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Abstract. Available proofs of result of the type ‘at least one of the odd zeta values
ζ(5), ζ(7), . . . , ζ(s) is irrational’ make use of the saddle-point method or of linear indepen-
dence criteria, or both. These two remarkable techniques are however counted as highly non-
elementary, therefore leaving the partial irrationality result inaccessible to general mathe-
matics audience in all its glory. Here we modify the original construction of linear forms
in odd zeta values to produce, for the first time, an elementary proof of such a result —
a proof whose technical ingredients are limited to the prime number theorem and Stirling’s
approximation formula for the factorial.
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1 Introduction

Without touching deeply a history of the question (see [3] for an excellent account of this), we
notice that the irrationality of the zeta values — values of Riemann’s zeta function

ζ(s) =
∞∑
n=1

1

ns

at integers s = 2, 3, . . . , is known for even s and also for s = 3, while there are only partial
results in this direction for odd s ≥ 5. A starting point here has been set in the work [1] with
further development, particularly focusing on ζ(5), in [7] and [10].

We fix an odd integer s ≥ 7. Our strategy is constructing two sequences of linear forms rn
and r̂n living in the Q-space Q+Qζ(3) +Qζ(5) + · · ·+Qζ(s), for which we have a control of the
common denominators λn of rational coefficients and an elementary access to their asymptotic
behaviour as n → ∞; more importantly, the two coefficients of ζ(3) in these forms are propor-
tional (with factor 7), so that 7rn − r̂n belongs to the space Q + Qζ(5) + · · · + Qζ(s). Finally,
using 7rn − r̂n > 0 and the asymptotics λn(7rn − r̂n)→ 0 as n→∞ of the linear forms

λn(7rn − r̂n) ∈ Z + Zζ(5) + Zζ(7) + · · ·+ Zζ(s)

when s = 25, we conclude that it cannot happen that all the quantities ζ(5), ζ(7), . . . , ζ(25) are
rational.

This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica-
tions (OPSFA14). The full collection is available at https://www.emis.de/journals/SIGMA/OPSFA2017.html
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The original idea of using the so-called well-poised hypergeometric series to construct linear
forms in zeta values of a given parity is due to Ball and Rivoal [1]; our new ingredient here
is using simultaneously such series and their ‘twists by half’, for an appropriate choice of the
parameters. More precisely, our hypergeometric series assume the form

rn =
∞∑
ν=1

Rn(ν) and r̂n =
∞∑
ν=1

Rn
(
ν − 1

2

)
, (1)

where the rational-function summand Rn(t) is defined as follows:

R(t) = Rn(t) =
n!s−5

∏n
j=1(t− j) ·

∏n
j=1(t+ n+ j) · 26n

∏3n
j=1

(
t− n− 1

2 + j
)∏n

j=0(t+ j)s

=
26nn!s−5

∏6n
j=0

(
t− n+ 1

2j
)∏n

j=0(t+ j)s+1
. (2)

The following Sections 2 and 3 discuss, respectively, the arithmetic and analysis of the
forms (1). In Section 4 we use this information to conclude with the proof of the claimed
result and make some relevant comments.

2 Arithmetic ingredients

The notation dn will be used for the least common multiple of 1, 2, . . . , n. Recall that the prime
number theorem is equivalent to the asymptotics

lim
n→∞

d1/nn = e. (3)

A rational function S(t) of the form

S(t) =
P (t)

(t− t1)s1(t− t2)s2 · · · (t− tq)sq
,

whose denominator has degree larger than its numerator, possesses a unique partial-fraction
decomposition

S(t) =

q∑
j=1

sj∑
i=1

bi,j
(t− tj)i

.

The coefficients here can be computed on the basis of explicit formula

bi,j =
1

(sj − i)!
(
S(t)(t− tj)sj

)(sj−i)∣∣∣
t=tj

for all i, j in question. This procedure can be illustrated on the following examples, in which
all the exponents sj are equal to 1:

n!∏n
j=0(t+ j)

=
n∑
k=0

(−1)k
(
n
k

)
t+ k

,∏n
j=1(t− j)∏n
j=0(t+ j)

=
n∑
k=0

(−1)n+k
(
n+k
n

)(
n
k

)
t+ k

,∏n
j=1(t+ n+ j)∏n
j=0(t+ j)

=

n∑
k=0

(−1)k
(
2n−k
n

)(
n
k

)
t+ k

,
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22n
∏n
j=1(t+ 1

2 − j)∏n
j=0(t+ j)

=
n∑
k=0

(−1)n+k
(
2n+2k
2n

)(
2n
n+k

)
t+ k

,

22n
∏n
j=1(t−

1
2 + j)∏n

j=0(t+ j)
=

n∑
k=0

(
2k
k

)(
2n−2k
n−k

)
t+ k

,

22n
∏n
j=1(t+ n− 1

2 + j)∏n
j=0(t+ j)

=

n∑
k=0

(−1)k
(
4n−2k
2n

)(
2n
k

)
t+ k

.

It also means that the function R(t) in (2) can be written as

R(t) =

s∑
i=1

n∑
k=0

ai,k
(t+ k)i

(4)

with the recipe to compute the coefficients ai,k in its partial-fraction decomposition. At the
same time, the function R(t) is a product of ‘simpler’ rational functions given above, with all
coefficients of their partial fractions being integral.

Lemma 1. Let k1, . . . , kq be pairwise distinct numbers from the set {0, 1, . . . , n} and s1, . . . , sq
positive integers. Then the coefficients in the expansion

1∏q
j=1(t+ kj)sj

=

q∑
j=1

sj∑
i=1

bi,j
(t+ kj)i

satisfy

ds−in bi,j ∈ Z, where i = 1, . . . , sj and j = 1, . . . , q, (5)

where s = s1 + · · ·+ sq.
In particular,

ds−in ai,k ∈ Z, where i = 1, . . . , s and k = 0, 1, . . . , n, (6)

for the coefficients in (4).

Proof. Denote the rational function in question by S(t). The statement is trivially true when
q = 1, therefore we assume that q ≥ 2. In view of the symmetry of the data, it is sufficient
to demonstrate the inclusions (5) for j = 1. Differentiating a related product m times, for any
m ≥ 0, we obtain

1

m!

(
S(t)(t+ k1)

s1
)(m)

=
1

m!

 q∏
j=2

(t+ kj)
−sj

(m)

=
∑

`2,...,`q≥0
`2+···+`q=m

q∏
j=2

1

`j !

(
(t+ kj)

−sj
)(`j)

=
∑

`2,...,`q≥0
`2+···+`q=m

q∏
j=2

(−1)`j
(
sj + `j − 1

`j

)
(t+ kj)

−(sj+`j).

This implies that

bi,1 =
∑

`2,...,`q≥0
`2+···+`q=s1−i

q∏
j=2

(−1)`j
(
sj + `j − 1

`j

)
1

(kj − k1)sj+`j
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for i = 1, . . . , s1. Using dn/(kj − k1) ∈ Z for j = 2, . . . , q and
∑q

j=2(sj + `j) = s − i for each
individual summand, we deduce the desired inclusion in (5) for j = 1, hence for any j.

The second claim in the lemma follows from considering R(t) as a product of the ‘simpler’
rational functions. �

Lemma 2. For the coefficients ai,k in (4), we have

ai,k = (−1)i−1ai,n−k for k = 0, 1, . . . , n and i = 1, . . . , s,

so that
n∑
k=0

ai,k = 0 for i even.

Proof. Since s is odd, the function (2) possesses the following (well-poised) symmetry: R(−t−
n) = −R(t). Substitution of the relation into (4) results in

−
s∑
i=1

n∑
k=0

ai,k
(t+ k)i

=
s∑
i=1

n∑
k=0

ai,k
(−t− n+ k)i

=
s∑
i=1

(−1)i
n∑
k=0

ai,k
(t+ n− k)i

=
s∑
i=1

(−1)i
n∑
k=0

ai,n−k
(t+ k)i

,

and the identities in the lemma follow from the uniqueness of decomposition into partial fractions.
The second statement follows from

n∑
k=0

ai,k = (−1)i−1
n∑
k=0

ai,n−k = (−1)i−1
n∑
k=0

ai,k. �

Lemma 3. For each n,

rn =
s∑
i=2
i odd

aiζ(i) + a0 and r̂n =
s∑
i=2
i odd

ai
(
2i − 1

)
ζ(i) + â0,

with the following inclusions available:

ds−in ai ∈ Z for i = 3, 5, . . . , s, and dsna0, d
s
nâ0 ∈ Z.

Notice that(
2i − 1

)
ζ(i) =

∞∑
`=1

1(
`− 1

2

)i
for i ≥ 2.

Proof. Our strategy here is to write the series in (1) using the partial-fraction decomposition (4)
of R(t). To treat the first sum rn we additionally introduce an auxiliary parameter z > 0, which
we later specialise to z = 1:

rn(z) =

∞∑
ν=1

Rn(ν)zν =

∞∑
ν=1

s∑
i=1

n∑
k=0

ai,kz
ν

(ν + k)i

=
s∑
i=1

n∑
k=0

ai,kz
−k

∞∑
ν=1

zν+k

(ν + k)i
=

s∑
i=1

n∑
k=0

ai,kz
−k

(
Lii(z)−

k∑
`=1

z`

`i

)

=
s∑
i=1

Lii(z)
n∑
k=0

ai,kz
−k −

s∑
i=1

n∑
k=0

k∑
`=1

ai,kz
−(k−`)

`i
,
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where

Lii(z) =
∞∑
`=1

z`

`i

for i = 1, . . . , s are the polylogarithmic functions. The latter are well defined at z = 1 for i ≥ 2,
where Lii(1) = ζ(i), while Li1(z) = − log(1− z) does not have a limit as z → 1−. By taking the
limit as z → 1− in the above derivation and using Rn(ν) = O

(
ν−2

)
as ν →∞, we conclude that

n∑
k=0

a1,k = lim
z→1−

n∑
k=0

a1,kz
−k = 0,

and

rn =
s∑
i=2

ζ(i)
n∑
k=0

ai,k −
s∑
i=1

n∑
k=0

ai,k

k∑
`=1

1

`i
. (7)

We proceed similarly for r̂n, omitting introduction of the auxiliary parameter z. Since R(t)
in (2) vanishes at t = −1

2 ,−
3
2 , . . . ,−n+ 1

2 , we can shift the starting point of summation for r̂n
to t = −m− 1

2 , where m =
⌊
n−1
2

⌋
, so that

r̂n =
∞∑

ν=−m
Rn
(
ν − 1

2

)
=

∞∑
ν=−m

s∑
i=1

n∑
k=0

ai,k(
ν + k − 1

2

)i
=

s∑
i=1

n∑
k=0

ai,k

∞∑
ν=−m

1(
ν + k − 1

2

)i
=

s∑
i=1

m∑
k=0

ai,k

∞∑
ν=−m

1(
ν + k − 1

2

)i +

s∑
i=1

n∑
k=m+1

ai,k

∞∑
ν=−m

1(
ν + k − 1

2

)i
=

s∑
i=1

m∑
k=0

ai,k

(
0∑

`=k−m

1(
`− 1

2

)i +

∞∑
`=1

1(
`− 1

2

)i
)

+
s∑
i=1

n∑
k=m+1

ai,k

( ∞∑
`=1

1(
`− 1

2

)i − k−m−1∑
`=1

1(
`− 1

2

)i
)

=

s∑
i=2

(2i − 1)ζ(i)

n∑
k=0

ai,k +

s∑
i=1

m∑
k=0

ai,k

m−k∑
`=0

(−1)i(
`+ 1

2

)i
−

s∑
i=1

n∑
k=m+1

ai,k

k−m−1∑
`=1

1(
`− 1

2

)i . (8)

Now the statement of the lemma follows from the representations in (7) and (8), Lemma 2, the
inclusions (6) of Lemma 1 and

din

k∑
`=1

1

`i
∈ Z for 0 ≤ k ≤ n and i ≥ 1,

din

m−k∑
`=0

(−1)i

(`+ 1
2)i
∈ Z for 0 ≤ k ≤ m and i ≥ 1,

din−1

k−m−1∑
`=1

1(
`− 1

2

)i ∈ Z for m+ 1 ≤ k ≤ n and i ≥ 1. �
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3 Asymptotic behaviour

In this section we make frequent use of Stirling’s asymptotic formula

n! ∼
√

2πn
(n
e

)n
as n→∞,

and its corollary(
2n

n

)
∼ 22n√

πn
as n→∞

for the central binomial coefficients. (One may also use somewhat weaker but ‘more elementary’
lower and upper bounds∫ n

1
log x dx ≤ log(n!) ≤

∫ n+1

2
log x dx

for the factorial coming out from estimating integral sums of the logarithm function, with
a nemesis of running into more sophisticated versions for the asymptotics and inequalities below.)

Because the rational function Rn(t) in (2) vanishes at 1, 2, . . . , n and at 1
2 ,

3
2 , . . . , n −

1
2 , the

hypergeometric series (1) can be alternatively written as

rn =
∞∑

ν=n+1

Rn(ν) =
∞∑
k=0

ck and r̂n =
∞∑

ν=n+1

Rn(ν − 1
2) =

∞∑
k=0

ĉk,

with the involved summands

ck = Rn(n+ 1 + k) =
26nn!s−5

∏6n
j=0

(
k + 1 + 1

2j
)∏n

j=0(n+ k + 1 + j)s+1
=
n!s−5(6n+ 2k + 2)!(n+ k)!s+1

2(2k + 1)!(2n+ k + 1)!s+1
(9)

and

ĉk = Rn
(
n+ 1

2 + k
)

=
26nn!s−5

∏6n
j=0

(
k + 1

2 + 1
2j
)∏n

j=0

(
n+ k + 1

2 + j
)s+1

strictly positive. Observe that

ck
ĉk

=

∏6n
j=0(2k + 2 + j)∏6n
j=0(2k + 1 + j)

·

 n∏
j=0

n+ k + 1
2 + j

n+ k + 1 + j

s+1

=
6n+ 2k + 2

2k + 1
·

(
2−2(n+1)

(
4n+2k+2
2n+k+1

)(
2n+2k
n+k

) )s+1

∼ 6n+ 2k + 2

2k + 1

(
n+ k

2n+ k + 1

)(s+1)/2

as n+ k →∞. (10)

Lemma 4. For s ≥ 7 odd,

lim
n→∞

r1/nn = lim
n→∞

r̂1/nn = g(x0) and lim
n→∞

rn
r̂n

= 1

where

g(x) =
26(x+ 3)6(x+ 1)s+1

(x+ 2)2(s+1)

and x0 is the unique positive zero of the polynomial

x(x+ 2)(s+1)/2 − (x+ 3)(x+ 1)(s+1)/2.
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Proof. We have

ck+1

ck
=

(
k + 3n+ 3

2

)
(k + 3n+ 2)

(k + 1)
(
k + 3

2

) (
k + n+ 1

k + 2n+ 2

)s+1

∼ f
(
k

n

)2

as n+ k →∞, (11)

where

f(x) =
x+ 3

x

(
x+ 1

x+ 2

)(s+1)/2

.

For an ease of notation write q = (s+ 1)/2 ≥ 4. Since

f ′(x)

f(x)
=

1

x+ 3
− 1

x
+ q

(
1

x+ 1
− 1

x+ 2

)
=

(q − 3)x2 + 3(q − 3)x− 6

x(x+ 1)(x+ 2)(x+ 3)

and the quadratic polynomial in the latter numerator has a unique positive zero x1, the func-
tion f(x) monotone decreases from +∞ to f(x1) when x ranges from 0 to x1 and then monotone
increases from f(x1) to f(+∞) = 1 (not attaining the value!) when x ranges from x1 to +∞.
In particular, there is exactly one positive solution x0 to f(x) = 1. Notice that 0 < x0 < 1,
because f(1) = 4 · (2/3)q < 1.

The information gained and asymptotics in (11) imply that ck+1/ck > 1 for the indices
k < x0n− γ

√
n and ck+1/ck < 1 for k > x0n+ γ

√
n for an appropriate choice of γ > 0 dictated

by application of Stirling’s formula to the factorials defining ck in (9) (see [2, Section 3.4] as
well as the second proof of Lemma 3 in [1]). This means that the asymptotic behaviour of
the sum rn =

∑∞
k=0 ck is determined by the asymptotics of ck0 and its neighbours ck, where

k0 = k0(n) ∼ x0n and |k − k0| ≤ γ
√
n, so that

lim
n→∞

r1/nn = lim
n→∞

c
1/n
k0(n)

= lim
n→∞

((n
e

)(s−5)n(6n+ 2k0 + 2

e

)6n+2k0+2( e

2k0 + 1

)2k0+1

×
(
n+ k0
e

)(s+1)(n+k0)( e

2n+ k0 + 1

)(s+1)(2n+k0+1)
)1/n

=
(2x0 + 6)2x0+6(x0 + 1)(s+1)(x0+1)

(2x0)2x0(x0 + 2)(s+1)(x0+2)

=
26(x0 + 3)6(x0 + 1)s+1

(x0 + 2)2(s+1)
· f(x0)

2x0 = g(x0).

It now follows from (10) that

ĉk+1

ĉk
∼ ck+1

ck
as n+ k →∞, (12)

so that the above analysis applies to the sum r̂n =
∑∞

k=0 ĉk as well, and its asymptotic behaviour
is determined by the asymptotics of ĉk0 and its neighbours ĉk, where k0 = k0(n) ∼ x0n and

|k − k0| ≤ γ̂
√
n. From (12) we deduce that the limits of ĉ

1/n
k0(n)

and c
1/n
k0(n)

as n → ∞ coincide,

hence r̂
1/n
n → g(x0) as n→∞. In addition to this, we also get

lim
n→∞

rn
r̂n

= lim
n→∞

ck0(n)

ĉk0(n)
= lim

n→∞

6n+ 2k0 + 2

2k0 + 1

(
n+ k0

2n+ k0 + 1

)(s+1)/2

= f(x0),

which leads to the remaining limiting relation. �
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4 Conclusion

We choose s = 25 and apply Lemma 4 to find out that 7rn− r̂n > 0 for n sufficiently large, and

lim
n→∞

(7rn − r̂n)1/n = g(x0) = exp(−25.292363 . . . ),

where x0 = 0.00036713 . . . . Assuming that the odd zeta values from ζ(5) to ζ(25) are all rational
and denoting by a their common denominator, we use Lemma 3 and the asymptotics (3) to
conclude that the sequence of positive integers

ad25n (7rn − r̂n)

tends to 0 as n → ∞; contradiction. Thus, at least one of the numbers ζ(5), ζ(7), . . . , ζ(25) is
irrational.

Those who count the prime number theorem as insufficiently elementary may use weaker
versions of (3), for example, dn < 3n from [5] and the choice s = 33 instead, to arrive at the
same conclusion (for the larger value of s, of course).

Finally, we remark that the novelty of eliminating an ‘unwanted’ term of ζ(3) in linear forms
in odd zeta values can be further used with the arithmetic method in [10] to significantly reduce
the size of s. Since this does not let s be down to s = 9, hence leaving the achievement ‘at
least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational’ unchanged, we do not discuss
this generalisation in greater details. We point out, however, that there are other applications
of the hypergeometric ‘twist-by-half’ idea, some discussed in the joint papers [6, 8], and that
a far-going extension to general ‘twists’ introduced by J. Sprang in [9] leads to an elementary
proof of a version of the Ball–Rivoal theorem from [1] as well as to a significant improvement of
the latter — see [4] for details.
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