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Abstract. In [Temme N.M., Special functions. An introduction to the classical functions
of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New
York, 1996, Section 11.3.3.1] a uniform asymptotic expansion for the incomplete beta func-
tion was derived. It was not obvious from those results that the expansion is actually an
asymptotic expansion. We derive a remainder estimate that clearly shows that the result
indeed has an asymptotic property, and we also give a recurrence relation for the coefficients.
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1 Introduction

For positive real numbers a, b and = € [0, 1], the (normalised) incomplete beta function I, (a,b)
is defined by

1 X
L(a,b) = ——— [ t* 11— Tde
(@) = g | a0

where B(a,b) denotes the ordinary beta function:

1
B(a,b) = / 1 - At = —2
0

(see, e.g., [2, Section 8.17(i)]). In this paper, we will use the notation of [2, Section 8.18(ii)].

The incomplete beta function plays an important role in statistics in connection with the beta
distribution (see, for instance, [1, pp. 210-275]). Large parameter asymptotic approximations
are useful in these applications. For fixed x and b, one could use the asymptotic expansion
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as a — +00. The right-hand side of (1) converges only for = € [0, 1), but for any fixed z € [0, 1)
it is still useful when used as an asymptotic expansion as a — +o00. For more details, see [3,
Section 11.3.3]. However, it is readily seen that (1) breaks down as z — 1. Since this limit
has significant importance in applications, Temme derived in [3, Section 11.3.3.1] an asymptotic
expansion as a — +oo that holds uniformly for z € (0, 1]. His result can be stated as follows.
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Theorem 1. Let £ = —Inx. Then for any fixed positive integer N and fized positive real b,

Io(ab) = 212 “+b (ZdF+O MR ) 2)

as a — 400, uniformly for x € (0,1]. The functions F,, = F,(§, a,b) are defined by the recurrence
relation

CLFn+1 (TL +b— a£) +nlFn_1, (3)
with
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and Q(a,z) =T'(a, z)/T'(a) is the normalised incomplete gamma function (see [2, Section 8.2(1)]).
The coefficients dy, = d,(&,b) are defined by the generating function

(* ‘f—t)b_l - gdnu o (4)

In particular,
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W= () T e

They satisfy the recurrence relation
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+Z1— — b)dpdp—mm. (5)

In the case that b =1, we have dy =1 and d, =0 forn > 1.

Our contribution is the remainder estimate in (2) and the recurrence relation (5). In fact, it is
not at all obvious from (3) that the sequence {F},}22, has an asymptotic property as a — +oo.
We will show that for any non-negative integer n,

0< Fop < %BFW (6)

where § = max(1,b).
In [4, Section 38.2.8] the function F), is identified as a Kummer U-function:

5n+befa§n|

E, = : 1, 1,af).
o) Un+1,n+b+1,af)
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2 Proof of the main results

We proceed similarly as in [3, Section 11.3.3.1] and start with the integral representation

1 Ty a1\

We substitute the truncated Taylor series expansion

1— e_t b—1 N-1
(F55) =X a-9m+n0
n=0

into (7) and obtain

L(ab) = (F“(;r)b (Z dyFy + Ry (a,b x)> :

n=0

where F), is given by the integral representation

— 1 e b—1 e @ S A b—1_n_—art
F"_F(b)/g t Lt —&)"dt = F(b)/o (1 + &) e dr, (8)

and the remainder term Ry (a, b, z) is defined by

+oo
Ra(a,b,z) = F(lb) /E Ple=aty (1) d. ()

The recurrence relation (3) can be obtained from (8) via a simple integration by parts.
Let, for a moment,

cn(a,b) = /0 +OO(T + &P e dr.
Then via integration by parts we find

acpy1(a,b) = (n+b)ep(a,b) +&£(1 —b)ey(a,b—1). (10)
We make the observation that

0 <&cpla,b—1)= £/O+Oo(7' +6)P72r"e " dr < ¢ (a,b). (11)
It follows from (10) and (11) that

(n+1)cp(a,b) f0<b<1,
acn1(a,b) < .
(n+b)ep(a,b) ifb>1.

Since F,, = e~%¢,(a, b)/T'(b), this inequality implies (6).
To obtain the remainder estimate in (2), we use the Cauchy integral representation

oy (=)0
WO = fey T .
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where the contour encircles the points £ and t once in the positive sense. From the integral
representation (9), we have that 0 < & < ¢t. Thus, in the case that N > 1, we can deform the
contour in (12) to the path

[14 oo, 1+ 7i| U [l 4+ 7i, —1 + 7i] U [—1 + 7i, —1 — 7i]
U[-1—-mi,1—mi]uU[l—mi,1— oci.

For the integrals along the final three portions of the path, we have the estimates

1/—1—m (1_§’T>b—1 e max ((e1)b—17(\/%)b1>

omi J oy 7O —ON | (1+ N !

b1 1\ b1
e )| () !
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1—mi (T_t)(T_S)N T 2 T \/m(52+(1_£)2)N/2

max (14 e )" proo (24 1)702
= 27 /7r sN+1

27

ds, (14)

respectively. The integrals along the first two portions can be estimated similarly to (13)
and (14). Hence, for 0 < ¢ <t and N > 1, we have

rn(t)] < On(b)(t — &)Y,

where the constant Cn(b) does not depend on &. Using this result in the integral representa-
tion (9), we can infer that

|RN(CL, b,.’B)‘ S CN(b)FN.

Finally, combining this result with the inequalities (6), we obtain the required remainder estimate
in (2).

i\ b1
The reader can check that the function f(t) = (l_f t) is a solution of the nonlinear

differential equation

b—2

= PO+ EE2FOF () + (b= D) = 0.

tf ()" (t)

If we substitute the Taylor series (4) into this differential equation and rearrange the result, we
obtain the recurrence relation (5).
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