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Abstract. Recently Pascal Baseilhac and Stefan Kolb obtained a PBW basis for the q-
Onsager algebra Oq. They defined the PBW basis elements recursively, and it is obscure
how to express them in closed form. To mitigate the difficulty, we bring in the universal
Askey–Wilson algebra ∆q. There is a natural algebra homomorphism \ : Oq → ∆q. We
apply \ to the above PBW basis, and express the images in closed form. Our results make
heavy use of the Chebyshev polynomials of the second kind.
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1 Introduction

In the 1944 paper [25] Lars Onsager obtained the free energy of the two-dimensional Ising model
in a zero magnetic field. In that paper an infinite-dimensional Lie algebra was introduced; this
algebra is now called the Onsager algebra and denoted by O. Onsager defined his algebra by giv-
ing a linear basis and the action of the Lie bracket on the basis. In [26] Perk gave a presentation
of O by generators and relations. This presentation involves two generators and two relations,
called the Dolan/Grady relations [17]. This presentation is discussed in [30, Remark 9.1]. Via
this presentation, the universal enveloping algebra of O admits a q-deformation Oq called the
q-Onsager algebra [4, 29]. The algebra Oq is associative and infinite-dimensional. It is de-
fined by two generators and two relations called the q-Dolan/Grady relations; these are given
in (2.2), (2.3) below. The q-Dolan/Grady relations first appeared in algebraic combinatorics,
in the study of Q-polynomial distance-regular graphs [27, Lemma 5.4]. Shortly thereafter they
appeared in physics, in the study of statistical mechanical models [4, Section 2]. Up to the
present, the representation theory of Oq remains an active area of research in mathematics
[19, 21, 22, 28, 29, 30, 31, 32, 33] and physics [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]. This
theory involves a linear algebraic object called a tridiagonal pair [20]. A finite-dimensional ir-
reducible Oq-module is essentially the same thing as a tridiagonal pair of q-Racah type [29,
Theorem 3.10]. These tridiagonal pairs are classified up to isomorphism in [21, Theorem 3.3].
In [22, Theorem 2.1], Ito and the present author gave a linear basis for Oq, called the zigzag
basis. More information about this basis can be found in [32, Note 4.7]. In [7], Baseilhac and
Belliard conjectured another linear basis for Oq; this one is motivated by how Oq is related to
the reflection equation algebra [11, 14]. In [13], Baseilhac and Kolb introduced two automor-
phisms T0, T1 of Oq that are roughly analogous to the Lusztig automorphisms of Uq(ŝl2). They
used T0, T1 and a method of Damiani [16] to obtain a Poincaré–Birkhoff–Witt (or PBW) ba-
sis for Oq [13, Theorem 4.3]. In our view this PBW basis is important and worthy of further
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study. In the present paper we study the following aspect. In [13, Section 3.1] the PBW basis is
defined recursively, and it is obscure how to express it in closed form. In order to mitigate the
difficulty, we bring in a related algebra which we now describe. In [34] Zhedanov introduced the
Askey–Wilson algebra AW(3) and used it to describe the Askey–Wilson polynomials. In [31]
the present author introduced a central extension of AW(3), called the universal Askey–Wilson
algebra ∆q. In [18], Hau-Wen Huang classified up to isomorphism the finite-dimensional irre-
ducible ∆q-modules for q not a root of unity. A linear basis for ∆q is given in [31, Theorem 7.5].
There is a natural algebra homomorphism \ : Oq → ∆q [31, Definition 10.4]; this is described be-
low (2.23) in the present paper. We use \ to describe the PBW basis for Oq in the following way.
We apply \ to the PBW basis vectors and consider their images in ∆q. We express these images
explicitly in the linear basis for ∆q mentioned above. Our main results are Theorems 5.5, 5.6.
These results make heavy use of the Chebyshev polynomials of the second kind [23, 24].

2 Preliminaries

We now begin our formal argument. Recall the natural numbers N = {0, 1, 2, . . .} and integers
Z = {0,±1,±2, . . .}. Let F denote an algebraically closed field with characteristic zero. All the
algebras discussed in this paper are over F; those without the Lie prefix are associative and have
a multiplicative identity. Fix a nonzero q ∈ F that is not a root of 1. Recall the notation

[n]q =
qn − q−n

q − q−1
, n ∈ Z. (2.1)

We will be discussing the q-Onsager algebra Oq and the universal Askey–Wilson algebra ∆q.
We now recall these algebras.

The algebra Oq (see [4, Section 2], [29, Definition 3.9]) is defined by generators A, B and
relations

A3B − [3]qA
2BA+ [3]qABA

2 −BA3 =
(
q2 − q−2

)2
(BA−AB), (2.2)

B3A− [3]qB
2AB + [3]qBAB

2 −AB3 =
(
q2 − q−2

)2
(AB −BA). (2.3)

The relations (2.2), (2.3) are called the q-Dolan/Grady relations. In [13], Baseilhac and Kolb
introduced the automorphisms T0, T1 of Oq. These automorphisms satisfy

T0(A) = A, T0(B) = B +
qA2B −

(
q + q−1

)
ABA+ q−1BA2(

q − q−1
)(
q2 − q−2

) , (2.4)

T1(B) = B, T1(A) = A+
qB2A−

(
q + q−1

)
BAB + q−1AB2(

q − q−1
)(
q2 − q−2

) . (2.5)

The inverse automorphisms satisfy

T−10 (A) = A, T−10 (B) = B +
q−1A2B −

(
q + q−1

)
ABA+ qBA2(

q − q−1
)
(q2 − q−2

) , (2.6)

T−11 (B) = B, T−11 (A) = A+
q−1B2A−

(
q + q−1

)
BAB + qAB2(

q − q−1
)(
q2 − q−2

) . (2.7)

In [13], Baseilhac and Kolb used T0 and T1 to define some elements in Oq, denoted

{Bnδ+α0}∞n=0, {Bnδ+α1}∞n=0, {Bnδ}∞n=1. (2.8)

The elements (2.8) were shown to be a PBW basis for Oq, provided that q is transcendental
over F [13, Theorem 4.3]. By definition
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n Bnδ+α0 Bnδ+α1

0 A B

1 T0(B) T−11 (A)

2 T0T1(A) T−11 T−10 (B)

3 T0T1T0(B) T−11 T−10 T−11 (A)

4 T0T1T0T1(A) T−11 T−10 T−11 T−10 (B)
...

...
...

and for n ≥ 1,

Bnδ = q−2B(n−1)δ+α1
A−AB(n−1)δ+α1

+
(
q−2 − 1

) n−2∑
`=0

B`δ+α1B(n−`−2)δ+α1
. (2.9)

By [13, Proposition 5.12] the elements {Bnδ}∞n=1 mutually commute. We haveBδ = q−2BA−AB.
Define B̃δ = q−2AB − BA. By [13, Lemma 3.1] we have T1(Bδ) = B̃δ and T0(B̃δ) = Bδ. So as
noted in [13, Lemma 3.1],

T0T1(Bδ) = Bδ, T−11 T−10 (Bδ) = Bδ. (2.10)

Next we recall the universal Askey–Wilson algebra ∆q [31, Definition 1.2]. This algebra is
defined by generators and relations. The generators are A, B, C. The relations assert that each
of the following is central in ∆q:

A+
qBC − q−1CB

q2 − q−2
, B +

qCA− q−1AC
q2 − q−2

, C +
qAB − q−1BA

q2 − q−2
.

For the above three central elements, multiply each by q + q−1 to get α, β, γ. Thus

A+
qBC − q−1CB

q2 − q−2
=

α

q + q−1
, (2.11)

B +
qCA− q−1AC

q2 − q−2
=

β

q + q−1
, (2.12)

C +
qAB − q−1BA

q2 − q−2
=

γ

q + q−1
. (2.13)

Each of α, β, γ is central in ∆q. By [31, Corollary 8.3] the center Z(∆q) is generated by α, β,
γ, Ω where

Ω = qABC + q2A2 + q−2B2 + q2C2 − qAα− q−1Bβ − qCγ. (2.14)

The element Ω is called the Casimir element. By [31, Theorem 8.2] the following is a linear basis
for the F-vector space Z(∆q):

Ω`αrβsγt, `, r, s, t ≥ 0.

We mention two bases for ∆q. By [31, Theorem 4.1], the following is a linear basis for the
F-vector space ∆q:

AiBjCkαrβsγt, i, j, k, r, s, t ≥ 0. (2.15)

By [31, Theorem 7.5], the following is a linear basis for the F-vector space ∆q:

AiBjCkΩ`αrβsγt, i, j, k, `, r, s, t ≥ 0, ijk = 0. (2.16)

For convenience we will work with the basis (2.16).
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Shortly we will discuss how ∆q is related to Oq. To aid in this discussion we recall from [31,
Section 2] a second presentation of ∆q. By (2.11)–(2.13) the algebra ∆q is generated by A, B, γ.
Moreover

C =
γ

q + q−1
− qAB − q−1BA

q2 − q−2
, (2.17)

α =
B2A−

(
q2 + q−2

)
BAB +AB2 +

(
q2 − q−2

)2
A+

(
q − q−1

)2
Bγ(

q − q−1
)(
q2 − q−2

) , (2.18)

β =
A2B −

(
q2 + q−2

)
ABA+BA2 +

(
q2 − q−2

)2
B +

(
q − q−1

)2
Aγ(

q − q−1
)(
q2 − q−2

) . (2.19)

By [31, Theorem 2.2] the algebra ∆q has a presentation by generators A, B, γ and relations

A3B − [3]qA
2BA+ [3]qABA

2 −BA3 =
(
q2 − q−2

)2
(BA−AB), (2.20)

B3A− [3]qB
2AB + [3]qBAB

2 −AB3 =
(
q2 − q−2

)2
(AB −BA), (2.21)

A2B2 −B2A2 +
(
q2 + q−2

)
(BABA−ABAB) =

(
q − q−1

)2
(BA−AB)γ, (2.22)

γA = Aγ, γB = Bγ. (2.23)

The relations (2.20), (2.21) are the q-Dolan/Grady relations. Consequently there exists an
algebra homomorphism \ : Oq → ∆q that sends A 7→ A and B 7→ B. This homomorphism is not
injective by [31, Theorem 10.9].

In order to clarify the nature of T0, T1, \ we now introduce some automorphisms t0, t1
of ∆q such that t0\ = \T0 and t1\ = \T1. To this end, we recall from [31, Section 3] how the
modular group PSL2(Z) acts on ∆q as a group of automorphisms. By [1] the group PSL2(Z)
has a presentation by generators ρ, σ and relations ρ3 = 1, σ2 = 1. Earlier in this section we
gave two presentations of ∆q. Using these presentations we find that PSL2(Z) acts on ∆q as
a group of automorphisms in the following way:

u A B C α β γ

ρ(u) B C A β γ α

σ(u) B A C + AB−BA
q−q−1 β α γ

(2.24)

This action is faithful by [31, Theorem 3.13]. From the table (2.24) we see that the PSL2(Z)-
generators ρ, σ each permute α, β, γ. This gives a group homomorphism from PSL2(Z) onto
the symmetric group S3. Let P denote the kernel of the homomorphism. Thus P is a normal
subgroup of PSL2(Z), and the quotient group PSL2(Z)/P is isomorphic to S3. The cosets of P
in PSL2(Z) are

P, ρP, ρ2P, σP, ρσP, ρ2σP.

We remark that in the literature the groups PSL2(Z) and P are often denoted by Γ and Γ(2),
respectively; see for example [1, 2]. Define

t0 =
(
ρ2σ
)2

= (σρ)−2, t1 =
(
σρ2
)2

= (ρσ)−2. (2.25)

Using (2.24), (2.25) we obtain t0, t1 ∈ P. By [2, Proposition 4] the group P is freely generated
by t±10 , t±11 . Using (2.17), (2.24), (2.25) we obtain

t0(A) = A, t0(B) = B +
qA2B −

(
q + q−1

)
ABA+ q−1BA2(

q − q−1
)(
q2 − q−2

) , (2.26)

t1(B) = B, t1(A) = A+
qB2A−

(
q + q−1

)
BAB + q−1AB2(

q − q−1
)(
q2 − q−2

) (2.27)
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and

t−10 (A) = A, t−10 (B) = B +
q−1A2B −

(
q + q−1

)
ABA+ qBA2(

q − q−1
)(
q2 − q−2

) , (2.28)

t−11 (B) = B, t−11 (A) = A+
q−1B2A−

(
q + q−1

)
BAB + qAB2(

q − q−1
)(
q2 − q−2

) . (2.29)

The actions (2.26)–(2.29) match (2.4)–(2.7). Consequently the following diagrams commute:

Oq
\−−−−→ ∆q

T±1
1

y yt±1
1

Oq
\−−−−→ ∆q,

Oq
\−−−−→ ∆q

T±1
0

y yt±1
0

Oq
\−−−−→ ∆q.

(2.30)

Let Aut(Oq) denote the automorphism group of Oq. Let G denote the subgroup of Aut(Oq)
generated by T±10 , T±11 . Since P is freely generated by t±10 , t±11 there exists a group homomor-
phism ε : P→ G that sends t±10 7→ T±10 and t±11 7→ T±11 . Using the commuting diagrams (2.30)
one finds that for π ∈ P the following diagram commutes:

Oq
\−−−−→ ∆q

ε(π)

y yπ
Oq

\−−−−→ ∆q.

(2.31)

We now prove that ε is an isomorphism. By construction ε is surjective. We show that ε is
injective. Given an element r in the kernel of ε, we show that r is the identity in P. To this end,
we show that r fixes the generators A, B, γ of ∆q. The map ε(r) is the identity in G, so ε(r)
fixes the elements A, B of Oq. By the commuting diagram (2.31) the map r fixes the elements
A, B of ∆q. Also r fixes γ since r ∈ P and everything in P fixes γ. We have shown that r fixes
the generators A, B, γ of ∆q so r is the identity in P. Consequently ε is injective and hence an
isomorphism.

It is mentioned in [13, Section 2.3] that one expects G to be freely generated by T±10 , T±11 .
This is now easily proven as follows. The group P is freely generated by t±10 , t±11 . Applying the
isomorphism ε : P→ G we find that G is freely generated by T±10 , T±11 .

Next we consider how the map \ : Oq → ∆q acts on the elements (2.8). For these elements we
retain the same notation for their images under \. Our goal is to obtain these images in closed
form, in terms of the basis (2.16). In order to obtain these images, it is convenient to bring
in the Chebyshev polynomials of the second kind. These polynomials are reviewed in the next
section.

3 The Chebyshev polynomials

In this section we review the Chebyshev polynomials of the second kind; see [23, 24] for fur-
ther details. Let x denote an indeterminate. Let F[x] denote the F-algebra consisting of the
polynomials in x that have all coefficients in F.

Definition 3.1 (see [24, p. 4]). For n ∈ N define Un ∈ F[x] by

U0 = 1, U1 = x, xUn = Un+1 + Un−1, n ≥ 1.

The polynomial Un is monic and degree n. We call Un the nth Chebyshev polynomial of the
second kind. For notational convenience define Un = 0 for all integers n < 0.
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Note 3.2. The above polynomials Un are normalized to be monic. This normalization differs
from the one in [23, Section 9.8.2]. To go from our normalization to the one in [23, Section 9.8.2],
replace x by 2x.

In the table below we display Un for 0 ≤ n ≤ 9.

n Un
0 1
1 x
2 x2 − 1
3 x3 − 2x
4 x4 − 3x2 + 1
5 x5 − 4x3 + 3x
6 x6 − 5x4 + 6x2 − 1
7 x7 − 6x5 + 10x3 − 4x
8 x8 − 7x6 + 15x4 − 10x2 + 1
9 x9 − 8x7 + 21x5 − 20x3 + 5x

By [24, pp. 332–333],

Un(x) =

bn/2c∑
i=0

(−1)i
(
n− i
i

)
xn−2i, n ∈ N.

Next we express the polynomials Un in a more closed form. Let z denote an indeterminate. Let
F[z, z−1] denote the F-algebra consisting of the Laurent polynomials in z that have all coefficients
in F. This algebra has an automorphism that sends z 7→ z−1. An element of F[z, z−1] that is fixed
by the automorphism is called symmetric. The symmetric elements form a subalgebra of F[z, z−1]
called its symmetric part. There exists an injective algebra homomorphism ι : F[x] → F[z, z−1]
that sends x 7→ z + z−1. The image of F[x] under ι is the symmetric part of F[z, z−1]. Via ι we
identify F[x] with the symmetric part of F[z, z−1]. So for n ∈ N we view

zn+1 − z−n−1

z − z−1
= zn + zn−2 + · · ·+ z2−n + z−n

as an element of F[x].

Lemma 3.3 (see [24, p. 326]). For n ∈ N we have

Un(x) =
zn+1 − z−n−1

z − z−1
,

where we recall x = z + z−1.

In this paper, on several occasions we will consider generating functions in an indetermi-
nate t. These generating functions involve a formal power series; issues of convergence are not
considered. The following generating function will be useful.

Lemma 3.4 (see [23, p. 227]). For an indeterminate t,∑
n∈N

tnUn(x) =
1

1− tx+ t2
. (3.1)

Proof. Using Definition 3.1 one finds that the product
( ∑
n∈N

tnUn(x)
)(

1− tx+ t2
)

is equal to 1.

Alternatively, use Lemma 3.3. �
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The following variations on Lemma 3.4 will be used repeatedly.

Lemma 3.5. For an indeterminate t,∑
n∈N

(−1)nqntnUn−1(x) =
−1

qt+ q−1t−1 + x
,

∑
n∈N

(−1)nq−ntnUn−1(x) =
−1

q−1t+ qt−1 + x
.

Lemma 3.6. For an indeterminate t,

∑
n∈N

(−1)ntn[n]qUn−1(x) =
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) .
Proof. Observe that∑

n∈N
(−1)ntn[n]qUn−1(x) =

∑
n∈N

(−1)ntn
qn − q−n

q − q−1
Un−1(x)

=
∑
n∈N

(−1)ntnqnUn−1(x)

q − q−1
−
∑
n∈N

(−1)ntnq−nUn−1(x)

q − q−1

=
1

q − q−1
−1

qt+ q−1t−1 + x
− 1

q − q−1
−1

q−1t+ qt−1 + x

=
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) . �

4 Some identities

In this section we give some identities for later use.

Lemma 4.1. For r ∈ Z,

[r − 1]q −
(
q + q−1

)
[r]q + [r + 1]q = 0.

Proof. Use (2.1). �

Lemma 4.2. For r, s ∈ Z we have

[r − 1]q[s− 1]q[r − s]q + [r]q[s]q[r − s]q = [r − 1]q[s]q[r − s+ 1]q + [r]q[s− 1]q[r − s− 1]q.

Proof. Expand each side using (2.1). �

Lemma 4.3. For an indeterminate t,

∑
`∈N

t2` =
−t−1

t− t−1
,

∑
`∈N

`t2` =
1(

t− t−1
)2 ,

∑
`∈N

`2t2` = − t+ t−1(
t− t−1

)3 , ∑
`∈N

(
`+ 1

2

)
t2`+1 =

−1(
t− t−1

)3 .
Proof. These are readily checked. �
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5 The main results

In this section we express the images (2.8) in the basis (2.16). In what follows, the notation
[u, v] means uv− vu. We will use a recursion found in [13]; we give a short proof for the sake of
completeness.

Lemma 5.1 (see [13, Section 3.1]). In the algebra Oq,

Bα0 = A, Bδ+α0 = B +
q[Bδ, A](

q − q−1
)(
q2 − q−2

) , (5.1)

Bnδ+α0 = B(n−2)δ+α0
+

q[Bδ, B(n−1)δ+α0
](

q − q−1
)(
q2 − q−2

) , n ≥ 2 (5.2)

and also

Bα1 = B, Bδ+α1 = A− q[Bδ, B](
q − q−1

)(
q2 − q−2

) , (5.3)

Bnδ+α1 = B(n−2)δ+α1
−

q[Bδ, B(n−1)δ+α1
](

q − q−1
)(
q2 − q−2

) , n ≥ 2. (5.4)

Proof. We show that

T0(B) = B +
q[Bδ, A](

q − q−1
)(
q2 − q−2

) , (5.5)

T−11 (A) = A− q[Bδ, B](
q − q−1

)(
q2 − q−2

) . (5.6)

To verify (5.5) (resp. (5.6)) eliminate Bδ using Bδ = q−2BA − AB and compare the result
with (2.4) (resp. (2.7)). Lines (5.1), (5.3) follow from (5.5), (5.6) and the construction. Now
consider (5.2), (5.4). First assume that n = 2r + 1 is odd. To verify (5.2), apply (T0T1)

r to
each side of (5.5), and use (2.10) along with T1(B) = B. To verify (5.4), apply (T0T1)

−r to
each side of (5.6), and use (2.10) along with T0(A) = A. Next assume that n = 2r is even.
To verify (5.2), apply (T0T1)

r to each side of (5.6), and use (2.10) along with T0(A) = A,
T1(B) = B. To verify (5.4), apply (T0T1)

−r to each side of (5.5), and use (2.10) along with
T0(A) = A, T1(B) = B. �

Lemma 5.2. In the algebra ∆q,

Bδ = q−1
(
q2 − q−2

)
C − q−1

(
q − q−1

)
γ. (5.7)

Proof. Simplify (2.13) using qAB − q−1BA = −qBδ. �

Lemma 5.3. In the algebra ∆q,

Bα0 = A, Bδ+α0 = B +
[C,A]

q − q−1
, (5.8)

Bnδ+α0 = B(n−2)δ+α0
+

[C,B(n−1)δ+α0
]

q − q−1
, n ≥ 2 (5.9)

and also

Bα1 = B, Bδ+α1 = A− [C,B]

q − q−1
, (5.10)

Bnδ+α1 = B(n−2)δ+α1
−

[C,B(n−1)δ+α1
]

q − q−1
, n ≥ 2. (5.11)
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Proof. Evaluate (5.1)–(5.4) using (5.7) and the fact that γ is central in ∆q. �

Lemma 5.4. In the algebra ∆q,

[C,A]

q − q−1
= −q−1AC − q−1

(
q + q−1

)
B + q−1β, (5.12)

[C,B]

q − q−1
= qBC + q

(
q + q−1

)
A− qα. (5.13)

Proof. These equations are a reformulation of (2.11), (2.12). �

The following is our first main result.

Theorem 5.5. For n ≥ 0 the following hold in ∆q:

Bnδ+α0 = (−1)nq−nAUn(C) + (−1)nq−n−1BUn−1(C) + (−1)nα
∑
j∈N

q2j−n+1Un−2j−2(C)

+ (−1)n−1β
∑
j∈N

q2j−nUn−2j−1(C),

Bnδ+α1 = (−1)nqnBUn(C) + (−1)nqn+1AUn−1(C) + (−1)nβ
∑
j∈N

qn−2j−1Un−2j−2(C)

+ (−1)n−1α
∑
j∈N

qn−2jUn−2j−1(C).

Proof. By a routine induction on n, using Lemmas 5.3, 5.4. �

The following is our second main result.

Theorem 5.6. In the algebra ∆q, for n ≥ 1 the element Bnδ is equal to (−1)n
(
1− q−2

)
times

a weighted sum with the following terms and coefficients:

term coefficient

Ω
∑̀
∈N

[n− 2`− 1]qUn−2`−2(C)

αβ
∑̀
∈N
`2[n− 2`]qUn−2`−1(C)

α2 + β2 −
∑̀
∈N

(
`+1
2

)
[n− 2`− 1]qUn−2`−2(C)

γ [n]qUn−1(C) + 2
∑̀
∈N

[n− 2`− 2]qUn−2`−3(C)

1 −[n+ 1]qUn(C)− [3]q[n− 1]qUn−2(C)− [2]2q
∑̀
∈N

[n− 2`− 3]qUn−2`−4(C)

Proof. We have some preliminary comments. Using (2.12), (2.13),

BA = q2AB + q
(
q2 − q−2

)
C − q

(
q − q−1

)
γ,

CA = q−2AC − q−1
(
q2 − q−2

)
B + q−1

(
q − q−1

)
β,

CA2 = q−4A2C − q−1
(
q4 − q−4

)
AB + q−2

(
q2 − q−2

)
Aβ

−
(
q2 − q−2

)2
C +

(
q − q−1

)(
q2 − q−2

)
γ.

By [31, Lemma 6.1],

BAC = qΩ− q3A2 − q−1B2 − q−1C2 + q2Aα+Bβ + Cγ,

CAB = q−1Ω− q−3A2 − qB2 − qC2 + q−2Aα+Bβ + Cγ.
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We are done with the preliminary comments. We now define some generating functions in an
indeterminate t:

Φ(t) =

∞∑
n=0

tnBnδ+α1 , Ψ(t) =

∞∑
n=1

tnBnδ. (5.14)

By (2.9),

Ψ(t) = q−2tΦ(t)A− tAΦ(t) +
(
q−2 − 1

)
t2(Φ(t))2. (5.15)

By (5.10), (5.11),

[C,Φ(t)]

q − q−1
= A+ t−1B +

(
t− t−1

)
Φ(t). (5.16)

We next consider what the second equation in Theorem 5.5 implies about Φ(t). Using Lem-
ma 3.4,∑

n∈N
(−1)nqntnUn(x) =

q−1t−1

qt+ q−1t−1 + x
.

Using Lemma 3.5,∑
n∈N

(−1)nqn+1tnUn−1(x) =
−q

qt+ q−1t−1 + x
.

We have∑
n∈N

(−1)ntn
∑
j∈N

qn−2j−1Un−2j−2(x)

=
∑
n∈N

∑
j∈N

(−1)ntnqn−2j−1Un−2j−2(x)

= −
∑
n∈N

∑
j∈N

(−1)n−2j−1tn−2j−1qn−2j−1Un−2j−2(x)t2j+1

= −
∑
N∈N

∑
j∈N

(−1)N tNqNUN−1(x)t2j+1 (change var. N = n− 2j − 1)

= −

(∑
N∈N

(−1)N tNqNUN−1(x)

)(∑
j∈N

t2j+1

)

=
−1

qt+ q−1t−1 + x

1

t− t−1

=
−1(

t− t−1
)(
qt+ q−1t−1 + x

) .
Similarly,∑

n∈N
(−1)n−1tn

∑
j∈N

qn−2jUn−2j−1(x) =
−t−1(

t− t−1
)(
qt+ q−1t−1 + x

) .
By these comments and the second equation in Theorem 5.5,

Φ(t)
(
qt+ q−1t−1 + C

)
= q−1t−1B − qA− β

t− t−1
− t−1α

t− t−1
. (5.17)
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By (5.16) and (5.17),

(
q−1t+ qt−1 + C

)
Φ(t) = qt−1B − q−1A− β

t− t−1
− t−1α

t− t−1
. (5.18)

In (5.15), we multiply each side on the left by q−1t+qt−1+C and on the right by qt+q−1t−1+C.
We evaluate the result using (5.17), (5.18) to obtain(

q−1t+ qt−1 + C
)
Ψ(t)

(
qt+ q−1t−1 + C

)
= q−2t

(
qt−1B − q−1A− β

t− t−1
− t−1α

t− t−1

)
A
(
qt+ q−1t−1 + C

)
− t
(
q−1t+ qt−1 + C

)
A

(
q−1t−1B − qA− β

t− t−1
− t−1α

t− t−1

)
+
(
q−2 − 1

)
t2
(
qt−1B − q−1A− β

t− t−1
− t−1α

t− t−1

)
×
(
q−1t−1B − qA− β

t− t−1
− t−1α

t− t−1

)
.

Evaluating the above equation using the preliminary comments, we find that(
q−1t+ qt−1 + C

)
Ψ(t)

(
qt+ q−1t−1 + C

)
(5.19)

is equal to 1− q−2 times

Ω−
(
t+ t−1

)
αβ(

t− t−1
)2 − α2 + β2(

t− t−1
)2 − (t+ t−1

)
γ +

(
q + q−1

)(
t+ t−1

)
C + C2.

Consequently Ψ(t) is equal to 1− q−2 times

F1(t, C)Ω + F2(t, C)αβ + F3(t, C)
(
α2 + β2

)
+ F4(t, C)γ + F5(t, C),

where

F1(t, x) =
1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) ,
F2(t, x) = − t+ t−1(

t− t−1
)2(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) ,
F3(t, x) =

−1(
t− t−1

)2(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) ,
F4(t, x) = − t+ t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) ,
F5(t, x) =

(
q + q−1

)(
t+ t−1

)
x+ x2(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) .
We now compare the {Fi}5i=1 with the coefficients shown in the table of the theorem statement.

Concerning F1,

∞∑
n=1

(−1)ntn
∑
`∈N

[n− 2`− 1]qUn−2`−2(x)

=
∞∑
n=1

∑
`∈N

(−1)ntn[n− 2`− 1]qUn−2`−2(x)
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= −
∞∑
n=1

∑
`∈N

(−1)n−2`−1tn−2`−1[n− 2`− 1]qUn−2`−2(x)t2`+1

= −
∑
N∈N

∑
`∈N

(−1)N tN [N ]qUN−1(x)t2`+1 (change var. N = n− 2`− 1)

= −

(∑
N∈N

(−1)N tN [N ]qUN−1(x)

)(∑
`∈N

t2`+1

)

=
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) 1

t− t−1

=
1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

)
= F1(t, x).

Concerning F2,

∞∑
n=1

(−1)ntn
∑
`∈N

`2[n− 2`]qUn−2`−1(x)

=
∞∑
n=1

∑
`∈N

(−1)ntn[n− 2`]qUn−2`−1(x)`2

=
∞∑
n=1

∑
`∈N

(−1)n−2`tn−2`[n− 2`]qUn−2`−1(x)`2t2`

=
∑
N∈N

∑
`∈N

(−1)N tN [N ]qUN−1(x)`2t2` (change var. N = n− 2`)

=

(∑
N∈N

(−1)N tN [N ]qUN−1(x)

)(∑
`∈N

`2t2`

)

= − t− t−1(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) t+ t−1(
t− t−1

)3
= − t+ t−1(

t− t−1
)2(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

)
= F2(t, x).

Concerning F3,

−
∞∑
n=1

(−1)ntn
∑
`∈N

(
`+ 1

2

)
[n− 2`− 1]qUn−2`−2(x)

= −
∞∑
n=1

∑
`∈N

(−1)ntn[n− 2`− 1]qUn−2`−2(x)

(
`+ 1

2

)

=

∞∑
n=1

∑
`∈N

(−1)n−2`−1tn−2`−1[n− 2`− 1]qUn−2`−2(x)

(
`+ 1

2

)
t2`+1

=
∑
N∈N

∑
`∈N

(−1)N tN [N ]qUN−1(x)

(
`+ 1

2

)
t2`+1 (change var. N = n− 2`− 1)

=

(∑
N∈N

(−1)N tN [N ]qUN−1(x)

)(∑
`∈N

(
`+ 1

2

)
t2`+1

)
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=
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) −1(
t− t−1

)3
=

−1(
t− t−1

)2(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

)
= F3(t, x).

Concerning F4,

∞∑
n=1

(−1)ntn[n]qUn−1(x)

=
∑
n∈N

(−1)ntn[n]qUn−1(x)

=
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) (5.20)

and also

∞∑
n=1

(−1)ntn
∑
`∈N

[n− 2`− 2]qUn−2`−3(x)

=

∞∑
n=1

∑
`∈N

(−1)ntn[n− 2`− 2]qUn−2`−3(x)

=

∞∑
n=1

∑
`∈N

(−1)n−2`−2tn−2`−2[n− 2`− 2]qUn−2`−3(x)t2`+2

=
∑
N∈N

∑
`∈N

(−1)N tN [N ]qUN−1(x)t2`+2 (change var. N = n− 2`− 2)

=

(∑
N∈N

(−1)N tN [N ]qUN−1(x)

)(∑
`∈N

t2`+2

)

= − t− t−1(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) t

t− t−1

= − t(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) . (5.21)

Note that (5.20) plus twice (5.21) is equal to F4(t, x).
Concerning F5,

∞∑
n=1

(−1)ntn[n+ 1]qUn(x)

= −1 +
∑
n∈N

(−1)ntn[n+ 1]qUn(x)

= −1− t−1
∑
n∈N

(−1)n+1tn+1[n+ 1]qUn(x)

= −1− t−1
∑
N∈N

(−1)N tN [N ]qUN−1(x) (change var. N = n+ 1)

= −1−
t−1
(
t− t−1

)(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) (5.22)
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and also
∞∑
n=1

(−1)ntn[n− 1]qUn−2(x)

= −t
∞∑
n=1

(−1)n−1tn−1[n− 1]qUn−2(x)

= −t
∑
N∈N

(−1)N tN [N ]qUN−1(x) (change var. N = n− 1)

= −
t
(
t− t−1

)(
qt+ q−1t−1 + x

)(
q−1t+ qt−1 + x

) , (5.23)

and also
∞∑
n=1

(−1)ntn
∑
`∈N

[n− 2`− 3]qUn−2`−4(x)

=
∞∑
n=1

∑
`∈N

(−1)ntn[n− 2`− 3]qUn−2`−4(x)

= −
∞∑
n=1

∑
`∈N

(−1)n−2`−3tn−2`−3[n− 2`− 3]qUn−2`−4(x)t2`+3

= −
∑
N∈N

∑
`∈N

(−1)N tN [N ]qUN−1(x)t2`+3 (change var. N = n− 2`− 3)

= −

(∑
N∈N

(−1)N tN [N ]qUN−1(x)

)(∑
`∈N

t2`+3

)

=
t− t−1(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) t2

t− t−1

=
t2(

qt+ q−1t−1 + x
)(
q−1t+ qt−1 + x

) . (5.24)

Note that (−1) times (5.22) minus [3]q times (5.23) minus [2]2q times (5.24) is equal to F5(t, x).
The result follows from the above comments. �

Recall the center Z(∆q).

Corollary 5.7. For n ≥ 1 the element Bnδ is contained in the subalgebra of ∆q generated by C
and Z(∆q).

We finish the paper with some comments.
Here is another version of Theorem 5.5.

Proposition 5.8. For n ≥ 0 the following hold in ∆q:

Bnδ+α0 = (−1)nqnUn(C)A+ (−1)nqn+1Un−1(C)B + (−1)nα
∑
j∈N

qn−2j−1Un−2j−2(C)

+ (−1)n−1β
∑
j∈N

qn−2jUn−2j−1(C),

Bnδ+α1 = (−1)nq−nUn(C)B + (−1)nq−n−1Un−1(C)A+ (−1)nβ
∑
j∈N

q2j−n+1Un−2j−2(C)

+ (−1)n−1α
∑
j∈N

q2j−nUn−2j−1(C).
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Proof. Similar to the proof of Theorem 5.5. �

The following result might be of independent interest.

Proposition 5.9. For n ≥ 1 the following holds in ∆q:

Un(C)A = q−2nAUn(C)− q2
(
q − q−1

)
A
∑
`∈N

[2n− 4`− 2]qUn−2`−2(C)

− q−1
(
q − q−1

)
B
∑
`∈N

[2n− 4`]qUn−2`−1(C)

+
(
q − q−1

)2
α
∑
`∈N

[n− 2`− 1]q[`+ 1]q[n− `]qUn−2`−2(C)

+
(
q − q−1

)
β
∑
`∈N

[n− 2`]q
(
q`−n[`+ 1]q − qn−`+1[`]q

)
Un−2`−1(C)

and also

Un(C)B = q2nBUn(C) + q−2
(
q − q−1

)
B
∑
`∈N

[2n− 4`− 2]qUn−2`−2(C)

+ q
(
q − q−1

)
A
∑
`∈N

[2n− 4`]qUn−2`−1(C)

+
(
q − q−1

)2
β
∑
`∈N

[n− 2`− 1]q[`+ 1]q[n− `]qUn−2`−2(C)

−
(
q − q−1

)
α
∑
`∈N

[n− 2`]q
(
qn−`[`+ 1]q − q`−n−1[`]q

)
Un−2`−1(C).

Proof. We use induction on n. For n = 1 the equations in the proposition statement are
reformulations of (2.11), (2.12). For n ≥ 2 we proceed as follows. To obtain the first (resp.
second) equation in the proposition statement, multiply each side of (2.12) (resp. (2.11)) on
the left by Un−1(C), and evaluate the result using CUn−1(C) = Un(C) + Un−2(C) along with
induction and Lemmas 4.1, 4.2. �

In the algebra Oq the elements {Bnδ}∞n=1 are defined using the formula (2.9). This formula
is not symmetric in α0, α1. As shown in [13], there is another formula for {Bnδ}∞n=1 that
interchanges the roles of α0, α1. According to [13, Section 5.2] the following holds in Oq for
n ≥ 1:

Bnδ = q−2BB(n−1)δ+α0
−B(n−1)δ+α0

B +
(
q−2 − 1

) n−2∑
`=0

B`δ+α0B(n−`−2)δ+α0
. (5.25)

We now sketch a proof of Theorem 5.6 that uses (5.25) instead of (2.9). Following (5.14), for
the algebra ∆q we define

Φ̃(t) =

∞∑
n=0

tnBnδ+α0 . (5.26)

By (5.14), (5.25), (5.26) we obtain

Ψ(t) = q−2tBΦ̃(t)− tΦ̃(t)B +
(
q−2 − 1

)
t2
(
Φ̃(t)

)2
. (5.27)

By (5.8), (5.9),

[Φ̃(t), C]

q − q−1
= t−1A+B +

(
t− t−1

)
Φ̃(t). (5.28)
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From the first equation in Theorem 5.5 we obtain

Φ̃(t)
(
q−1t+ qt−1 + C

)
= qt−1A− q−1B − α

t− t−1
− t−1β

t− t−1
. (5.29)

By (5.28) and (5.29),

(
qt+ q−1t−1 + C

)
Φ̃(t) = q−1t−1A− qB − α

t− t−1
− t−1β

t− t−1
. (5.30)

In (5.27), we multiply each side on the left by qt+q−1t−1+C and on the right by q−1t+qt−1+C.
We evaluate the result using (5.29), (5.30) to obtain(

qt+ q−1t−1 + C
)
Ψ(t)

(
q−1t+ qt−1 + C

)
= q−2t

(
qt+ q−1t−1 + C

)
B

(
qt−1A− q−1B − α

t− t−1
− t−1β

t− t−1

)
− t
(
q−1t−1A− qB − α

t− t−1
− t−1β

t− t−1

)
B
(
q−1t+ qt−1 + C

)
+
(
q−2 − 1

)
t2
(
q−1t−1A− qB − α

t− t−1
− t−1β

t− t−1

)
×
(
qt−1A− q−1B − α

t− t−1
− t−1β

t− t−1

)
.

Evaluating this equation using

BA = q2AB + q
(
q2 − q−2

)
C − q

(
q − q−1

)
γ,

CB = q2BC + q
(
q2 − q−2

)
A− q

(
q − q−1

)
α,

CB2 = q4B2C + q3(q4 − q−4)AB − q2
(
q2 − q−2

)
Bα

+ q4
(
q2 − q−2

)2
C − q4

(
q − q−1

)(
q2 − q−2

)
γ

and

ABC = q−1Ω− qA2 − q−3B2 − qC2 +Aα+ q−2Bβ + Cγ,

CBA = qΩ− q−1A2 − q3B2 − q−1C2 +Aα+ q2Bβ + Cγ

we find that(
qt+ q−1t−1 + C

)
Ψ(t)

(
q−1t+ qt−1 + C

)
is equal to 1− q−2 times

Ω−
(
t+ t−1

)
αβ(

t− t−1
)2 − α2 + β2(

t− t−1
)2 − (t+ t−1

)
γ +

(
q + q−1

)(
t+ t−1

)
C + C2.

After this point, the present proof is the same as the original proof.
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