \alpha_j \rangle)_{i,j \in I}$ $(I = \{0, 1, 2\})$ is given by

$$\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -3 \\
0 & -1 & 2
\end{array}\right).$$

Set $(m_0, m_1, m_2) = (3, 3, 1)$. Then, $\tilde{\mathfrak{g}}$ defined above turns out to be the affine algebra of type $G_2^{(1)}$. Their Dynkin diagrams are depicted as follows

^{*}This paper is a contribution to the Proceedings of the Workshop "Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems" (March 30 – April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html

For $G_2^{(1)}$ a family of perfect crystals $\{B_l\}_{l\geq 1}$ was constructed in [7]. However, the crystal elements there were realized in terms of tableaux given in [2], and it was not easy to calculate the action of 0-Kashiwara operators on these tableaux. On the other hand, an explicit action of these operators was given on perfect crystals $\{\hat{B}_l\}_{l\geq 1}$ over $U_q'(D_4^{(3)})$ in [6]. Hence, it is a natural idea to use Theorem 1 to obtain the explicit action of e_0 , f_0 on B_l from that on $\hat{B}_{l'}$ with suitable l'. We remark that Kirillov–Reshetikhin crystals are parametrized by a node of the Dynkin diagram except 0 and a positive integer. Both B_l and \hat{B}_l correspond to the pair (1,l).

Our strategy to do this is as follows. We define V_l as an appropriate subset of \hat{B}_{3l} that is closed under the action of $\hat{e}_i^{m_i}$, $\hat{f}_i^{m_i}$ where \hat{e}_i , \hat{f}_i stand for the Kashiwara operators on \hat{B}_{3l} . Hence, we can regard V_l as a $U_q'(G_2^{(1)})$ -crystal. We next show that as a $U_q(G_2^{(1)})_{\{0,1\}} (=U_q(A_2))$ -crystal and as a $U_q(G_2^{(1)})_{\{1,2\}} (=U_q(G_2))$ -crystal, V_l has the same decomposition as B_l . Then, we can conclude from Theorem 6.1 of [6] that V_l is isomorphic to the $U_q'(G_2^{(1)})$ -crystal B_l constructed in [7] (Theorem 2).

The paper is organized as follows. In Section 2 we review the $U_q'(D_4^{(3)})$ -crystal \hat{B}_l . We then construct a $U_q'(G_2^{(1)})$ -crystal V_l in \hat{B}_{3l} with the aid of Theorem 1 and see it coincides with B_l given in [7] in Section 3. Minimal elements of B_l are found and $\{B_l\}_{l\geq 1}$ is shown to form a coherent family of perfect crystals in Section 4. The crystal graphs of B_1 and B_2 are included in Section 5.

2 Review on $U_q'ig(D_4^{(3)}ig)$ -crystal \hat{B}_l

In this section we recall the perfect crystal for $U_q'(D_4^{(3)})$ constructed in [6]. Since we also consider $U_q'(G_2^{(1)})$ -crystals later, we denote it by \hat{B}_l . Kashiwara operators e_i , f_i and ε_i , φ_i on \hat{B}_l are denoted by \hat{e}_i , \hat{f}_i and $\hat{\varepsilon}_i$, $\hat{\varphi}_i$. Readers are warned that the coordinates x_i , \bar{x}_i and steps by Kashiwara operators in [6] are divided by 3 here, since it is more convenient for our purpose. As a set

$$\hat{B}_{l} = \left\{ b = (x_{1}, x_{2}, x_{3}, \bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}) \in (\mathbb{Z}_{\geq 0}/3)^{6} \middle| \begin{array}{l} 3x_{3} \equiv 3\bar{x}_{3} \pmod{2}, \\ \sum_{i=1,2} (x_{i} + \bar{x}_{i}) + (x_{3} + \bar{x}_{3})/2 \leq l/3 \end{array} \right\}.$$

In order to define the actions of Kashiwara operators \hat{e}_i and \hat{f}_i for i = 0, 1, 2, we introduce some notations and conditions. Set $(x)_+ = \max(x, 0)$. For $b = (x_1, x_2, x_3, \bar{x}_3, \bar{x}_2, \bar{x}_1) \in \hat{B}_l$ we set

$$s(b) = x_1 + x_2 + \frac{x_3 + \bar{x}_3}{2} + \bar{x}_2 + \bar{x}_1, \tag{2.1}$$

and

$$z_1 = \bar{x}_1 - x_1, \qquad z_2 = \bar{x}_2 - \bar{x}_3, \qquad z_3 = x_3 - x_2, \qquad z_4 = (\bar{x}_3 - x_3)/2.$$
 (2.2)

Now we define conditions (E_1) – (E_6) and (F_1) – (F_6) as follows

$$(F_1)$$
 $z_1 + z_2 + z_3 + 3z_4 \le 0$, $z_1 + z_2 + 3z_4 \le 0$, $z_1 + z_2 \le 0$, $z_1 \le 0$,

$$(F_2)$$
 $z_1 + z_2 + z_3 + 3z_4 \le 0$, $z_2 + 3z_4 \le 0$, $z_2 \le 0$, $z_1 > 0$,

$$(F_3)$$
 $z_1 + z_3 + 3z_4 \le 0$, $z_3 + 3z_4 \le 0$, $z_4 \le 0$, $z_2 > 0$, $z_1 + z_2 > 0$, (2.3)

$$(F_4)$$
 $z_1 + z_2 + 3z_4 > 0$, $z_2 + 3z_4 > 0$, $z_4 > 0$, $z_3 \le 0$, $z_1 + z_3 \le 0$,

$$(F_5)$$
 $z_1 + z_2 + z_3 + 3z_4 > 0$, $z_3 + 3z_4 > 0$, $z_3 > 0$, $z_1 \le 0$,

$$(F_6)$$
 $z_1 + z_2 + z_3 + 3z_4 > 0$, $z_1 + z_3 + 3z_4 > 0$, $z_1 + z_3 > 0$, $z_1 > 0$.

The conditions (F_1) – (F_6) are disjoint and they exhaust all cases. (E_i) $(1 \le i \le 6)$ is defined from (F_i) by replacing > (resp. \le) with \ge (resp. <). We also define

$$A = (0, z_1, z_1 + z_2, z_1 + z_2 + 3z_4, z_1 + z_2 + z_3 + 3z_4, 2z_1 + z_2 + z_3 + 3z_4).$$

$$(2.4)$$

Then, for $b = (x_1, x_2, x_3, \bar{x}_3, \bar{x}_2, \bar{x}_1) \in \hat{B}_l$, $\hat{e}_i b$, $\hat{f}_i b$, $\hat{e}_i (b)$, $\hat{\varphi}_i (b)$ are given as follows

$$\hat{e}_0b = \begin{cases} (x_1 - 1/3, \dots) & \text{if } (E_1), \\ (\dots, x_3 - 1/3, \bar{x}_3 - 1/3, \dots, \bar{x}_1 + 1/3) & \text{if } (E_2), \\ (\dots, x_3 - 2/3, \dots, \bar{x}_2 + 1/3, \dots) & \text{if } (E_3), \\ (\dots, x_2 - 1/3, \dots, \bar{x}_3 + 2/3, \dots) & \text{if } (E_4), \\ (x_1 - 1/3, \dots, x_3 + 1/3, \bar{x}_3 + 1/3, \dots) & \text{if } (E_6), \\ (\dots, \bar{x}_1 + 1/3) & \text{if } (E_6), \end{cases}$$

$$\hat{f}_0b = \begin{cases} (x_1 + 1/3, \dots) & \text{if } (F_1), \\ (\dots, x_3 + 1/3, \bar{x}_3 + 1/3, \dots, \bar{x}_1 - 1/3) & \text{if } (F_2), \\ (\dots, x_3 + 2/3, \dots, \bar{x}_2 - 1/3, \dots) & \text{if } (F_3), \\ (\dots, x_2 + 1/3, \dots, \bar{x}_3 - 2/3, \dots) & \text{if } (F_6), \end{cases}$$

$$\hat{e}_1b = \begin{cases} (\dots, \bar{x}_2 + 1/3, \bar{x}_1 - 1/3) & \text{if } z_2 \geq (-z_3), \\ (\dots, \bar{x}_1 - 1/3) & \text{if } z_2 \geq (-z_3), \\ (\dots, \bar{x}_1 - 1/3, \dots) & \text{if } (z_2) + \langle (-z_3), \\ (\dots, x_3 + 1/3, \bar{x}_3 + 1/3, \dots) & \text{if } (z_2) + \langle (-z_3), \\ (\dots, \bar{x}_1 - 1/3, \bar{x}_2 + 1/3, \dots) & \text{if } (z_2) + \langle (-z_3), \\ (\dots, x_3 - 1/3, \bar{x}_3 + 1/3, \dots) & \text{if } z_2 \geq (-z_3), \end{cases}$$

$$\hat{f}_1b = \begin{cases} (x_1 - 1/3, x_2 + 1/3, \dots) & \text{if } (z_2) + \langle (-z_3), \\ (\dots, x_3 - 1/3, \bar{x}_3 + 1/3, \dots) & \text{if } z_2 \geq (-z_3), \\ (\dots, x_2 - 1/3, \bar{x}_1 + 1/3) & \text{if } z_2 \geq (-z_3), \end{cases}$$

$$\hat{f}_2b = \begin{cases} (\dots, x_2 - 1/3, x_3 + 2/3, \dots) & \text{if } z_4 \geq 0, \\ (\dots, x_2 + 1/3, x_3 - 2/3, \dots) & \text{if } z_4 \leq 0, \\ (\dots, x_3 - 2/3, \bar{x}_2 + 1/3, \dots) & \text{if } z_4 \leq 0, \end{cases}$$

$$\hat{e}_0(b) = l - 3s(b) + 3 \max A - 3(2z_1 + z_2 + z_3 + 3z_4),$$

$$\hat{\varphi}_0(b) = l - 3s(b) + 3 \max A,$$

$$\hat{\varepsilon}_1(b) = 3\bar{x}_1 + 3(\bar{x}_3 - \bar{x}_2 + (\bar{x}_2 - \bar{x}_3)) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

$$\hat{\varphi}_2(b) = 3\bar{x}_2 + \frac{3}{2}(x_3 - \bar{x}_3) + ,$$

If $\hat{e}_i b$ or $\hat{f}_i b$ does not belong to \hat{B}_l , namely, if x_j or \bar{x}_j for some j becomes negative or s(b) exceeds l/3, we should understand it to be 0. Forgetting the 0-arrows,

$$\hat{B}_l \simeq \bigoplus_{j=0}^l B^{G_2^{\dagger}}(j\Lambda_1),$$

where $B^{G_2^{\dagger}}(\lambda)$ is the highest weight $U_q(G_2^{\dagger})$ -crystal of highest weight λ and G_2^{\dagger} stands for the simple Lie algebra G_2 with the reverse labeling of the indices of the simple roots (α_1 is the short

root). Forgetting 2-arrows,

$$\hat{B}_{l} \simeq \bigoplus_{i=0}^{\lfloor \frac{l}{2} \rfloor} \bigoplus_{\substack{i \leq j_{0}, j_{1} \leq l-i \\ j_{0}, j_{1} \equiv l-i \pmod{3}}} B^{A_{2}}(j_{0}\Lambda_{0} + j_{1}\Lambda_{1}),$$

where $B^{A_2}(\lambda)$ is the highest weight $U_q(A_2)$ -crystal (with indices $\{0,1\}$) of highest weight λ .

$U_q'(G_2^{(1)})$ -crystal

In this section we define a subset V_l of \hat{B}_{3l} and see it is isomorphic to the $U'_q(G_2^{(1)})$ -crystal B_l . The set V_l is defined as a subset of \hat{B}_{3l} satisfying the following conditions:

$$x_1, \bar{x}_1, x_2 - x_3, \bar{x}_3 - \bar{x}_2 \in \mathbb{Z}.$$
 (3.1)

For an element $b = (x_1, x_2, x_3, \bar{x}_3, \bar{x}_2, \bar{x}_1)$ of V_l we define s(b) as in (2.1). From (3.1) we see that $s(b) \in \{0, 1, ..., l\}$.

Lemma 1. For $0 \le k \le l$

$$\sharp\{b\in V_l\mid s(b)=k\}=\frac{1}{120}(k+1)(k+2)(2k+3)(3k+4)(3k+5).$$

Proof. We first count the number of elements $(x_2, x_3, \bar{x}_3, \bar{x}_2)$ satisfying the conditions of coordinates as an element of V_l and $x_2 + (x_3 + \bar{x}_3)/2 + \bar{x}_2 = m$ (m = 0, 1, ..., k). According to (a, b, c, d) $(a, d \in \{0, 1/3, 2/3\}, b, c \in \{0, 1/3, 2/3, 1, 4/3, 5/3\})$ such that $x_2 \in \mathbb{Z} + a$, $x_3 \in 2\mathbb{Z} + b$, $\bar{x}_3 \in 2\mathbb{Z} + c$, $\bar{x}_2 \in \mathbb{Z} + d$, we divide the cases into the following 18:

The number of elements $(x_2, x_3, \bar{x}_3, \bar{x}_2)$ in a case among the above such that a + (b+c)/2 + d = e (e = 0, 1, 2, 3) is given by $f(e) = {m-e+3 \choose 3}$. Since there is one case with e = 0 (i) and e = 3 (xviii) and 8 cases with e = 1 and e = 2, the number of $(x_2, x_3, \bar{x}_3, \bar{x}_2)$ such that $x_2 + (x_3 + \bar{x}_3)/2 + \bar{x}_2 = m$ is given by

$$f(0) + 8f(1) + 8f(2) + f(3) = \frac{1}{2}(2m+1)(3m^2 + 3m + 2).$$

For each $(x_2, x_3, \bar{x}_3, \bar{x}_2)$ such that $x_2 + (x_3 + \bar{x}_3)/2 + \bar{x}_2 = m$ (m = 0, 1, ..., k) there are (k - m + 1) cases for (x_1, \bar{x}_1) , so the number of $b \in V_l$ such that s(b) = k is given by

$$\sum_{m=0}^{k} \frac{1}{2} (2m+1)(3m^2+3m+2)(k-m+1).$$

A direct calculation leads to the desired result.

We define the action of operators e_i , f_i (i = 0, 1, 2) on V_l as follows.

$$e_0b = \begin{cases} (x_1 - 1, \dots) & \text{if } (E_1), \\ (\dots, x_3 - 1, \bar{x}_3 - 1, \dots, \bar{x}_1 + 1) & \text{if } (E_2), \\ (\dots, x_2 - \frac{2}{3}, x_3 - \frac{2}{3}, \bar{x}_3 + \frac{4}{3}, \bar{x}_2 + \frac{1}{3}, \dots) & \text{if } (E_3) \text{ and } z_4 = -\frac{1}{3}, \\ (\dots, x_2 - \frac{1}{3}, x_3 - \frac{4}{3}, \bar{x}_3 + \frac{2}{3}, \bar{x}_2 + \frac{2}{3}, \dots) & \text{if } (E_3) \text{ and } z_4 = -\frac{2}{3}, \\ (\dots, x_3 - 2, \dots, \bar{x}_2 + 1, \dots) & \text{if } (E_3) \text{ and } z_4 \neq -\frac{1}{3}, -\frac{2}{3}, \\ (\dots, x_2 - 1, \dots, \bar{x}_3 + 2, \dots) & \text{if } (E_4), \\ (x_1 - 1, \dots, x_3 + 1, \bar{x}_3 + 1, \dots) & \text{if } (E_5), \\ (\dots, \bar{x}_1 + 1) & \text{if } (E_6), \end{cases}$$

$$f_0b = \begin{cases} (x_1 + 1, \dots) & \text{if } (F_1), \\ (\dots, x_3 + 2, \dots, \bar{x}_2 - 1, \dots) & \text{if } (F_3), \\ (\dots, x_2 + \frac{1}{3}, x_3 + \frac{4}{3}, \bar{x}_3 - \frac{2}{3}, \bar{x}_2 - \frac{2}{3}, \dots) & \text{if } (F_4) \text{ and } z_4 = \frac{1}{3}, \\ (\dots, x_2 + \frac{1}{3}, x_3 + \frac{4}{3}, \bar{x}_3 - \frac{2}{3}, \bar{x}_2 - \frac{2}{3}, \dots) & \text{if } (F_4) \text{ and } z_4 = \frac{1}{3}, \\ (\dots, x_2 + \frac{1}{3}, x_3 + \frac{2}{3}, \bar{x}_3 - \frac{4}{3}, \bar{x}_2 - \frac{1}{3}, \dots) & \text{if } (F_4) \text{ and } z_4 \neq \frac{1}{3}, \frac{2}{3}, \\ (\dots, x_2 + 1, \dots, \bar{x}_3 - 2, \dots) & \text{if } (F_4) \text{ and } z_4 \neq \frac{1}{3}, \frac{2}{3}, \\ (\dots, x_2 + 1, \dots, \bar{x}_3 - 1, \dots) & \text{if } (F_5), \\ (\dots, \bar{x}_1 - 1) & \text{if } (F_5), \end{cases}$$

$$e_1b = \begin{cases} (\dots, \bar{x}_2 + 1, \bar{x}_1 - 1) & \text{if } \bar{x}_2 - \bar{x}_3 \geq (x_2 - x_3) +, \\ (\dots, x_3 + 1, \bar{x}_3 - 1, \dots) & \text{if } (\bar{x}_2 - \bar{x}_3) + \langle x_2 - x_3, \\ (x_1 + 1, x_2 - 1, \dots) & \text{if } (\bar{x}_2 - \bar{x}_3) + \langle x_2 - x_3, \\ (x_1 + 1, x_2 - 1, \dots) & \text{if } (\bar{x}_2 - \bar{x}_3) + \langle x_2 - x_3, \\ (\dots, x_3 - 1, \bar{x}_3 + 1, \dots) & \text{if } \bar{x}_2 - \bar{x}_3 \leq 0 < x_3 - x_2, \\ (\dots, x_2 - 1, \bar{x}_1 + 1) & \text{if } \bar{x}_2 - \bar{x}_3 \leq 0 < x_3 - x_2, \\ (\dots, x_2 - 1, \bar{x}_1 + 1) & \text{if } \bar{x}_2 - \bar{x}_3 \leq 0 < x_3 - x_2, \\ (\dots, x_2 - 1, \bar{x}_1 + 1) & \text{if } \bar{x}_2 - \bar{x}_3 \leq 0 < x_3 - x_2, \\ (\dots, x_2 - 1, \bar{x}_3 + 1, \dots) & \text{if } \bar{x}_3 \geq x_3, \end{cases}$$

$$e_2b = \begin{cases} (\dots, x_2 - \frac{1}{3}, x_3 - \frac{2}{3}, \dots) & \text{if } \bar{x}_3 \leq x_3, \\ (\dots, x_2 - \frac{1}{3}, x_3 - \frac{2}{3}, \dots) & \text{if } \bar{x}_3 \leq x_3, \\ (\dots, x_2 - \frac{1}{3}, x_3 - \frac{2}{3}, \dots) & \text{if } \bar{x}_3 > x_3. \end{cases}$$
We now set $(m_0, m_1, m_2) = (3, 3, 1).$

We now set $(m_0, m_1, m_2) = (3, 3, 1)$.

Proposition 1.

- (1) For any $b \in V_l$ we have $e_i b, f_i b \in V_l \sqcup \{0\}$ for i = 0, 1, 2.
- (2) The equalities $e_i = \hat{e}_i^{m_i}$ and $f_i = \hat{f}_i^{m_i}$ hold on V_l for i = 0, 1, 2.

Proof. (1) can be checked easily.

For (2) we only treat f_i . To prove the i=0 case consider the following table

	(F_1)	(F_2)	(F_3)	(F_4)	(F_5)	(F_6)
$\overline{z_1}$	-1/3	-1/3	0	0	-1/3	-1/3
z_2	0	-1/3	-1/3	2/3	1/3	0
		1/3				
z_4	0	0	-1/3	-1/3	0	0

This table signifies the difference $(z_j \text{ for } \hat{f}_0 b) - (z_j \text{ for } b)$ when b belongs to the case (F_i) . Note that the left hand sides of the inequalities of each (F_i) (2.3) always decrease by 1/3. Since $z_1, z_2, z_3 \in \mathbb{Z}, z_4 \in \mathbb{Z}/3$ for $b \in V_l$, we see that if b belongs to (F_i) , $\hat{f}_0 b$ and $\hat{f}_0^2 b$ also belong to (F_i) except two cases: (a) $b \in (F_4)$ and $z_4 = 1/3$, and (b) $b \in (F_4)$ and $z_4 = 2/3$. If (a) occurs, we have $\hat{f}_0 b, \hat{f}_0^2 b \in (F_3)$. Hence, we obtain $f_0 = \hat{f}_0^3$ in this case. If (b) occurs, we have $\hat{f}_0 b \in (F_4)$, $\hat{f}_0^2 b \in (F_3)$. Therefore, we obtain $f_0 = \hat{f}_0^3$ in this case as well.

In the i=1 case, if b belongs to one of the 3 cases, \hat{f}_1b and \hat{f}_1^2b also belong to the same case. Hence, we obtain $f_1 = \hat{f}_1^3$. For i=2 there is nothing to do.

Proposition 1, together with Theorem 1, shows that V_l can be regarded as a $U'_q(G_2^{(1)})$ -crystal with operators e_i , f_i (i = 0, 1, 2).

Proposition 2. As a $U_q(G_2^{(1)})_{\{1,2\}}$ -crystal

$$V_l \simeq \bigoplus_{k=0}^l B^{G_2}(k\Lambda_1),$$

where $B^{G_2}(\lambda)$ is the highest weight $U_q(G_2)$ -crystal of highest weight λ .

Proof. For a subset J of $\{0, 1, 2\}$ we say b is J-highest if $e_j b = 0$ for any $j \in J$. Note from (2.5) that $b_k = (k, 0, 0, 0, 0, 0)$ ($0 \le k \le l$) is $\{1, 2\}$ -highest of weight $3k\Lambda_1$ in \hat{B}_{3l} . By setting $\mathfrak{g} = G_2^{\dagger}$ (= G_2 with the reverse labeling of indices), $(m_1, m_2) = (3, 1)$, $\tilde{\mathfrak{g}} = G_2$ in Theorem 1, we know that the connected component generated from b_k by $f_1 = \hat{f}_1^3$ and $f_2 = \hat{f}_2$ is isomorphic to $B^{G_2}(k\Lambda_1)$. Hence by Proposition 1 (1) we have

$$\bigoplus_{k=0}^{l} B^{G_2}(k\Lambda_1) \subset V_l. \tag{3.2}$$

Now recall Weyl's formula to calculate the dimension of the highest weight representation. In our case we obtain

$$\sharp B^{G_2}(k\Lambda_1) = \frac{1}{120}(k+1)(k+2)(2k+3)(3k+4)(3k+5).$$

However, this is equal to $\sharp\{b\in V_l\mid s(b)=k\}$ by Lemma 1. Therefore, \subset in (3.2) should be =, and the proof is completed.

Proposition 3. As a $U_q(G_2^{(1)})_{\{0,1\}}$ -crystal

$$V_l \simeq \bigoplus_{i=0}^{\lfloor l/2 \rfloor} \bigoplus_{i \leq j_0, j_1 \leq l-i} B^{A_2} (j_0 \Lambda_0 + j_1 \Lambda_1),$$

where $B^{A_2}(\lambda)$ is the highest weight $U_q(A_2)$ -crystal (with indices $\{0,1\}$) of highest weight λ .

Proof. For integers i, j_0, j_1 such that $0 \le i \le l/2$, $i \le j_0, j_1 \le l-i$, define an element b_{i,j_0,j_1} of V_l by

$$b_{i,j_0,j_1} = \begin{cases} (0, y_1, 3y_0 - 2y_1 + i, y_0 + i, y_0 + j_0, 0) & \text{if } j_0 \le j_1, \\ (0, y_0, y_0 + i, 2y_1 - y_0 + i, 2y_0 - y_1 + j_0, 0) & \text{if } j_0 > j_1. \end{cases}$$

Here we have set $y_a = (l - i - j_a)/3$ for a = 0, 1. From (2.5) one notices that b_{i,j_0,j_1} is $\{0,1\}$ highest of weight $3j_0\Lambda_0 + 3j_1\Lambda_1$ in \hat{B}_{3l} . For instance, $\hat{\varepsilon}_0(b_{i,j_0,j_1}) = 0$ and $\hat{\varphi}_0(b_{i,j_0,j_1}) = 3j_0$ since

 $s(b_{i,j_0,j_1})=l$ and max $A=2z_1+z_2+z_3+3z_4=j_0$. By setting $\mathfrak{g}=\tilde{\mathfrak{g}}=A_2, (m_0,m_1)=(3,3)$ in Theorem 1, the connected component generated from b_{i,j_0,j_1} by $f_i=\hat{f}_i^3$ (i=0,1) is isomorphic to $B^{A_2}(j_0\Lambda_0+j_1\Lambda_1)$. Hence, by Proposition 1 (1) we have

$$\bigoplus_{i=0}^{\lfloor l/2 \rfloor} \bigoplus_{i \le j_0, j_1 \le l-i} B^{A_2}(j_0 \Lambda_0 + j_1 \Lambda_1) \subset V_l.$$

However, from Proposition 2 one knows that

$$\sharp V_l = \sum_{k=0}^l \sharp B^{G_2}(k\Lambda_1).$$

Moreover, it is already established in [7] that

$$\sum_{k=0}^{l} \sharp B^{G_2}(k\Lambda_1) = \sum_{i=0}^{\lfloor l/2 \rfloor} \sum_{i \leq j_0, j_1 \leq l-i} \sharp B^{A_2}(j_0\Lambda_0 + j_1\Lambda_1).$$

Therefore, the proof is completed.

Theorem 6.1 in [6] shows that if two $U'_q(G_2^{(1)})$ -crystals decompose into $\bigoplus_{0 \le k \le l} B^{G_2}(k\Lambda_1)$ as $U_q(G_2)$ -crystals, then they are isomorphic to each other. Therefore, we now have

Theorem 2. V_l agrees with the $U'_q(G_2^{(1)})$ -crystal B_l constructed in [7]. The values of ε_i , φ_i with our representation are given by

$$\varepsilon_{0}(b) = l - s(b) + \max A - (2z_{1} + z_{2} + z_{3} + 3z_{4}), \qquad \varphi_{0}(b) = l - s(b) + \max A,
\varepsilon_{1}(b) = \bar{x}_{1} + (\bar{x}_{3} - \bar{x}_{2} + (x_{2} - x_{3})_{+})_{+}, \qquad \varphi_{1}(b) = x_{1} + (x_{3} - x_{2} + (\bar{x}_{2} - \bar{x}_{3})_{+})_{+},
\varepsilon_{2}(b) = 3\bar{x}_{2} + \frac{3}{2}(x_{3} - \bar{x}_{3})_{+}, \qquad \varphi_{2}(b) = 3x_{2} + \frac{3}{2}(\bar{x}_{3} - x_{3})_{+}.$$
(3.3)

4 Minimal elements and a coherent family

The notion of perfect crystals was introduced in [3] to construct the path realization of a highest weight crystal of a quantum affine algebra. The crystal B_l was shown to be perfect of level l in [7]. In this section we obtain all the minimal elements of B_l in the coordinate representation and also show $\{B_l\}_{l\geq 1}$ forms a coherent family of perfect crystals. For the notations such as P_{cl} , $(P_{cl}^+)_l$, see [3].

4.1 Minimal elements

From (3.3) we have

$$\langle c, \varphi(b) \rangle = \varphi_0(b) + 2\varphi_1(b) + \varphi_2(b)$$

= $l + \max A + 2(z_3 + (z_2)_+)_+ + (3z_4)_+ - (z_1 + z_2 + 2z_3 + 3z_4),$

where z_j $(1 \le j \le 4)$ are given in (2.2) and A is given in (2.4). The following lemma was proven in [6], although \mathbb{Z} is replaced with $\mathbb{Z}/3$ here.

Lemma 2. For $(z_1, z_2, z_3, z_4) \in (\mathbb{Z}/3)^4$ set

$$\psi(z_1, z_2, z_3, z_4) = \max A + 2(z_3 + (z_2)_+)_+ + (3z_4)_+ - (z_1 + z_2 + 2z_3 + 3z_4).$$

Then we have $\psi(z_1, z_2, z_3, z_4) \geq 0$ and $\psi(z_1, z_2, z_3, z_4) = 0$ if and only if $(z_1, z_2, z_3, z_4) = (0, 0, 0, 0)$.

From this lemma, we have $\langle c, \varphi(b) \rangle - l = \psi(z_1, z_2, z_3, z_4) \ge 0$. Since $\langle c, \varphi(b) - \varepsilon(b) \rangle = 0$, we also have $\langle c, \varepsilon(b) \rangle > l$.

Suppose $\langle c, \varepsilon(b) \rangle = l$. It implies $\psi = 0$. Hence from the lemma one can conclude that such element $b = (x_1, x_2, x_3, \bar{x}_3, \bar{x}_2, \bar{x}_1)$ should satisfy $x_1 = \bar{x}_1$, $x_2 = x_3 = \bar{x}_3 = \bar{x}_2$. Therefore the set of minimal elements $(B_l)_{\min}$ in B_l is given by

$$(B_l)_{\min} = \{(\alpha, \beta, \beta, \beta, \beta, \alpha) | \alpha \in \mathbb{Z}_{\geq 0}, \beta \in (\mathbb{Z}_{\geq 0})/3, 2\alpha + 3\beta \leq l\}.$$

For $b = (\alpha, \beta, \beta, \beta, \beta, \alpha) \in (B_l)_{\min}$ one calculates

$$\varepsilon(b) = \varphi(b) = (l - 2\alpha - 3\beta)\Lambda_0 + \alpha\Lambda_1 + 3\beta\Lambda_2$$

4.2 Coherent family of perfect crystals

The notion of a coherent family of perfect crystals was introduced in [1]. Let $\{B_l\}_{l\geq 1}$ be a family of perfect crystals B_l of level l and $(B_l)_{\min}$ be the subset of minimal elements of B_l . Set $J = \{(l,b) \mid l \in \mathbb{Z}_{>0}, b \in (B_l)_{\min}\}$. Let σ denote the isomorphism of $(P_{cl}^+)_l$ defined by $\sigma = \varepsilon \circ \varphi^{-1}$. For $\lambda \in P_{cl}$, T_{λ} denotes a crystal with a unique element t_{λ} defined in [4]. For our purpose the following facts are sufficient. For any P_{cl} -weighted crystal B and $\lambda, \mu \in P_{cl}$ consider the crystal

$$T_{\lambda} \otimes B \otimes T_{\mu} = \{t_{\lambda} \otimes b \otimes t_{\mu} \mid b \in B\}.$$

The definition of T_{λ} and the tensor product rule of crystals imply

$$\tilde{e}_{i}(t_{\lambda} \otimes b \otimes t_{\mu}) = t_{\lambda} \otimes \tilde{e}_{i}b \otimes t_{\mu}, \qquad \tilde{f}_{i}(t_{\lambda} \otimes b \otimes t_{\mu}) = t_{\lambda} \otimes \tilde{f}_{i}b \otimes t_{\mu},
\varepsilon_{i}(t_{\lambda} \otimes b \otimes t_{\mu}) = \varepsilon_{i}(b) - \langle h_{i}, \lambda \rangle, \qquad \varphi_{i}(t_{\lambda} \otimes b \otimes t_{\mu}) = \varphi_{i}(b) + \langle h_{i}, \mu \rangle,
wt(t_{\lambda} \otimes b \otimes t_{\mu}) = \lambda + \mu + wtb.$$

Definition 1. A crystal B_{∞} with an element b_{∞} is called a limit of $\{B_l\}_{l\geq 1}$ if it satisfies the following conditions:

- $wt b_{\infty} = 0, \varepsilon(b_{\infty}) = \varphi(b_{\infty}) = 0,$
- for any $(l, b) \in J$, there exists an embedding of crystals

$$f_{(l,b)}: T_{\varepsilon(b)} \otimes B_l \otimes T_{-\varphi(b)} \longrightarrow B_{\infty}$$

sending $t_{\varepsilon(b)} \otimes b \otimes t_{-\varphi(b)}$ to b_{∞} ,

• $B_{\infty} = \bigcup_{(l,b) \in J} \operatorname{Im} f_{(l,b)}$.

If a limit exists for the family $\{B_l\}$, we say that $\{B_l\}$ is a coherent family of perfect crystals.

Let us now consider the following set

$$B_{\infty} = \left\{ b = (\nu_1, \nu_2, \nu_3, \bar{\nu}_3, \bar{\nu}_2, \bar{\nu}_1) \in (\mathbb{Z}/3)^6 \,\middle|\, \begin{array}{l} \nu_1, \bar{\nu}_1, \nu_2 - \nu_3, \bar{\nu}_3 - \bar{\nu}_2 \in \mathbb{Z}, \\ 3\nu_3 \equiv 3\bar{\nu}_3 \pmod{2} \end{array} \right\},$$

and set $b_{\infty} = (0, 0, 0, 0, 0, 0)$. We introduce the crystal structure on B_{∞} as follows. The actions of e_i , f_i (i = 0, 1, 2) are defined by the same rule as in Section 3 with x_i and \bar{x}_i replaced with ν_i and $\bar{\nu}_i$. The only difference lies in the fact that $e_i b$ or $f_i b$ never becomes 0, since we allow a coordinate to be negative and there is no restriction for the sum $s(b) = \sum_{i=1}^{2} (\nu_i + \bar{\nu}_i) + (\nu_3 + \bar{\nu}_3)/2$. For ε_i , φ_i with i = 1, 2 we adopt the formulas in Section 3. For ε_0 , φ_0 we define

$$\varepsilon_0(b) = -s(b) + \max A - (2z_1 + z_2 + z_3 + 3z_4), \qquad \varphi_0(b) = -s(b) + \max A,$$

where A is given in (2.4) and z_1 , z_2 , z_3 , z_4 are given in (2.2) with x_i , \bar{x}_i replaced by ν_i , $\bar{\nu}_i$. Note that $wt b_{\infty} = 0$ and $\varepsilon_i(b_{\infty}) = \varphi_i(b_{\infty}) = 0$ for i = 0, 1, 2.

Let $b_0 = (\alpha, \beta, \beta, \beta, \beta, \alpha)$ be an element of $(B_l)_{\min}$. Since $\varepsilon(b_0) = \varphi(b_0)$, one can set $\sigma = \mathrm{id}$. Let $\lambda = \varepsilon(b_0)$. For $b = (x_1, x_2, x_3, \bar{x}_3, \bar{x}_2, \bar{x}_1) \in B_l$ we define a map

$$f_{(l,b_0)}: T_{\lambda} \otimes B_l \otimes T_{-\lambda} \longrightarrow B_{\infty}$$

by

$$f_{(l,b_0)}(t_\lambda \otimes b \otimes t_{-\lambda}) = b' = (\nu_1, \nu_2, \nu_3, \bar{\nu}_3, \bar{\nu}_2, \bar{\nu}_1),$$

where

$$\nu_1 = x_1 - \alpha, \quad \bar{\nu}_1 = \bar{x}_1 - \alpha,
\nu_j = x_j - \beta, \quad \bar{\nu}_j = \bar{x}_j - \beta \quad (j = 2, 3).$$

Note that $s(b') = s(b) - (2\alpha + 3\beta)$. Then we have

$$wt (t_{\lambda} \otimes b \otimes t_{-\lambda}) = wt b = wt b',$$

$$\varphi_0(t_{\lambda} \otimes b \otimes t_{-\lambda}) = \varphi_0(b) + \langle h_0, -\lambda \rangle$$

$$= \varphi_0(b') + (l - s(b)) + s(b') - (l - 2\alpha - 3\beta) = \varphi_0(b'),$$

$$\varphi_1(t_{\lambda} \otimes b \otimes t_{-\lambda}) = \varphi_1(b) + \langle h_1, -\lambda \rangle = \varphi_1(b') + \alpha - \alpha = \varphi_1(b'),$$

$$\varphi_2(t_{\lambda} \otimes b \otimes t_{-\lambda}) = \varphi_2(b) + \langle h_2, -\lambda \rangle = \varphi_2(b') + 3\beta - 3\beta = \varphi_2(b').$$

 $\varepsilon_i(t_\lambda \otimes b \otimes t_{-\lambda}) = \varepsilon_i(b')$ (i = 0, 1, 2) also follows from the above calculations.

From the fact that $(z_j \text{ for } b) = (z_j \text{ for } b')$ it is straightforward to check that if $b, e_i b \in B_l$ (resp. $b, f_i b \in B_l$), then $f_{(l,b_0)}(e_i(t_\lambda \otimes b \otimes t_{-\lambda})) = e_i f_{(l,b_0)}(t_\lambda \otimes b \otimes t_{-\lambda})$ (resp. $f_{(l,b_0)}(f_i(t_\lambda \otimes b \otimes t_{-\lambda})) = f_i f_{(l,b_0)}(t_\lambda \otimes b \otimes t_{-\lambda})$). Hence $f_{(l,b_0)}$ is a crystal embedding. It is easy to see that $f_{(l,b_0)}(t_\lambda \otimes b_0 \otimes t_{-\lambda}) = b_\infty$. We can also check $B_\infty = \bigcup_{(l,b)\in J} \operatorname{Im} f_{(l,b)}$. Therefore we have shown that the family of perfect crystals $\{B_l\}_{l\geq 1}$ forms a coherent family.

5 Crystal graphs of B_1 and B_2

In this section we present crystal graphs of the $U'_q(G_2^{(1)})$ -crystals B_1 and B_2 in Figs. 1 and 2. In the graphs $b \xrightarrow{i} b'$ stands for $b' = f_i b$. Minimal elements are marked as *. Recall that as a $U_q(G_2)$ -crystal

$$B_1 \simeq B(0) \oplus B(\Lambda_1), \qquad B_2 \simeq B(0) \oplus B(\Lambda_1) \oplus B(2\Lambda_1).$$

We give the table that relates the numbers in the crystal graphs to our representation of elements according to which $U_q(G_2)$ -components they belong to.

$$B(0): \ \boxed{\phi^*} = (0,0,0,0,0,0)$$

 $B(\Lambda_1)$:

$$\boxed{9} = (0,0,0,\frac{4}{3},\frac{1}{3},0)\boxed{10} = (0,0,0,\frac{2}{3},\frac{2}{3},0)\boxed{11} = (0,0,0,0,1,0)\boxed{12} = (0,0,0,0,0,1)$$

$$\boxed{13} = (0, 0, 2, 0, 0, 0) \boxed{14} = (0, 0, 0, 2, 0, 0)$$

Figure 1. Crystal graph of B_1 . \angle is f_1 and \setminus is f_2 .

 $B(2\Lambda_1)$:

$$\begin{array}{c} \boxed{15} = (2,0,0,0,0,0) \quad \boxed{16} = (1,1,0,0,0,0) \quad \boxed{17} = (1,\frac{2}{3},\frac{2}{3},0,0,0) \quad \boxed{18} = (1,\frac{1}{3},\frac{4}{3},0,0,0) \\ \boxed{19} = (1,\frac{1}{3},\frac{1}{3},1,0,0) \quad \boxed{20} = (1,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},0) \quad \boxed{21} = (1,0,1,1,0,0) \quad \boxed{22} = (1,0,1,\frac{1}{3},\frac{1}{3},0) \\ \boxed{23} = (1,0,0,\frac{4}{3},\frac{1}{3},0) \quad \boxed{24} = (1,0,0,2,0,0) \quad \boxed{25} = (1,0,0,0,1,0) \quad \boxed{26^*} = (1,0,0,0,0,1) \\ \boxed{27} = (1,0,2,0,0,0) \quad \boxed{28} = (1,0,0,2,0,0) \quad \boxed{29} = (0,2,0,0,0,0) \quad \boxed{30} = (0,\frac{5}{3},\frac{2}{3},0,0,0) \\ \boxed{31} = (0,\frac{4}{3},\frac{4}{3},0,0,0) \quad \boxed{32} = (0,\frac{4}{3},\frac{1}{3},1,0,0) \quad \boxed{33} = (0,\frac{4}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},0) \quad \boxed{34} = (0,1,1,1,0,0) \\ \boxed{35} = (0,1,1,\frac{1}{3},\frac{1}{3},0) \quad \boxed{36} = (0,1,0,\frac{4}{3},\frac{1}{3},0) \quad \boxed{37} = (0,1,0,\frac{2}{3},\frac{2}{3},0) \quad \boxed{38} = (0,1,0,0,1,0) \\ \boxed{39} = (0,1,0,0,0,1) \quad \boxed{40} = (0,1,2,0,0,0) \quad \boxed{41} = (0,1,0,2,0,0) \quad \boxed{42} = (0,\frac{2}{3},\frac{2}{3},0,1,0) \\ \boxed{43} = (0,\frac{1}{3},\frac{4}{3},0,1,0) \quad \boxed{44} = (0,\frac{1}{3},\frac{1}{3},1,1,0) \quad \boxed{45} = (0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{4}{3},0) \quad \boxed{46} = (0,0,1,1,1,0) \\ \boxed{47} = (0,0,1,\frac{1}{3},\frac{4}{3},0) \quad \boxed{48} = (0,0,0,\frac{4}{3},\frac{4}{3},0) \quad \boxed{49} = (0,0,0,\frac{2}{3},\frac{5}{3},0) \quad \boxed{50} = (0,0,0,0,2,0) \\ \boxed{51} = (0,0,0,0,1,1) \quad \boxed{52} = (0,0,2,0,1,0) \quad \boxed{53} = (0,0,2,1,0) \quad \boxed{54} = (0,\frac{2}{3},\frac{2}{3},0,0,1) \\ \boxed{59} = (0,0,1,\frac{1}{3},\frac{1}{3},1) \quad \boxed{60} = (0,0,\frac{1}{3},\frac{1}{3},1,0,1) \quad \boxed{57} = (0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1) \quad \boxed{58} = (0,0,1,1,0,1) \\ \boxed{59} = (0,0,1,\frac{1}{3},\frac{1}{3},1) \quad \boxed{60} = (0,0,0,\frac{4}{3},\frac{1}{3},1) \quad \boxed{61} = (0,0,0,\frac{2}{3},\frac{2}{3},1) \quad \boxed{62} = (0,0,0,0,0,2) \\ \boxed{63} = (0,0,2,0,0,1) \quad \boxed{64} = (0,0,0,2,0,1) \quad \boxed{65} = (0,\frac{2}{3},\frac{2}{3},0,0,0) \quad \boxed{70} = (0,0,3,\frac{1}{3},\frac{1}{3},0,0) \\ \boxed{71} = (0,0,2,\frac{4}{3},\frac{1}{3},0) \quad \boxed{72} = (0,0,2,\frac{2}{3},\frac{2}{3},0) \quad \boxed{73} = (0,0,4,0,0,0) \quad \boxed{74} = (0,0,2,2,0,0) \\ \boxed{75} = (0,\frac{2}{3},\frac{2}{3},2,0,0) \quad \boxed{76} = (0,\frac{1}{3},\frac{4}{3},2,0,0) \quad \boxed{77} = (0,\frac{1}{3},\frac{1}{3},3,0,0) \quad \boxed{78} = (0,\frac{1}{3},\frac{1}{3},\frac{1}{3},3,0) \\ \boxed{83} = (0,0,0,4,0,0) \quad \boxed{84} = (0,\frac{2}{3},\frac{2}{3},\frac{1}{3},0,0) \quad \boxed{85} = (0,\frac{1}{3},\frac{4}{3},\frac{4}{3},\frac{1}{3},0) \quad \boxed{86} =$$

Comparing our crystal graphs with those in [7] we found that some 2-arrows are missing in Fig. 3 of [7].

Figure 2. Crystal graph of B_2 . \searrow is f_0 , \swarrow is f_1 and others are f_2 .

Acknowledgements

KCM thanks the faculty and staff of Osaka University for their hospitality during his visit in August, 2009 and acknowledges partial support from NSA grant H98230-08-1-0080. MM would like to thank Universiti Tun Hussein Onn Malaysia for supporting this study. MO would like to thank the organizers of the conference "Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems" held during March 30 – April 3, 2009 at Glasgow for a warm hospitality and acknowledges partial support from JSPS grant No. 20540016.

References

- [1] Kang S.-J., Kashiwara M., Misra K.C., Crystal bases of Verma modules for quantum affine Lie algebras, *Compositio Math.* **92** (1994), 299–325.
- [2] Kang S.-J., Misra K.C., Crystal bases and tensor product decompositions of $U_q(G_2)$ -module, J. Algebra 163 (1994), 675–691.
- [3] Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., Vol. 16, World Sci. Publ., River Edge, NJ, 1992, 449–484.
- [4] Kashiwara M., Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
- [5] Kashiwara M., Similarity of crystal bases, in Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., Vol. 194, Amer. Math. Soc., Providence, RI, 1996, 177–186.
- [6] Kashiwara M., Misra K.C., Okado M., Yamada D., Perfect crystals for $U_q(D_4^{(3)})$, J. Algebra 317 (2007), 392–423, math.QA/0610873.
- [7] Yamane S., Perfect crystals of $U_q(G_2^{(1)})$, J. Algebra 210 (1998), 440–486, q-alg/9712012.