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1 Introduction

The Atiyah determinant is a complex-valued determinant function At(P1, . . . , Pn) associated
with n distinct points P1, . . . , Pn of R3. It was constructed by M.F. Atiyah in [1] in his attempt
at answering a natural geometric question posed in [3] and arising from the study of the spin
statistics theorem using classical quantum theory. The original conjecture of Atiyah was that
At does not vanish for all configurations of distinct points P1, . . . , Pn ∈ R3. The conjecture was
verified in the linear case (all points lie on a straight line) and in the case n = 3 by Atiyah in [1].
However, the case n ≥ 4 turned out to be notoriously difficult. In a subsequent paper [2], Atiyah
and Sutcliffe studied the function At and added two new conjectures (after normalizing At) which
imply the original conjecture of Atiyah. They provided compelling numerical evidence of the
validity of all three conjectures. The three conjectures can be stated as follows: For all distinct
points P1, . . . , Pn of R3 (and all n ≥ 1) we have:

(I) At(P1, . . . , Pn) 6= 0,

(II) |At(P1, . . . , Pn)| ≥
∏
i<j

(2rij), where rij = ||
−−→
PiPj ||,

(III) |At(P1, . . . , Pn)|n−2 ≥
n∏
k=1

|At(P1, . . . , Pk−1, Pk+1, . . . , Pn)|.

From the statement of these conjectures we can see that III =⇒ II =⇒ I. The three
conjectures have been very resistant since their inauguration time. The first conjecture was
proved by Eastwood and Norbury [5] for the case n = 4. Other attempts were successful only
on special configurations (see [4] and [6]). In this paper, we build on the work of Eastwood and
Norbury by presenting a computer aided proof of Conjectures II and III in the case n = 4 and we
also give an elegant factorization of the square of the imaginary part of the Atiyah determinant.

The construction of the determinant is as follows: One starts with n distinct points P1, . . . , Pn
∈ R3. By considering Pj as an observer of the other n − 1 points we obtain n − 1 vectors
−−−→
PjP1, . . . ,

−−→
PjP j−1,

−−→
PjP j+1, . . . ,

−−−→
PjPn in R3. We lift each of these vectors from R3 to C2 using
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Figure 1. Three points.

the Hopf map h : C2 → R3 given by h(z, w) = ((|z|2− |w|2)/2, zw) to obtain n− 1 points of C2.
Note that the lifts are not unique and are defined up to phase because h(λz, λw) = |λ|2h(z, w).
Consequently, our lifts can be considered as points of CP 1. Taking the symmetric product of
these lifts gives a vector Vj in CPn because �nCP 1 = CPn. Atiyah’s first conjecture was that
{V1, . . . , Vn} is a linearly independent set. In other words, the determinant of the matrix having
the vector Vj as its jth column is nonzero. This determinant is well-defined up to a phase
factor. To get rid of the phase factor ambiguity, we apply the following normalization imposed

by Atiyah: If (z, w) is the chosen lift of
−−→
PiPj and i < j, then (−w, z) must be the lift of

−−→
PjPi.

After this normalization, this determinant is called the Atiyah determinant and is denoted by At.

It is immediate from the above construction that At is coordinate free and is independent
of solid motion. In other words, the determinant function At is invariant under translations
and rotations in R3. Furthermore, the Atiyah determinant is built so that it is independent
of the order of the points. In other words, if (j1, . . . , jn) is a permutation of (1, . . . , n) then
At(Pj1 , . . . , Pjn) = At(P1, . . . , Pn). Another property is that At gets conjugated under a plane
reflection of the points (see [1]). As a consequence, At must be real-valued if the set of points
{P1, . . . , Pn} is symmetric relative to a plane (e.g. if the points are co-planar) since a reflection
in the plane leaves the set of points unchanged.

Let us start computing At in the cases n = 2 and n = 3. For the case n = 2, we have two
distinct points A and B. We can identify R3 with R × C and assume (possibly after a solid
motion) that A and B have coordinates (0, 0) and (0, x) respectively, where x > 0 is the distance

from A to B. By choosing (
√
x,
√
x) as a lift of

−−→
AB, we are forced to take (−

√
x,
√
x) as a lift

of
−−→
BA. Consequently, Atiyah’s determinant is:

At(A,B) =

∣∣∣∣√x −
√
x√

x
√
x

∣∣∣∣ = 2x, where x = ||
−−→
AB||.

Let us now consider the case n = 3. Assume (possibly after a solid motion) that A =

(0, 0), B = (0, x), and C = (0, zeIα) where I denotes
√
−1, y = ||

−−→
BC||, z = ||

−→
AC||, x =

||
−−→
AB|| and α, β, γ are the angles indicated in Fig. 1. When the first point is considered as

a vision point we obtain
−−→
AB = (0, x),

−→
AC = (0, zeIα) whose lifts under the Hopf map h are

(
√
x,
√
x) and (

√
z,
√
ze−Iα). And when B = (0, x) is the vision point, we obtain the vectors

−−→
BA = (0,−x) and

−−→
BC = (0,−ye−Iβ) whose lifts are (−

√
x,
√
x) and (−√y,√yeIβ). Similarly,

the lifts corresponding to the vision point C are (−
√
zeIα,

√
z) and (−√ye−Iβ,−√y). The

symmetric tensor product of the vectors are then
√
xz(1, 1 + e−Iα, e−Iα),

√
xy(1,−1− eIβ, eIβ)

and
√
yz(eI(α−β), eIα−e−Iβ,−1), respectively. Consequently, we obtain the Atiyah determinant

for three points as

At(A,B,C) = xyz

∣∣∣∣∣∣
1 1 eI(α−β)

1 + e−Iα −1− eIβ eIα − e−Iβ
e−Iα eIβ −1

∣∣∣∣∣∣
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Figure 2. Four points.

This determinant expands to xyz[6+2(cosα+cosβ+cos γ)], which can be written as xyz[8+

8 sin α
2 sin β

2 sin
γ
2 ]. Using the identity sin α

2 = 1
2

√
(a+b−c)(a+c−b)

bc and similar identities for sin β
2

and sin γ
2 , we can rewrite the Atiyah determinant for three points as

At(A,B,C) = 8xyz + d3(x, y, z), (1.1)

where d3 is the polynomial defined by d3(x, y, z) = (−x + y + z)(x + y − z)(x + y − z). From
the triangle inequality it follows that d3(x, y, z) is nonnegative, and so Conjecture III is verified
for three points. (Note that there is no need to use |At | because in this case At is real.)

2 The case of four points

Given four points A, B, C, D in R3, the vector u = U(A,B,C,D) in R6, called the vector of

pair-wise distances, is defined by u = (a, b, c, x, y, z) where a = ||
−−→
AD||, b = ||

−−→
BD||, c = ||

−−→
CD||,

x = ||
−−→
AB||, y = ||

−−→
BC||, z = ||

−→
AC|| (see Fig. 2). The function U , as defined above, maps R3×4

into R6, and it is clear that U is neither injective nor surjective. A vector u ∈ R6 is said to
be geometric if it belongs to the range of U . For convenience, we adopt the convention that
At(A,B,C,D) equals 0 when the points A, B, C, D are not distinct, and Conjecture II (for
four points) becomes

(II) |At(A,B,C,D)| ≥ 64abcxyz for all points A,B,C,D ∈ R3.

Atiyah’s determinant is designed to be invariant under permutations of the points. Each
of the 24 possible permutations of the four points A, B, C, D results in a permutation of the
pair-wise distances a, b, c, x, y, z. Specifically, if u = (a, b, c, x, y, z) ∈ R6, then the 24 resultant
permutations are

u0 = (a, b, c, x, y, z), u1 = (a, x, z, b, y, c), u2 = (b, c, a, y, z, x), u3 = (x, b, y, a, c, z),

u4 = (c, a, b, z, x, y), u5 = (z, y, c, x, b, a), u6 = (y, z, c, x, a, b), u7 = (c, b, a, y, x, z),

u8 = (x, y, b, z, c, a), u9 = (a, c, b, z, y, x), u10 = (z, x, a, y, b, c), u11 = (b, a, c, x, z, y),

u12 = (z, c, y, a, b, x), u13 = (x, z, a, y, c, b), u14 = (x, a, z, b, c, y), u15 = (y, x, b, z, a, c),

u16 = (y, b, x, c, a, z), u17 = (y, c, z, b, a, x), u18 = (c, y, z, b, x, a), u19 = (z, a, x, c, b, y),

u20 = (b, x, y, a, z, c), u21 = (c, z, y, a, x, b), u22 = (a, z, x, c, y, b), u23 = (b, y, x, c, z, a).

A function f : R6 → R is said to be symmetric if f(u) = f(ui) for i = 0, 1, . . . , 23 and is
skew-symmetric if f(u) = (−1)if(ui) for i = 0, 1, . . . , 23. The symmetric average of f is the
symmetric function av[f ] defined by

av[f ](u) =
1

24

23∑
i=0

f(ui).
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Using Maple, Eastwood and Norbury have found that the real part of At(A,B,C,D) can
be expressed as <At(A,B,C,D) = d4(u), where d4 is the homogeneous polynomial of degree 6
given by

d4(u) = 60p4(u) + 4n4(u) + 2z4(u) + 12 av
[
a
(
(b+ c)2 − y2

)
d3(x, y, z)

]
, (2.1)

where p4(u) = abcxyz, d3 is defined in (1.1), n4(u) = p4(u)− d3(xc, ay, bz) and

z4(u) = a2y2
(
b2 + c2 + x2 + z2

)
+ b2z2

(
a2 + c2 + x2 + y2

)
+ c2x2

(
a2 + b2 + y2 + z2

)
−
(
a4y2 + a2y4 + b4z2 + b2z4 + c4x2 + c2x4

)
−
(
a2b2x2 + a2c2z2 + b2c2y2 + x2y2z2

)
.

Eastwood and Norbury use the notation 144V 2 in place of z4(u). If u = U(A,B,C,D), the
value z4(u) equals 144V

2, where V denotes the volume of the tetrahedron formed by the points
A, B, C, D, and it therefore follows that z4(u) ≥ 0. It would be erroneous to infer from this
that the polynomial z4 is nonnegative on all of R6; the above statement implies only that z4 is
nonnegative on geometric vectors.

Having expressed <At(A,B,C,D) = d4(u) as in (2.1), Eastwood and Norbury then invoke
the inequalities z4(u) ≥ 0, (b + c)2 ≥ y2, d3(x, y, z) ≥ 0 and abcxyz ≥ d3(xc, ay, bz) (i.e.
n4(u) ≥ 0) to conclude that

|At(A,B,C,D)| ≥ <At(A,B,C,D) = d4(u) ≥ 60p4(u),

which proves Conjecture I and comes close to proving Conjecture II.

Regarding the imaginary part of At(A,B,C,D), Eastwood and Norbury have shown that its
square can be written as (=At(A,B,C,D))2 = F4(u), where F4 is a symmetric homogeneous
polynomial of degree 12. Whereas d4 seems unwilling to be expressed in a simple manner, we
have found that F4 factors elegantly as

F4 = w2
4z4,

where w4 is the skew-symmetric homogeneous polynomial of degree 3 given by

w4(u) =
(
a2 + y2

)
(b− c− x+ z) +

(
b2 + z2

)
(−a+ c+ x− y) +

(
c2 + x2

)
(a− b+ y − z)

+ 2(cx+ yz)(−a+ b) + 2(ay + xz)(−b+ c) + 2(bz + xy)(a− c).

Note that since w4 is skew-symmetric it follows that w2
4 is symmetric. As mentioned in the

introduction, the imaginary part of At(A,B,C,D) vanishes whenever the set of four points
{A,B,C,D} is symmetric about a plane. Interestingly, this property can be derived from the
above factorization: Assuming {A,B,C,D} is symmetric about a plane, it then follows that
u = U(A,B,C,D) is invariant under some odd permutation of the four points A, B, C, D.
Since w4 is skew-symmetric, we must have w4(u) = 0 and hence F4(u) = 0.

3 A linear program related to Conjecture II

Since |At(A,B,C,D)| ≥ <At(A,B,C,D) = d4(u), in order to prove Conjecture II, it suffices
to show that the polynomial d4 satisfies

d4(u) ≥ 64p4(u) for all geometric vectors u. (3.1)
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If one has in hand a collection f1, f2, . . . , fk of symmetric homogeneous polynomials of degree
6 which are known to be nonnegative on geometric vectors, then one can ‘have a go’ at (3.1) by
solving the linear program

maximize α,

subject to d4 = αp4 +
k∑
j=1

λjfj , with λ1, λ2, . . . , λk ≥ 0.
(3.2)

If (3.2) is feasible and if the optimal objective value is α = 64 (we will see later that α > 64
is impossible), then we immediately obtain (3.1). The remaining difficulty is that of finding
suitable polynomials {fj}. One means of generating a large collection of such polynomials, which
we now describe, stems from the triangle inequality.

The four points A, B, C, D contain four (possibly degenerate) triangles and each triangle,
by means of the triangle inequality, gives rise to three linear polynomials which are nonnegative
when u = (a, b, c, x, y, z) is geometric. For example, the triangle A, B, C yields −x + y + z,
x − y + z and x + y − z. In all, there are twelve such linear polynomials which we refer to as
triangular variables and use the notation t = (t1, t2, . . . , t12), where

t1 = −a+ b+ x, t4 = −b+ c+ y, t7 = −a+ c+ z, t10 = −x+ y + z,

t2 = a− b+ x, t5 = b− c+ y, t8 = a− c+ z, t11 = x− y + z,

t3 = a+ b− x, t6 = b+ c− y, t9 = a+ c− z, t12 = x+ y − z.

A vector α ∈ Z12
+ is called a multi-index with order |α| = α1+α2+ · · ·+α12. Employing the stan-

dard notation tα = tα1
1 tα2

2 · · · t
α12
12 , we see that tα represents a homogeneous polynomial of degree

|α| in the variables (a, b, c, x, y, z). Applying the symmetric average, we conclude that av[tα] rep-
resents a symmetric homogeneous polynomial of degree |α| which is nonnegative on geometric
vectors. For integers ` ≥ 0, we define T` to be the set of all polynomials av[tα] with |α| = `:

T` = {av[tα] : |α| = `}.

Numerically, we have found that if one chooses {fj} equal to T6, then the linear program (3.2)
is feasible and has optimal objective value α = 32. The formulation (2.1) of Eastwood and
Norbury can be understood in the context of (3.2) as the result of including, in addition to T6, the
two symmetric polynomials z4 and n4 which are nonnegative on geometric vectors. Numerically
solving (3.2) with {fj} equal to {z4, n4} ∪T6, we have found that the optimal objective value is
α = 60, and (2.1) is indeed an optimal solution of (3.2) as the term av[a((b+ c)2−y2)d3(x, y, z)]
can be written as a nonnegative linear combination of polynomials in T6.

In order to further increase the optimal objective value α in (3.2), we need other symmetric
polynomials which are nonnegative on geometric vectors. In pursuit of this, we have identified
the following twenty-one geometric vectors u where d4(u) = 64p4(u) (all are obtained as u =
U(A,B,C,D) with A, B, C, D collinear or non-distinct):

(0, 1, 4, 1, 4, 4), (0, 4, 8, 4, 7, 8), (0, 6, 0, 6, 6, 0),

(0, 1, 1, 1, 2, 1), (0, 5, 5, 5, 5, 5), (0, 8, 8, 8, 1, 8),

(0, 1, 3, 1, 4, 3), (0, 6, 3, 6, 8, 3), (0, 6, 7, 6, 3, 7),

(0, 6, 6, 6, 9, 6), (0, 1, 1, 1, 0, 1), (0, 5, 3, 5, 3, 3), (3.3)

(3, 3, 1, 0, 2, 2), (9, 9, 7, 0, 2, 2), (13, 13, 7, 0, 6, 6),

(19, 11, 7, 8, 4, 12), (17, 13, 4, 4, 9, 13), (15, 8, 7, 7, 1, 8),

(9, 8, 1, 1, 7, 8), (11, 9, 8, 2, 1, 3), (17, 9, 2, 8, 7, 15).
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Both d4 and p4 vanish on the first fifteen of these vectors (counting horizontally), but are nonzero
on the remaining six. In particular, since d4(9, 8, 1, 1, 7, 8) = 64p4(9, 8, 1, 1, 7, 8) = 258048 > 0, it
follows that there are no feasible solutions of (3.2) with α > 64. On the other hand, if a feasible
solution of (3.2) has been obtained with α = 64, then it follows that fj vanishes on all of the
vectors in (3.3), whenever λj > 0. It has been verified that z4 vanishes on all of these vectors,
but n4 does not. Therefore, the coefficient of n4 will be 0 if (3.2) has been solved with α = 64.
We have considered numerous symmetric homogeneous polynomials of degree 6 which vanish on
the vectors in (3.3), but only one of these has resulted in an improvement. Let v4 denote the
skew-symmetric homogeneous polynomial of degree 3 defined by

v4(u) = (b+ z − c− x)(c+ x− a− y)(a+ y − b− z).

Then v4 vanishes on the vectors in (3.3), and numerically solving (3.2) with {fj} equal to
{z4, n4, v24} ∪ T6, we have found that the optimal objective value is α = 188/3. Our obtained
identity, which has been verified in Maple1, is the following:

d4(u) =
188

3
p4(u) +

10

3
z4(u) +

4

3
n4(u) +

2

3
v24(u) +

1

3

∑
|α|=6

λα av[t
α],

where the six nonzero coefficients λα and corresponding multi-indices α are given by

α λα α λα α λα

000, 001, 010, 112 6 000, 001, 011, 111 18 000, 001, 110, 102 6

001, 001, 001, 111 14 001, 001, 010, 111 24 001, 011, 100, 110 24

4 Proof of Conjecture II for four points

Let m4 be the symmetric homogeneous polynomial of degree 6 defined by m4 = d4 − (64p4 +
4z4 + v24), so that

d4 = 64p4 + 4z4 + v24 +m4. (4.1)

We will show that m4 is nonnegative on geometric vectors, but unfortunately, we have been
unable to formulate a proof using only polynomials of degree 6. Rather, we have had to multiply
m4 by p4 and then work with polynomials of degree 12.

Theorem 1. The product p4m4 can be written as a nonnegative linear combination of polyno-
mials in T12.

Proof. Using Maple, we have verified that 64p4m4 can be written as

64p4(u)m4(u) =
∑
|α|=12

λα av[t
α], (4.2)

where the sixty-four nonzero coefficients {λα} are all positive integers as given in the following
table:

α λα 011, 021, 201, 112 6 011, 111, 220, 102 6

001, 012, 211, 112 12 011, 021, 201, 121 6 011, 112, 102, 210 12

001, 012, 211, 121 12 011, 021, 201, 211 18 011, 112, 120, 210 39

1The sources of our codes are available at http://www.emis.de/journals/SIGMA/2014/070/codes.zip.

http://www.emis.de/journals/SIGMA/2014/070/codes.zip
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001, 112, 112, 012 12 011, 021, 221, 110 54 011, 112, 210, 210 42

001, 121, 121, 012 21 011, 022, 011, 121 6 011, 120, 011, 212 27

002, 110, 111, 212 9 011, 022, 111, 102 84 011, 120, 011, 221 24

002, 110, 111, 221 9 011, 022, 111, 210 18 011, 120, 012, 112 3

011, 011, 021, 221 30 011, 022, 211, 110 6 011, 121, 021, 201 24

011, 011, 101, 222 56 011, 101, 021, 212 54 011, 121, 102, 210 6

011, 011, 110, 222 48 011, 102, 012, 211 6 011, 121, 120, 210 24

011, 011, 112, 220 6 011, 102, 022, 111 36 011, 201, 012, 211 3

011, 011, 120, 212 18 011, 102, 112, 102 18 011, 201, 021, 211 45

011, 011, 122, 102 57 011, 102, 112, 201 24 012, 012, 012, 111 24

011, 011, 201, 221 36 011, 102, 201, 121 33 012, 012, 102, 111 8

011, 011, 222, 011 6 011, 102, 210, 112 75 012, 111, 012, 021 36

011, 012, 102, 112 120 011, 102, 210, 121 12 011, 021, 220, 210 6

011, 012, 112, 210 18 011, 110, 021, 221 48 011, 120, 012, 202 21

011, 012, 120, 121 12 011, 111, 012, 202 21 011, 120, 021, 202 24

011, 012, 211, 102 84 011, 111, 021, 202 18 011, 201, 012, 202 18

011, 012, 211, 201 72 011, 111, 021, 220 54 011, 210, 021, 202 3

011, 021, 011, 122 3 011, 111, 022, 102 75 012, 012, 120, 102 3

011, 021, 112, 012 69 011, 111, 202, 210 12 �

Corollary 1. The polynomial m4 is nonnegative on geometric vectors and consequently (3.1)
holds, which proves Conjecture II for four points.

Proof. Let u = U(A,B,C,D) be a geometric vector. It follows from (4.2) that p4(u)m4(u) ≥ 0.
If the points A, B, C, D are distinct, then p4(u) > 0 and hence m4(u) ≥ 0. On the other hand,
if A, B, C, D are not distinct, then they can be approximated by distinct points A′, B′, C ′, D′

and it will then follow from the continuity of m4 that m4(u) ≥ 0. �

5 Proof of Conjecture III for four points

Let P4 denote the symmetric homogeneous polynomial of degree 12 given by

P4(u) := (8xyz + d3(x, y, z))(8abx+ d3(a, b, x))(8acz + d3(a, c, z))(8bcy + d3(b, c, y)),

whereby At(A,B,C)At(A,B,D)At(A,C,D)At(B,C,D) = P4(u) when u = U(A,B,C,D).
Since |At(A,B,C,D)|2 ≥ (<At(A,B,C,D))2 = d24(u), in order to prove Conjecture III, it
suffices to show that

d24(u) ≥ P4(u) for all geometric vectors u. (5.1)

Recall from (4.1) that d4 has been written as d4 = 64p4 +m4 + (4z4 + v24), so it follows that

d24 =
(
4z4 + v24

)
d4 + (64p4 +m4)d4

=
(
4z4 + v24

)
d4 + (64p4 +m4)

2 + (64p4 +m4)
(
4z4 + v24

)
=
(
4z4 + v24

)
(d4 + 32p4 +m4) + (64p4 +m4)

2 + 32p4
(
4z4 + v24

)
.

With M4 denoting the symmetric homogeneous polynomial of degree 12 defined by M4 =
(64p4 +m4)

2 + 32p4(4z4 + v24)− P4, we then have

d24 = P4 +
(
4z4 + v24

)
(d4 + 32p4 +m4) +M4. (5.2)
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Theorem 2. The polynomial M4 is nonnegative on geometric vectors, and consequently (5.1)
holds, which proves Conjecture III for four points.

Proof. Using Maple, we have verified that 128M4 can be written as

128M4(u) =
(
4z4(u) + v24(u)

) ∑
|α|=6

µα av[t
α] +

∑
|α|=12

να av[t
α], (5.3)

where the coefficients {µα} and {να} are nonnegative integers: The 6 nonzero coefficients µα
and corresponding monomials α are given in the following table:

000, 001, 111, 110 1236 000, 101, 101, 101 3594 001, 010, 011, 011 300

000, 100, 101, 111 60 000, 101, 110, 101 114 001, 011, 101, 001 1014

The 114 nonzero coefficients να and corresponding monomials α are given in the following
table:

000, 112, 121, 112 2019 011, 120, 021, 112 2184 001, 120, 202, 121 76

001, 012, 121, 112 369 011, 121, 021, 201 228 001, 121, 201, 220 6

001, 012, 211, 121 138 011, 121, 210, 210 72 001, 121, 220, 021 3174

001, 012, 211, 211 666 011, 201, 021, 211 936 001, 121, 220, 120 1266

001, 021, 211, 121 3087 012, 012, 012, 111 3072 001, 122, 210, 120 1428

001, 022, 111, 112 3009 012, 111, 021, 201 1308 001, 201, 220, 112 822

001, 022, 111, 121 1074 012, 111, 210, 012 5374 001, 210, 221, 021 612

001, 022, 112, 111 42 000, 012, 111, 222 60 001, 211, 220, 012 300

001, 022, 211, 111 12114 000, 012, 112, 212 1776 001, 211, 220, 120 3072

001, 101, 211, 122 240 001, 001, 112, 222 138 002, 002, 112, 112 1536

001, 111, 122, 102 4056 001, 001, 122, 212 1398 002, 011, 221, 021 1176

001, 111, 210, 221 444 001, 002, 122, 112 3072 002, 012, 110, 212 1662

001, 120, 121, 112 144 001, 002, 211, 122 1236 002, 012, 210, 121 5136

001, 121, 210, 112 714 001, 010, 112, 222 768 002, 012, 210, 211 762

001, 121, 210, 211 1146 001, 010, 122, 212 384 002, 012, 211, 021 2178

001, 211, 220, 111 1866 001, 010, 212, 122 384 002, 022, 110, 112 1188

002, 011, 111, 122 2808 001, 011, 102, 222 2568 002, 022, 110, 121 150

002, 011, 211, 121 3207 001, 011, 222, 012 1224 002, 022, 211, 011 2178

002, 012, 111, 112 3654 001, 012, 110, 222 2634 002, 101, 101, 222 1245

002, 012, 111, 121 3252 001, 012, 120, 212 66 002, 101, 122, 102 246

002, 021, 111, 112 276 001, 012, 122, 102 822 002, 101, 221, 012 528

002, 022, 111, 111 720 001, 021, 112, 220 840 002, 102, 121, 102 222

002, 111, 212, 011 516 001, 022, 120, 112 4542 002, 110, 122, 102 7548

002, 112, 210, 111 1206 001, 022, 211, 120 2928 002, 121, 210, 012 1074

002, 112, 211, 011 1662 001, 022, 220, 111 6546 002, 122, 210, 011 60

011, 011, 012, 212 10110 001, 101, 102, 222 2898 011, 012, 120, 220 3072

011, 011, 021, 212 1164 001, 101, 201, 222 804 011, 021, 210, 220 342

011, 011, 201, 212 5472 001, 101, 220, 122 1398 011, 021, 220, 120 4668

011, 012, 012, 211 342 001, 102, 110, 222 690 011, 021, 220, 210 4608
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011, 012, 112, 201 2178 001, 102, 122, 102 1770 011, 022, 120, 102 768

011, 012, 122, 101 192 001, 102, 202, 112 5532 011, 022, 120, 210 1536

011, 021, 211, 120 5472 001, 102, 202, 121 612 011, 022, 201, 120 1890

011, 022, 111, 120 2376 001, 102, 210, 212 390 011, 022, 210, 102 1152

011, 022, 121, 110 696 001, 102, 221, 102 2634 011, 022, 210, 210 6648

011, 101, 022, 112 2628 001, 110, 201, 222 192 011, 120, 022, 102 10752

011, 102, 201, 112 372 001, 112, 220, 120 600 011, 210, 012, 202 168

011, 110, 012, 122 3558 001, 112, 221, 002 60 011, 210, 120, 202 522

011, 112, 021, 201 948 001, 120, 201, 221 774 012, 120, 012, 201 4440

It now follows from (5.3) that M4 is nonnegative on geometric vectors and we obtain (5.1)
as a consequence of (5.2). �
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