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Abstract. Burchnall’s method to invert the Feldheim–Watson linearization formula for
the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its
q-analogue. The resulting expansion formulas are made explicit for several families corre-
sponding to measures with infinite support, including the Wilson and Askey–Wilson polyno-
mials. An integrated version gives the possibility to give alternate expression for orthogonal
polynomials with respect to a modified weight. This gives expansions for polynomials, such
as Hermite, Laguerre, Meixner, Charlier, Meixner–Pollaczek and big q-Jacobi polynomials
and big q-Laguerre polynomials. We show that one can find expansions for the orthogonal
polynomials corresponding to the Toda-modification of the weight for the classical polyno-
mials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite,
Laguerre, Charlier, Meixner, Meixner–Pollaczek and Krawtchouk polynomials.

Key words: orthogonal polynomials; Askey scheme and its q-analogue; expansion formulas;
Toda lattice
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1 Introduction

In 1941 J.L. Burchnall (1892–1975) wrote a short paper [7] in which he developed a method to
find the inverse to the 1938 Feldheim–Watson formula

Hm(x)Hn(x) =
m∧n∑
r=0

(
n

r

)(
m

r

)
2rr!Hm+n−2r(x), (1.1)

linearizing a product of two Hermite polynomials. Here we use standard notation for the Hermite
polynomials Hm, and see [3, Section 6.1], [4, Lecture 5], [14, Section 4.6], The composition of
Burchnall’s formula [7, equation (5)]

Hn+m(x) =
n∧m∑
r=0

(
n

r

)(
m

r

)
(−2)rr!Hn−r(x)Hm−r(x), (1.2)

which we rederive in Section 3.1, and the Feldheim–Watson formula (1.1) is equivalent to the
finite Chu–Vandermonde sum. In fact, Nielsen [23, p. 33, equations (5) and (6)] derived the
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Feldheim–Watson and the Burchnall formulas already in 1918. It seems that Burchnall was
not aware of Nielsen’s paper. Nielsen used the recurrence relations, whereas Burchnall used an
operational approach. In fact in his series of memoirs in the 1890s, L.J. Rogers calculated the
linearization coefficients for the continuous q-ultraspherical polynomials and the limiting case
of the continuous q-Hermite polynomials, see, e.g., [10, Section 8.5] and references given there.
So (1.1) is a q → 1 limiting case of one of Rogers’s results. Rogers used his results to prove the
Rogers–Ramanujan identities, see, e.g., [10, Section 8.10].

Actually, Burchnall gives an operational formula for
(
d
dx−2x

)n
in terms of the k-th derivatives.

Explicitly, see [7, equation (3)],((
d

dx
− 2x

)n
f

)
(x) =

n∑
k=0

(−1)n−k
(
n

k

)
Hn−k(x)f (k)(x), (1.3)

for f sufficiently differentiable. The important ingredient in Burchnall’s derivation are the raising
and lowering operators for the Hermite polynomials. In Section 2 we show that Burchnall’s
method extends to all polynomials in the Askey-scheme and its q-analogue, see, e.g., [18, 19],
using their raising and lowering operators. We generalize (1.3) in Theorem 2.1. We give many
worked out cases of the analogue of Burchnall’s identity up to the Wilson and the Askey–Wilson
polynomials. We restrict ourselves to families of orthogonal polynomials with infinite support,
although it is clear that the method works for finite discrete orthogonal polynomials as well, up
to minor modifications.

It should be noted that Carlitz [8, equation (4)] extends Burchnall’s operational formula (1.3)
to the case of Laguerre polynomials which we rederive in (3.5). The resulting analogue of (1.2)
is

(m+ 1)n
n!

L
(ν)
m+n(x) =

n∑
k=0

(−x)k

k!
L
(ν+k)
n−k (x)L

(ν+n+k)
m−k (x), (1.4)

which Carlitz [8] proves by induction on n. Gould and Hopper [12] give a joint extension of these
operational formulas to the Gould–Hopper polynomials. Al-Salam [2] shows that the operational
formulas of Carlitz and Gould–Hopper are equivalent. Moreover, Singh [25] has determined the
extension to the Jacobi case, which we give in Section 3.3 for completeness. The extensions of
Burchnall’s results to the Laguerre and Jacobi case fit in the classical orthogonal polynomials as
a part of the Askey scheme. This part is characterized by having the derivative as the lowering
operator. The extension to Zernike polynomials is given in [1], where more references to the
literature are given.

In this paper we make the operational formulation (1.3) and the analogue of the expansion
formulas (1.2), (1.4) explicit for several classes in the Askey scheme and its q-analogue. For the
classical orthogonal polynomials – Hermite, Laguerre, Jacobi – this is in Section 3, and we show
that the integrated formulas in case of the Hermite and Laguerre polynomials are essentially
given as a change of coordinates. As is clear from the above, several of these results for classical
orthogonal polynomials can be traced back in the literature, see [1, 2, 7, 8, 12, 23, 25] and
references given there. We show how to generalize these operational formulas and expansion
identities to all of the families of orthogonal polynomials in the Askey scheme and its q-analogue.
Replacing the derivative by the backward shift operator as the lowering operator, we get two
versions of the operational identities and the expansion formulas for the corresponding classes of
orthogonal polynomials: Meixner and Charlier polynomials, see Section 4. In these cases there
are two inequivalent versions of the expansion formulas of type (1.2), (1.4). Using the divided
difference operator δ

δx we give the explicit formulas for the Meixner–Pollaczek polynomials in

Section 5. For the Wilson polynomials related to the divided difference operator δ
δx2

the results
are stated in Section 6. For the q-analogue we study the big q-Jacobi polynomials and the
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Askey–Wilson polynomials. For the big q-Jacobi polynomials we again get two versions of
the operational identity and the expansion formula given in Section 8. By switching to the
Askey–Wilson q-difference operator as a lowering operator, we may include the Askey–Wilson
polynomials. This is in Section 9, with emphasis on the special case of the continuous q-Hermite
polynomials.

Using the generalized Burchnall identity and the raising and lowering operators being each
others adjoint on suitable weighted L2-spaces, we obtain an integrated version in Corollary 2.3.
In various cases we can use the integrated version to find orthogonal polynomials with respect
to a slightly modified weight, where the modification is governed by an eigenfunction to certain
operators occurring in the generalized Leibniz rule. We use this to find the orthogonal polyno-
mials with respect to the orthogonality measure modified by an exponential or a q-exponential
function. Often it is possible to recognize the modified measure explicitly in typically the same
class. In this way we obtain expressions for orthogonal polynomials in terms of orthogonal poly-
nomials with different parameters. In particular, for the modification by e−xt we can understand
the orthogonal polynomials for the measure e−xtdµ(x), where the measure µ corresponds to the
orthogonality measure for a family of orthogonal polynomials in the Askey-scheme. By the work
of Flaschka, Moser and others this is related to the Lax pair for the Toda lattice, see, e.g.,
[5, Section 4.6], [6, Section 2], [14, Section 2.8], [27, Section 2]. The recurrence coefficients for
the monic orthogonal polynomials xpn(x; t) = pn+1(x; t) + bn(t)pn(x; t) + cn(t)pn−1(x; t) for the
modified weight satisfy the Toda lattice equations

ċn(t) = cn(t)
(
bn−1(t)− bn(t)

)
, ḃn(t) = cn(t)− cn+1(t). (1.5)

This approach works for the Hermite, Laguerre, Krawtchouk, Meixner, Charlier, and Meixner–
Pollaczek polynomials, and this is listed in Proposition 7.1. Proposition 7.1 is well-known, and
Zhedanov [26] derives the result from the requirement that the Lax pair (L,M) and the time-
derivative L̇ close up to a 3-dimensional Lie algebra. In this context, Proposition 7.1 follows
from Lie algebra representations, see, e.g., [5, Section 4.6] for the link of the Toda lattice to
simple Lie algebras, and its relation to orthogonal polynomials, see, e.g., [20] for the link to the
corresponding polynomials.

For the q-exponential functions eq and Eq we find expansions of the big q-Jacobi polynomials
in terms of big q-Laguerre polynomials. We also find the inverse formulas in this way. However,
there seems no integrable system associated to these expansions.

This paper deals with the scalar case. In a companion paper [15] we also use Burchnall type
identities for matrix-valued orthogonal polynomials in order to give a non-trival solution to the
non-abelian Toda lattice analogue of (1.5) as introduced by Gekhtman [11].

The contents of the paper are related to the role of the analogue of differentiation in the
Askey-scheme and its q-analogue. First, in Section 2 we write down the general set-up as
motivated by Burchnall’s paper [7] and extending it. In Section 3 we look at those polynomials
that correspond to the (ordinary) derivative, which are the classical polynomials of Hermite,
Laguerre and Jacobi. We recover many of the known results in this way. By specializing we
also recover expansions for Laguerre and Hermite polynomials, which can be considered as
special cases of more general convolution identities [20]. These expansions are related to explicit
solutions of the Toda lattice (1.5). In Section 4 we consider the shift operator as the analogue of
the derivative, and we consider the families of Meixner and Charlier polynomials. In Section 5
we consider the Meixner–Pollaczek polynomials, and in the following Section 6 we consider the
Wilson polynomials. In Section 7 we summarize the explicit solutions of the Toda lattice arising
in this way. In the remaining sections we focus on the q-Askey scheme. In Section 8 we consider
the q-Hahn scheme with the big q-Jacobi polynomials on top. Here we give several expansions
for polynomial families in the q-Hahn scheme. In Section 9 we discuss the top-level of the
Askey–Wilson polynomials.
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We use standard notation for Pochhammer symbols, q-shifted factorials, hypergeometric and
basic hypergeometric series, etc. as in, e.g., [3, 10, 14, 18, 19, 24]. We take 0 < q < 1 for the
base q, and we follow the convention that, e.g., (x/ab; q)∞ =

(
xa−1b−1; q

)
∞.

2 Generalized Burchnall-type identities

In this section we show how the Burchnall identity for the Hermite polynomials as well as
Burchnall’s approach [7] can be generalized to families of orthogonal polynomials for which
raising and lowering operators exist. In particular we give an expansion for a class of functions
in terms of the polynomials involved. Note that all the polynomial families in the Askey-scheme
and its q-analogue with infinite support fulfill the assumptions in this section up to Corollary 2.3,
so that in particular Theorem 2.1 and Corollaries 2.2, 2.3 are valid in all cases studied in this
paper.

Let the general orthogonal polynomials satisfy∫
R
p(ν)n (x)p(ν)m (x)dµ(ν)(x) = δm,nh

(ν)
n .

Here µ(ν) is a positive Borel measure on the real line for which all moments exist. The parame-
ter ν is contained in some (multivariable) parameter set V ⊂ Rn. We write a combination of
parameters additively for the Askey scheme, but it is more convenient to write it multiplicatively
for the q-Askey scheme. We assume that the measure µ(ν) has infinite support, but similar results
for finite discrete orthogonal polynomials can be obtained up to some modifications.

Next we assume that for two elements ν, ν + σ ∈ V of the parameter space we have (densely
defined) raising operators Rν : L2

(
µ(ν+σ)

)
→ L2

(
µ(ν)

)
. Here σ is a fixed element in Rn, so that

ν ∈ V implies that ν + Nσ ⊂ V. In particular, we assume Rν maps polynomials of degree n to
polynomials of degree n+ 1. The (densely defined) adjoint Lν = (Rν)∗ : L2

(
µ(ν)

)
→ L2

(
µ(ν+σ)

)
is assumed to be a lowering operator, i.e., mapping polynomials of degree n to polynomials of
degree n− 1. So in particular,

〈Rνf, g〉L2(µ(ν)) = 〈f, Lνg〉L2(µ(ν+σ)) (2.1)

for all f ∈ Dom(Rν) ⊂ L2
(
µ(ν+σ)

)
and all g ∈ Dom(Lν) ⊂ L2

(
µ(ν)

)
, and in particular we

assume that the polynomials are contained in the domains of Rν and Lν .
It follows that for ν ∈ V we can take

p(ν)n (x) =
(
RνRν+σ · · ·Rν+(n−2)σRν+(n−1)σ1

)
(x), (2.2)

where 1(x) = 1 is the constant function. Note that in general [Rν+kσ, Rν+lσ] 6= 0, so the order
in (2.2) is relevant. Indeed, iterating (2.1) we find for polynomials f , g that

〈RνRν+σ · · ·Rν+(n−2)σRν+(n−1)σf, g〉L2(µ(ν))

= 〈f, Lν+(n−1)σLν+(n−2)σ · · ·Lν+σLνg〉L2(µ(ν+nσ)). (2.3)

Take f = 1, g(x) = xk, k < n, so that Lν+(n−1)σLν+(n−2)σ · · ·Lν+σLνg = 0 as a polynomial of
negative degree k − n.

Taking g(x) = p
(ν)
n (x), f(x) = xk, k < n − 1, in (2.1) we see that

〈
Lνp

(ν)
n , xk

〉
L2(µ(ν+σ))

= 0,

hence Lνp
(ν)
n = `

(ν)
n p

(ν+σ)
n−1 for some constant `

(ν)
n which follows by (2.2) as LνRνx

n−1 = `
(ν)
n xn−1+

l.o.t., where xn, respectively xn−1, can be replaced by some other suitable polynomials of de-
gree n, respectively n − 1, with leading coefficient 1. Here, and elsewhere l.o.t. means ‘lower
order terms’.
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Next we assume that the raising operators have a specific form. So we assume that there
exists a function wν for ν ∈ V so that wν > 0 for µ(ν)-a.e. and that

Rν = M−1ν ◦ ∂ ◦Mν+σ, (Mνf)(x) = (Mwνf)(x) = wν(x)f(x),

and ∂ is an operator independent of ν. In particular, we assume that wν is in the domain of ∂.
Typically, µ(ν) is absolutely continuous with respect to Lebesgue measure or a counting measure
(independent of ν), and the Radon–Nikodym derivative is w(ν). So

RνRν+σ · · ·Rν+(n−2)σRν+(n−1)σ = M−1ν ◦ ∂n ◦Mν+nσ.

Typically, ∂ is a lowering operator.

Moreover, we assume of the existence of a Leibniz rule for the operator ∂ of the form

(
∂n(fg)

)
(x) =

n∑
k=0

αnk
(
ηk∂n−kf

)
(x)(Tk,ng)(x), (2.4)

where αnk are constants, like binomial coefficients, η is a fixed operator (e.g., in order to accom-
modate the Askey–Wilson q-difference operator), and η can also be the identity. Here f and g
are such that all expressions are well-defined. In general, we assume that η is an invertible
homomorphism, so η(fg) = η(f)η(g). The Tk,n are analogues of differential operators, and for
the general case we have to allow for n-dependence.

For a suitable function f , such as a holomorphic function on a sufficiently large domain, an
entire function or a polynomial, we have(

RνRν+σ · · ·Rν+(n−2)σRν+(n−1)σf
)
(x) =

(
M−1ν ◦ ∂n ◦Mν+nσf

)
(x)

=
1

wν(x)
∂n
(
wν+nσf

)
(x) =

1

wν(x)

n∑
k=0

αnk
(
ηk∂n−kwν+nσ

)
(x)(Tk,nf)(x),

and rewriting(
ηk∂n−kwν+nσ

)
(x) = ηk(wν+kσ)(x)ηk

(
p
(ν+kσ)
n−k

)
(x)

proves Theorem 2.1.

Theorem 2.1. For f a suitable function, such as, e.g., a polynomial or a holomorphic function,
we have

(
RνRν+σ · · ·Rν+(n−2)σRν+(n−1)σf

)
(x) =

n∑
k=0

αnk
ηk(wν+kσ)(x)

wν(x)
ηk
(
p
(ν+kσ)
n−k

)
(x)(Tk,nf)(x)

using the notation and assumptions as above.

Theorem 2.1 is the extension of Burchnall’s formula [7, equation (3)] for Hermite polynomials,
see (1.3).

Take f(x) = (Rν+nσ · · ·Rν+(n+m−1)σ1)(x) = p
(ν+nσ)
m (x) using (2.2), then we find from Theo-

rem 2.1 and (2.2) the following polynomial identity, again using the notation of this section.

Corollary 2.2. With the notation and assumptions as above

p
(ν)
n+m(x) =

n∑
k=0

αnk
ηk(wν+kσ)(x)

wν(x)
ηk
(
p
(ν+kσ)
n−k

)
(x)
(
Tk,np

(ν+nσ)
m

)
(x).
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Corollary 2.2 is the extension of Burchnall’s formula [7, equation (5)] for the Hermite poly-
nomials, see (1.2).

We can next use Theorem 2.1 in (2.3) to get

n∑
k=0

αnk

∫
R

ηk(wν+kσ)(x)

wν(x)
ηk
(
p
(ν+kσ)
n−k

)
(x)(Tk,nf)(x)g(x)dµ(ν)(x)

=

∫
R
f(x)

(
Lν+(n−1)σLν+(n−2)σ · · ·Lν+σLνg

)
(x)dµ(ν+nσ)(x).

Here we assume that each of the integrals converges. In particular, assuming that Lν = D is
a lowering operator independent of ν, we obtain Corollary 2.3.

Corollary 2.3. Assuming the convergence of the integrals and with the notation and assump-
tions as above, we have

n∑
k=0

αnk

∫
R

ηk(wν+kσ)(x)

wν(x)
ηk
(
p
(ν+kσ)
n−k

)
(x)(Tk,nf)(x)g(x)dµ(ν)(x)

=

∫
R
f(x)

(
Dng

)
(x)dµ(ν+nσ)(x).

Corollary 2.3 in case of the Hermite polynomials is not contained in Burchnall’s paper [7].
Note that for g(x) = xp with p < n the right hand side of Corollary 2.3 is zero.

3 Example: classical orthogonal polynomials

For the classical orthogonal polynomials in the Askey scheme, see [18, 19], i.e., for the Jacobi,
Laguerre and Hermite polynomials, we see that in Section 2 all the assumptions are fulfilled.
Moreover, we can take D = ∂ = d

dx , so that Leibniz formula is the usual one with αnk =
(
n
k

)
, η is

the identity, and Tk,n = dk

dxk
= Dk is a power of the lowering operator.

3.1 Example: Hermite polynomials

In this case we discuss Burchnall’s motivating example of the Hermite polynomials [7], and we
show how to extend some of Burchnall’s results using the generating function (3.2) for Hermite
polynomials. In this case the parameter set V = {0} as in Section 2 is trivial. So σ = 0,
and w(x) = exp

(
−x2

)
is independent of ν, and so is Rν = M−1w ◦ d

dx ◦ Mw =
(
d
dx − 2x

)
.

Then the polynomials of Section 2 identify with the standard Hermite polynomials up to a sign;

(−1)nHn(x) = p
(ν)
n (x), where Hn(x) = (2x)n2F0

(
−n/2,−(n − 1)/2;−;−x−1

)
. Theorem 2.1

then gives (1.3), which is [7, equation (3)]. Corollary 2.2 then gives (1.2), which was derived
by Burchnall [7, equation (5)] and Nielsen [23, p. 22]. For this derivation we use that d

dx

(
d
dx −

2x
)
xn−1 = −2nxn−1 + l.o.t. so that `n = −2n, or dHn

dx (x) = 2nHn−1(x).

For the Hermite polynomials, Burchnall’s identity (1.3) only involves the Hermite polyno-
mials. This gives the opportunity to elaborate a bit more on Burchnall’s identity. Multiply (1.3)
by tn/n! and sum over n ∈ N to obtain(

exp

(
t

(
d

dx
− 2x

))
f

)
(x) =

∞∑
n=0

n∑
k=0

tk

k!
f (k)(x)

(−t)n−k

(n− k)!
Hn−k(x)

= f(x+ t) exp
(
−2xt− t2

)
(3.1)
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after interchanging summation and using the generating function

∞∑
n=0

Hn(x)
tn

n!
= exp

(
2xt− t2

)
(3.2)

for the Hermite polynomials, see, e.g., [3, equation (6.1.7)], [18, equation (9.15.10)], [19, equa-
tion (1.13.10)]. Naturally we have to assume that f is sufficiently smooth, say real analytic,
and t sufficiently small in (3.1).

Remark 3.1. To see that (3.1) follows from the Zassenhaus formula, or the inverse to the
Baker–Campbell–Hausdorff formula, let A = −2x (viewed as multiplication operator), B = d

dx ,
so that [A,B] = 2 and [A, [A,B]] = 0, [B, [A,B]] = 0, and hence all higher order commutators
vanish as well. Zassenhaus’s formula is, see [9], [22, Section 4],

exp(t(A+B)) = exp(tA) exp(tB) exp
(
t2Z2(A,B)

)
exp

(
t3Z3(A,B)

)
· · · ,

where Zm(A,B) is a homogeneous polynomial of degree m in the non-commuting variables A
and B given in terms of commutators;

Z2(A,B) = −1

2
[A,B], Z3(A,B) = −1

3
[[A,B], B]− 1

6
[[A,B], A], . . . .

So for this choice of A and B we have Zm(A,B) = 0 for m ≥ 3 and Z2(A,B) = −1. Hence,
exp
(
t
(
d
dx − 2x

))
= exp(−2xt) exp

(
t ddx
)

exp
(
−t2
)
, which gives the same result as (3.1) when

acting on f .

Note that Corollary 2.3 after multiplication by n! gives

∫
R
e−x

2 g(n)(x)

n!
f(x)dx =

∫
R
e−x

2
g(x)

n∑
k=0

(−1)kf (k)(x)

k!

Hn−k(x)

(n− k)!
dx.

Multiplying by tn, summing over n and using the generating function (3.2) gives∫
R
e−x

2
g(x+ t)f(x)dx = e−t

2

∫
R
e2xt−x

2
f(x− t)g(x)dx, (3.3)

which follows directly by a change of variables. So, we can view (3.3) as an integrated ver-
sion of Burchnall’s identity (1.3). From Corollary 2.3 with f(x) = exp(−xt) we see that∑n

k=0

(
n
k

)
Hn−k(x)(−t)k form orthogonal polynomials with respect to e−xte−x

2
. On the other

hand, from the integrated version (3.3) we see that Hn

(
x− 1

2 t
)

also form orthogonal polynomi-

als with respect to e−xte−x
2
. So they are equal, up to a constant which can be determined by

considering leading coefficients. This gives

Hn(x− 1

2
t) =

n∑
k=0

(−t)k
(
n

k

)
Hn−k(x) (3.4)

as the orthogonal polynomials with respect to e−x
2
e−xt. Note that (3.4) can directly be estab-

lished using the generating function (3.2). This gives the well-known Hermite case of Proposi-
tion 7.1. Note that (3.4) is a special case of a more general convolution identity [20, Corollary 3.8].
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3.2 Example: Laguerre polynomials

In this case, in the notation of Section 2, V = {ν ∈ R | ν > −1} ⊂ R, σ = 1 ∈ R. The measure
wν(x) = xνe−x is absolutely continuous with respect to the Lebesgue measure on [0,∞). The

polynomials p
(ν)
n (x) correspond to n!L

(ν)
n (x) by comparing with [19, equation (1.11.9)]. Here the

Laguerre polynomials are defined by

L(ν)
n (x) =

(ν + 1)n
n!

1F1

(
−n
ν + 1

;x

)
.

In this case Rν = M−1ν ◦ d
dx ◦Mν+1 = ν + 1 + x d

dx and by Theorem 2.1 we have

(RνRν+1 · · ·Rν+n−1f)(x) =

n∑
k=0

n!

k!
f (k)(x)xkL

(ν+k)
n−k (x), (3.5)

see Carlitz [8, equation (4)], where it is proved by induction on n. Corollary 2.2 gives (1.4),
which is [8, equation (7)]. Carlitz then continues to prove from (1.4) an extension of the gene-
rating function (3.7), which was previously obtained in Rainville [24, Section 119, equation (9)].
Rainville’s generating function is equivalent to (1.4).

Corollary 2.3 yields∫ ∞
0

xν+ne−xg(n)(x)f(x)dx = (−1)n
∫ ∞
0

xνe−xg(x)
n∑
k=0

n!

k!
f (k)(x)xkL

(ν+k)
n−k (x)dx (3.6)

for ν > −1. Multiplying (3.6) by un, dividing by (−1)nn!, summing over n and using the
generating function

∞∑
n=0

unL(ν)
n (x) = (1− u)−ν−1 exp(xu/(u− 1)), |u| < 1, (3.7)

see, e.g., [19, equation (1.11.10)], gives

(1− u)ν+1

∫ ∞
0

xνe−xf(x)g(x− ux)dx =

∫ ∞
0

xνe−x exp

(
−xu
1− u

)
g(x)f

(
x

1− u

)
dx (3.8)

for sufficiently smooth functions f and g and −1 < u < 1. Note that (3.8) is the integrated
version, and it can be proved directly.

From (3.8), i.e., Corollary 2.3 for the Laguerre polynomials, we can obtain an expression for
the orthogonal polynomials with respect to e−xtxνe−x on [0,∞) by taking f(x) = exp(−xt)
in (3.6), and take the polynomial g(x) = xp, with p < n. This gives the right hand side of

L(ν)
n (x(1 + t)) =

n∑
k=0

1

k!
(−t)kxkL(ν+k)

n−k (x) (3.9)

as the orthogonal polynomials with respect to e−xtxνe−x on [0,∞). On the other hand, by
a straightforward calculation using (3.8), the polynomials on the left hand side are also orthog-
onal with respect to the same weight. Hence, (3.9) follows up to a constant. This constant is
determined by evaluating at x = 0. The result (3.9) is a convolution type identity, and can be
directly proved using the generating function (3.7). See [20, Section 3] for generalizations of
convolution identities for Laguerre polynomials.

In particular, we find the solutions to the Toda equation (1.5) for the Laguerre case, see the
Laguerre case of Proposition 7.1.

Remark 3.2. Gould and Hopper [12] have generalized the Hermite and Laguerre cases simul-
taneously. In particular, Gould and Hopper derive an operational formula for the associated
differential operator [12, Section 4]. Al-Salam [2, p. 130] shows that the operational identities
of Carlitz [8] and Gould–Hopper [12] are equivalent.
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3.3 Example: Jacobi polynomials

In this case the ingredients of Section 2 correspond to V = {(α, β) ∈ R2 |α > −1, β > −1} ⊂ R,
σ = (1, 1) ∈ R2. The measure is wα,β(x) = (1− x)α(1 + x)β with respect to Lebesgue measure

on [−1, 1]. The polynomials p
(ν)
n (x) of Section 2 correspond to (−2)nn!P

(α,β)
n (x) by comparing

with [19, equation (1.8.9)]. Here the Jacobi polynomials are defined by

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1

2
(1− x)

)
.

Then

Rα,β = M−1α,β ◦
d

dx
◦Mα+1,β+1 =

(
1− x2

) d
dx

+
(
β − α− x(α+ β + 2)

)
,

and Theorem 2.1 gives

(Rα,βRα+1,β+1 · · ·Rα+n−1,β+n−1f)(x)

=

n∑
k=0

n!

k!
(−2)n−kf (k)(x)

(
1− x2

)k
P

(α+k,β+k)
n−k (x) (3.10)

for f ∈ C∞(R). Corollary 2.2 gives

(
n+m

n

)
P

(α,β)
m+n (x) =

n∑
k=0

1

k!

(
1− x2

−4

)k
(α+ β + 2n+m+ 1)k

× P (α+k,β+k)
n−k (x)P

(α+n+k,β+n+k)
m−k (x), (3.11)

since dP
(α,β)
n
dx (x) = 1

2(n + α + β + 1)P
(α+1,β+1)
n−1 (x), see, e.g., [19, equation (1.8.6)]. Singh [25]

obtains the operational formula (3.10) and expansion (3.11).

The integrated version follows from Corollary 2.3:∫ 1

−1
(1− x)α+n(1 + x)β+ng(n)(x)f(x)dx

=

∫ 1

−1
(1− x)α(1 + x)βg(x)

n∑
k=0

n!

k!
f (k)(x)(−2)n−k

(
1− x2

)k
P

(α+k,β+k)
n−k (x)dx.

By taking f(x) = exp(−xt), g(x) = xp we see that

∫ 1

−1
e−xt(1− x)α(1 + x)βxp

×
n∑
k=0

n!

k!
(−t)k(−2)n−k(n− k)!

(
1− x2

)k
P

(α+k,β+k)
n−k (x)dx = 0, p < n,

so that we find only partial orthogonality, since the sum over k gives a polynomial of degree 2n,
instead of n. For a detailed study of the orthogonal polynomials with respect to the Toda
modification of the Jacobi weight e−xt(1− x)α(1 + x)β on [−1, 1], we refer to Basor, Chen and
Ehrhardt [6], where the relation to the Painlevé V equation is discussed.
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4 The backward shift operator ∇
In this section we consider the results of Section 2 in case the derivative ∂ is given by the
backward shift operator ∇, defined by

(
∇f
)
(x) = f(x) − f(x − 1). In the Askey scheme, this

corresponds to the families of Meixner and Charlier polynomials. The Krawtchouk polynomials
form a family of finite discrete orthogonal polynomials, also contained in the part of the Askey
scheme corresponding to ∇. We leave the Krawtchouk case to the reader, but we include the
case in Proposition 7.1 for completeness. In order to apply the results of Section 2 we need to
have the Leibniz formula (2.4) explicitly:

∇n(fg)(x) =
n∑
k=0

(
n

k

)(
∇kf

)
(x)
(
Sk∇n−kg

)
(x) =

n∑
k=0

(
n

k

)(
∇n−kf

)
(x)
(
Sn−k∇kg

)
(x), (4.1)

where Sf(x) = f(x − 1). This follows by induction on n, since S and ∇ commute. Note that,
upon comparing (4.1) with (2.4), we see that there are two choices for the homomorphism η of
Section 2; η = 1 or η = S. Different choices lead to different expansions.

4.1 The Meixner polynomials

In the notation of Section 2 we have V = {(β, c) ∈ R2 |β > 0, 0 < c < 1}, and we let σ = (1, 0),
then ν ∈ V implies ν + nσ ∈ V for all n ∈ N. Put

w(x;β, c) =
(β)x
x!

cx, x ∈ N,

so that the orthogonality measure is a discrete measure supported in N with weight at x ∈ N
equal to w(x;β, c). Then the raising operator Rν corresponds to Rβ,c = M−1β,c ◦ ∇ ◦Mβ+1,c, so

(
Rβ,cf

)
(x) =

β + x

β
f(x)− x

cβ
f(x− 1).

By [19, equation (1.9.9)] p
(ν)
n (x) corresponds precisely to the Meixner polynomials Mn(x;β, c)

defined by

Mn(x;β, c) = 2F1

(
−n,−x
β

;
c− 1

c

)
.

The adjoint Lν corresponds to −∆ is independent of ν, where ∆f(x) = f(x + 1) − f(x) is the
forward shift operator.

4.1.1 The Leibniz rule with η = 1

Comparing (4.1) with (2.4) we take ∂ = ∇, η = 1, αnk =
(
n
k

)
, and Tk,n = Sn−k∇k = (−1)kSn∆k.

Then we identify
ηk(wν+kσ)(x)

wν(x)
with

w(x;β + k, c)

w(x;β, c)
=

(β + k)x
(β)x

=
(β + x)k

(β)k
.

The operational form of Theorem 2.1 then gives

(
Rβ,cRβ,c · · ·Rβ+n−1,cf

)
(x) =

n∑
k=0

(
n

k

)
(β + x)k

(β)k
(−1)kMn−k(x;β + k, c)

(
Sn∆kf

)
(x). (4.2)
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By [19, equation (1.9.7)], Tk,np
(ν+nσ)
m (x) corresponds to

(−1)k
(m− k + 1)k

(β + n)k

(
c− 1

c

)k
Mm−k(x− n;β + n+ k, c).

Corollary 2.2 gives, after a simplification,

Mm+n(x;β, c) =
n∧m∑
k=0

(−n)k(−m)k(β + x)k
k!(β)k(β + n)k

(
c− 1

c

)k
×Mn−k(x;β + k, c)Mm−k(x− n;β + n+ k, c). (4.3)

Applying Corollary 2.3 with f(x) = e−xt, which is a joint eigenfunction of ∇, ∆ and S, and
g(x) = xp, p < n, we see that the polynomials of degree n

n∑
k=0

(
n

k

)
(β + x)k

(β)k
Mn−k(x;β + k, c)ent

(
1− e−t

)k
are orthogonal with respect to the discrete measure h 7→

∑∞
x=0w(x;β, c)e−xth(x), for which all

moments exist for t > ln(c). Since this measure is again the measure for the Meixner polynomials
with parameters (β, ce−t) we find

Mn

(
x;β, ce−t

)
=

n∑
k=0

(−n)k(β + x)k
k!(β)k

Mn−k(x;β + k, c)ent
(
1− e−t

)k
, (4.4)

where the constant is obtained by evaluating at x = 0, since Mn(0;β, c) = 1. Note that (4.4)
is a convolution identity, which can be obtained directly from the generating function, see, e.g.,
[19, equation (1.9.11)],

∞∑
n=0

(β)n
n!

tnMn(x;β, c) =

(
1− t

c

)x
(1− t)−x−β (4.5)

and the binomial theorem. More general convolution identities for Meixner polynomials can be
found in [20, Section 3].

In particular, we find an explicit solution to the Toda lattice (1.5) by looking at the three-
term recurrence relation for the monic version of Mn(c;β, ce−t). This in particular gives the
explicit solution for the Meixner case of Proposition 7.1.

4.1.2 The Leibniz rule with η = S

Comparing (4.1) with (2.4) we can also take ∂ = ∇, η = S, αnk =
(
n
k

)
, and Tk,n = ∇k in the

general set-up. Then we identify
ηk(wν+kσ)(x)

wν(x)
with

w(x− k;β + k, c)

w(x;β, c)
=

(x− k + 1)k
(β)kck

=
(−1)k(−x)k

(β)kck
.

The operational form of Theorem 2.1 is

(
Rβ,cRβ,c · · ·Rβ+n−1,cf

)
(x) =

n∑
k=0

(
n

k

)
(−x)k
(β)k

(−c)−kMn−k(x− k;β + k, c)
(
∇kf

)
(x),

which gives an alternative expansion for the same operator as in (4.2).
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Rewrite Tk,n = ∇k = (−1)kSk∆k, so that by [19, equation (1.9.7)] the polynomial Tk,np
(ν+nσ)
m

is identified with (−1)k (m−k+1)k
(β+n)k

(
c−1
c

)k
Mm−k(x − k;β + n + k, c). Corollary 2.2 yields, after

simplification,

Mm+n(x;β, c) =
n∧m∑
k=0

(−n)k(−m)k(−x)k
k!(β)k(β + n)k

(
c− 1

c2

)k
×Mn−k(x− k;β + k, c)Mm−k(x− k;β + n+ k, c). (4.6)

Note that (4.3) and (4.6) give different expansions for the same Meixner polynomial.

Using Corollary 2.3 with f(x) = e−xt we find that the orthogonal polynomials for the Toda
modification have an expansion as in the right hand side. Since we know the corresponding
orthogonal polynomials as Meixner poynomials with parameters (β, ce−t) we get

Mn(x;β, ce−t) =
n∑
k=0

(−n)k(−x)k
k!(β)kck

Mn−k(x− k;β + k, c)
(
1− et

)k
, (4.7)

where the constant follows by comparing leading coefficients using [19, equation (1.9.4)] and
the binomial theorem. Note that (4.4) and (4.7) give different expansions for the same Meixner
polynomial. Again, the convolution identity (4.7) can be proved directly using the generating
function (4.5) and the binomial formula, and see [20, Corollary 3.6] for generalizations.

4.2 The Charlier polynomials

The orthogonality measure for the Charlier polynomials is a discrete measure supported on N
and with corresponding weights wa(x) = ax

x! , x ∈ N. In the notation of Section 2 we have
V = {a > 0} ⊂ R. In this case the raising operator is independent of a, so that σ = 0. So
Ra = M−1a ◦ ∇ ◦Ma, so(

Raf
)
(x) = f(x)− x

a
f(x− 1)

and L = D = −∆. Then the polynomials p
(ν)
n correspond precisely to the Charlier polynomials

Cn(x; a) = 2F0

(
−n,−x;−; −1a

)
as in [19, Section 1.12]. It should be noted that these results can

also be obtained by a limit transition from the corresponding results for the Meixner polynomials.

4.2.1 The Leibniz rule with η = 1

Here we give the analogues as in Section 4.1.1. So take ∂ = ∇, η = 1, αnk =
(
n
k

)
, and Tk,n =

Sn−k∇k = (−1)kSn∆k. Then we identify
ηk(wν+kσ)(x)

wν(x)
with 1. So the operational formula of

Theorem 2.1 gives

(
Rnaf

)
(x) =

n∑
k=0

(
n

k

)
Cn−k(x; a)

(
Sn−k∇kf

)
(x). (4.8)

By [19, equation (1.9.7)] Tk,np
(ν+nσ)
m (x) corresponds to (−1)k (−m)k

ak
Cm−k(x − n; a), and Corol-

lary 2.2 gives

Cn+m(x; a) =
n∧m∑
k=0

(−n)k(−m)k
k!ak

Cn−k(x; a)Cm−k(x− n; a). (4.9)
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Using Corollary 2.3 with f(x) = e−xt we find an explicit expansion for the polynomials
orthogonal with respect to wa(x)e−xt for x ∈ N. Since these are the polynomials Cn(x; ae−t) we
obtain, cf. Section 4.1.1,

n∑
k=0

(−n)k
k!

Cn−k(x; a)ent
(
1− e−t

)k
= Cn

(
x; ae−t

)
. (4.10)

This is a convolution type identity, which can be obtained from the generating function for
Charlier polynomials;

∑∞
n=0

zn

n!Cn(x; a) = ez
(
1− z

a

)x
, see, e.g., [19, equation (1.12.11)], and the

Taylor expansion for the exponential function. It also follows from (4.4) by taking the limit from
Meixner to Charlier polynomials, see [19, equation (2.9.2)].

In particular, we find an explicit solution to the Toda lattice (1.5) by looking at the three-term
recurrence relation for the monic version of Cn(x; ae−t). This in particular gives the explicit
solution for the Charlier case of Proposition 7.1.

4.2.2 The Leibniz rule with η = S

As in Section 4.1.2 we can also take ∂ = ∇, η = S, αnk =
(
n
k

)
, and Tk,n = ∇k in the general set-

up. Then we identify
ηk(wν+kσ)(x)

wν(x)
with (−a)−k(−x)k. So the operational formula of Theorem 2.1

gives the alternative

(
Rnaf

)
(x) =

n∑
k=0

(
n

k

)
(−a)−k(−x)kCn−k(x− k; a)

(
∇kf

)
(x)

to (4.8).

Then Tk,n = ∇k = (−1)kSk∆k, so that by [19, equation (1.9.7)] the polynomial Tk,np
(ν+nσ)
m

is identified with (−a)−k(−m)kCm−k(x− k; a). So Corollary 2.2 gives

Cn+m(x; a) =

n∧m∑
k=0

(−n)k(−m)k
k!

(
−a2

)−k
Cn−k(x− k; a)Cm−k(x− k; a). (4.11)

Note that (4.9) and (4.11) give different expansions.
Similarly, using Corollary 2.3 with f(x) = e−xt we get in a similar way the equality

n∑
k=0

(−n)k(−x)k
k!

Cn−k(x− k; a)a−k
(
1− et

)k
= Cn

(
x; ae−t

)
(4.12)

up to a constant which can be determined by considering leading coefficients. Then (4.12) can
be proved using the same generating function for the Charlier polynomials and the binomial
theorem. Again, (4.10) and (4.12) give different exansions for the same polynomial.

5 The difference operator δ
δx

The difference operator δ
δx is defined by

δf

δx
(x) =

1

i

(
f

(
x+

1

2
i

)
− f

(
x− 1

2
i

))
and the polynomials in the Askey scheme corresponding to this operator as part of the raising
operator are the families of the Meixner–Pollaczek and the continuous Hahn polynomials. We
discuss the Meixner–Pollaczek polynomials in detail.
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In order to apply the results of Section 2 we need to have the Leibniz formula (2.4) explicitly:(
δ

δx

)n
(fg)(x) =

n∑
k=0

(
n

k

)((
S+
)n−k ( δ

δx

)k
f

)
(x)

(
(S−)k

(
δ

δx

)n−k
g

)
(x), (5.1)

where S±f(x) = f
(
x ± 1

2 i
)
, assuming that the functions f and g are defined in a sufficiently

large strip |=z| < 1
2n+ ε for ε > 0. This follows by induction on n, since S± and δ

δx commute.
In this case the Leibniz formula is symmetric in shifting x to x ± 1

2 i, so it suffices to consider

only one of the two possibilities. We take η = S−, αnk =
(
n
k

)
, ∂ = δ

δx , Tk,n = (S+)n−k
(
δ
δx

)k
.

5.1 The Meixner–Pollaczek polynomials

In this case V = {(λ, ϕ) |λ > 0, 0 < ϕ < π}, and σ =
(
1
2 , 0
)

in the notation of Section 2. The
weight for the Meixner–Pollaczek polynomials

w(x;λ, ϕ) = Γ(λ+ ix)Γ(λ− ix)e(2ϕ−π)x

is supported on R. So Rν corresponds to Rλ,ϕ = M−1λ,ϕ ◦
δ
δx ◦Mλ+ 1

2
,ϕ, or

(
Rλ,ϕf

)
(x) = −eiϕ(λ− ix)f

(
x+

1

2
i

)
− e−iϕ(λ+ ix)f

(
x− 1

2
i

)
.

Comparing with [19, equation (1.7.9)] we find that p
(ν)
n corresponds to (−1)nn!P

(λ)
n (x;ϕ),

where the Meixner–Pollaczek polynomials are defined by

P (λ)
n (x;ϕ) =

(2λ)n
n!

einϕ 2F1

(
−n, λ+ ix

2λ
; 1− e−2iϕ

)
.

Note that P
(λ)
n (x;ϕ) = (−1)nP

(λ)
n (−x;π − ϕ) by Pfaff’s transformation, see, e.g., [3, Theo-

rem 2.2.5], and this gives another explanation why we can restrict to one of the possibilities for

the Leibniz formula (5.1). We identify
ηk(wν+kσ)(x)

wν(x)
with

w
(
x− k

2 i;λ+ 1
2k, ϕ

)
w(x;λ, ϕ)

= ike−ikϕ(λ+ ix)k

so that the operational formula of Theorem 2.1 gives(
Rλ,φRλ+ 1

2
,ϕ · · ·Rλ+ 1

2
(n−1),ϕf

)
(x)

=

n∑
k=0

n!

k!
ike−ikϕ(−1)n−k(λ+ ix)kP

(λ+ k
2
)

n−k

(
x− 1

2
ki;ϕ

)((
S+
)n−k ( δ

δx

)k
f

)
(x).

Now Tk,np
(ν+nσ) corresponds to (−1)mm!(2 sinϕ)kP

(λ+ 1
2
(n+k))

m−k (x+ i
2(n− k);ϕ) by [19, equa-

tion (1.7.7)], so that Corollary 2.2 then gives, after simplification,(
n+m

n

)
P

(λ)
m+n(x;ϕ) =

n∧m∑
k=0

(−i)ke−ikϕ

k!
(2 sinϕ)k(λ+ ix)k

× P (λ+ 1
2
k)

n−k

(
x− k

2
i;ϕ

)
P

(λ+ 1
2
(n+k))

m−k

(
x+

i

2
(n− k);ϕ

)
.

Applying Corollary 2.3 to f(x) = e−xt and g(x) = xp, 0 ≤ p < n, we find an expression
for the orthogonal polynomials with respect to the measure w(x;λ, ϕ)e−xt on R. Since these
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polynomials are Meixner–Pollaczek polynomials for the weight w
(
·;λ, ϕ− 1

2 t
)
, 2ϕ−2π < t < 2ϕ,

we find the polynomials

P (λ)
n

(
x;ϕ− 1

2
t

)
=

n∑
k=0

ike−ikϕ

k!
(λ+ ix)kP

(λ+ 1
2
k)

n−k

(
x− k

2
i;ϕ

)(
2 sin

(
1

2
t

))k
e−

1
2
t(n−k)i, (5.2)

where the constant follows by comparing the value at x = iλ. Note that (5.2) is a convo-
lution identity which can be directly obtained from the generating function for the Meixner–

Pollaczek polynomials;
∑∞

n=0 u
nP

(λ)
n (x;ϕ) = (1 − eiϕu)−λ+ix(1 − e−iϕu)−λ−ix, see, e.g., [19,

equation (1.7.11)]. For more general convolution identities for Meixner–Pollaczek polynomials,
see [20, Theorem 3.4]. Having the orthogonal polynomials for the modified weight w(x;λ, ϕ)e−xt

on R, the Toda equations (1.5) can be solved explicitly, see Proposition 7.1.

6 Burchnall’s identity for the Wilson polynomials

As stated in Section 2 the Burchnall results can be derived for any polynomial family in the
Askey scheme and its q-analogue. In this section we present the result for the top level of the
Askey-scheme.

In this case V = {a = (a, b, c, d) | a > 0, b > 0, c > 0, d > 0} ⊂ R4 is the parameter space. The
parameter space can be made more general, see, e.g., [19, Section 1.1], but the results can be
directly extended to the more general parameter space by analytic extension in the parameter,
and we stick to the real parameters. The shift corresponds to σ =

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
, see, e.g., [19,

equation (1.1.7)]. The weight function is, up to a constant independent of a and a change of
variable,

ω(x;a) = ω(x; a, b, c, d)

=
Γ(a+ ix)Γ(a− ix)Γ(b+ ix)Γ(b− ix)Γ(c+ ix)Γ(c− ix)Γ(d+ ix)Γ(d− ix)

2ixΓ(2ix)Γ(−2ix)
.

Then the Wilson polynomials Wn(·;a) satisfy the orthogonality∫ ∞
0

Wn

(
x2;a

)
Wm

(
x2;a

)
2ixω(x;a)dx = 0, n 6= m,

Wn

(
x2;a

)
= (a+ b)n(a+ c)n(a+ d)n 4F3

(
−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d
; 1

)
.

So the raising operator Rν in Section 2 corresponds to Ra = M−1a ◦ δ
δx2
◦Ma+ 1

2
, where a + 1

2 =(
a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
and δ

δx2
f = 1

2ix

(
f
(
x+ 1

2 i
)
− f

(
x− 1

2 i
))

. Explicitly,(
Raf

)
(x) =

1

2ix

(
(a+ ix)(b+ ix)(c+ ix)(d+ ix)f

(
x− 1

2
i

)
− (a− ix)(b− ix)(c− ix)(d− ix)f

(
x+

1

2
i

))
.

By [19, equation (1.1.10)] the polynomials p
(ν)
n of Section 2 correspond precisely to the Wilson

polynomials.
By induction we see that the Leibniz formula for δ

δx2
is(

δ

δx2

)n
(fg)(x) =

n∑
k=0

(
n

k

)((
S+
)n−k ( δ

δx2

)k
f

)
(x)

(
(S−)k

(
δ

δx2

)n−k
g

)
(x), (6.1)
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where S±f(x) = f
(
x ± 1

2 i
)
, assuming that the functions f and g are defined in a sufficiently

large strip |=z| < 1
2n+ ε. We then identify αnk with

(
n
k

)
, η with S− and Tk,n = (S+)n−k

(
δ
δx2

)k
.

We check that
ηk(wν+kσ)(x)

wν(x)
corresponds to

(S−)kω(x;a + kσ)

ω(x;a)
= (−1)k(a+ ix)k(b+ ix)k(c+ ix)k(d+ ix)k.

Then Theorem 2.1 gives the operational expansion

(
RaRa+ 1

2
· · ·Ra+(n−1) 1

2
f
)
(x) =

n∑
k=0

(
n

k

)
(−1)k(a+ ix)k(b+ ix)k(c+ ix)k(d+ ix)k

×Wn−k

((
x− 1

2
ik

)2

;a + k
1

2

)((
S+
)n−k ( δ

δx2

)k
f

)
(x).

Since, by [19, equation (1.1.8)], Tk,np
(ν+nσ)
m corresponds to

(−m)k(m+ a+ b+ c+ d+ 2n− 1)kWm−k

((
x+

1

2
i(n− k)

)2

;a + (n+ k)
1

2

)
,

Corollary 2.2 gives the following expansion for the Wilson polynomials:

Wm+n

(
x2;a

)
=

n∧m∑
k=0

(−n)k(−m)k
k!

(m+ a+ b+ c+ d+ 2n− 1)k(a+ ix)k(b+ ix)k

× (c+ ix)k(d+ ix)kWn−k

((
x− 1

2
ki

)2

;a + k
1

2

)

×Wm−k

((
x+

1

2
i(n− k)

)2

;a + (n+ k)
1

2

)
. (6.2)

It is also possible to consider the Leibniz formula (6.1) with η identified with S+, cf. Section 4.
However, by the symmetry for the Wilson polynomials, the results are equivalent.

7 Relation with the Toda lattice

In Section 1 we recalled that the Toda equations (1.5) are related to the modification of the
orthogonality measure for orthogonal polynomials by e−xt. Considering Corollary 2.3 we see
that we can obtain the orthogonal polynomials for the modified measure e−xtdµ(ν) assuming

that (a)
ηk(wν+kσ)(x)

wν(x)
is a polynomial of degree at most k, and (b) f(x) = e−xt is an eigenfunction

of Tk,n as arising in the Leibniz formula (2.4).
Let us first consider condition (b). The Tk,n follow from the Leibniz formula (2.4) for ∂, the

operator from the raising operator for the orthogonal polynomials. Then we check the Askey-
scheme and its q-analogue to see for which e−xt is an eigenfunction for these operators, and we
only consider measures with infinite support. In the Askey-scheme, this only occurs if ∂ is the
derivative d

dx , corresponding to the Hermite, Laguerre and Jacobi polynomials; the backward
shift operator ∇, corresponding to the Charlier and Meixner polynomials; the difference opera-
tor δ

δx , corresponding to the Meixner–Pollaczek and continuous Hahn polynomials.
The condition (a) is satisfied for the Hermite, Laguerre, Charlier, Meixner and Meixner–

Pollaczek polynomials, as follows from the observations in Sections 3, 4, 5. In all these cases we
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find an explicit expression for the polynomials with respect to e−xtdµ(ν)(x) using Corollary 2.3.
However, in all of these cases the measure e−xtdµ(ν)(x) can be identified with a related measure
in the same family from the Askey scheme, i.e., one can glue e−xt onto the measure and obtain
a known orthogonality measure.

Proposition 7.1. The following functions solve to Toda lattice equations (1.5):

(i) (Hermite) bn(t) = −1
2 t, cn(t) = 1

2n for t ∈ R;

(ii) (Laguerre) bn(t) = 2n+α+1
1+t , cn(t) = n(n+α)

(1+t)2
for t > −1;

(iii) (Charlier) bn(t) = n+ ae−t, cn(t) = nae−t for t ∈ R;

(iv) (Meixner) bn(t) = n(ce−t+1)+βce−t

1−ce−t , cn(t) = n(n+β−1)ce−t
(1−ce−t)2 for t > ln(c);

(v) (Meixner–Pollaczek) bn(t) = − n+λ
tan(ϕ− 1

2
t)

, cn(t) = n(n+2λ−1)
4 sin2(ϕ− 1

2
t)

for 2ϕ− 2π < t < 2ϕ;

(vi) (Krawtchouk) bn(t) = pe−t(N−n)+n(1−p)
1+p(e−t−1) , cn(t) = n(N+1−n)e−tp(1−p)

(1+p(e−t−1))2 , n ∈ {0, 1, . . . , N}.

Note that all solutions of Proposition 7.1 correspond to solutions of the Toda lattice equa-
tions (1.5) which are separated. These solutions were obtained by Kametaka [16, 17].

Proof. The first five cases follow from the observations in Sections 3, 4, 5 and the corresponding
recurrence coefficients in the relations for the monic orthogonal polynomials as in, e.g., [19].

The final one for the Krawtchouk polynomials follows by observing that the exponential
modification of Krawtchouk weight

(
N
x

)
px(1− p)N−x, see, e.g., [19, equations (1.10.2)], is of the

same form with p replaced by pe−t

1+p(e−t−1) , so that [19, equations (1.10.4)] gives the solution in

the last case. �

In the q-Askey-scheme none of these operators works to give explicit orthogonal polynomials
for the modification of the weight by e−xt. In Section 8 we consider the case with a q-exponential,
but this is not related to the Lax pair for the Toda lattice.

8 Burchnall’s identities for the q-Hahn scheme

Our next objective is to give the Burchnall type identities for orthogonal polynomials from the
q-Askey-scheme. In this section we determine the corresponding identities in the q-Hahn scheme,
as a subscheme of the q-Askey scheme, see [21, Chapter 3]. The big q-Jacobi polynomials are
on top of the q-Hahn scheme, and the raising and lowering operators are given in terms of the
q-derivative Dq;

(Dqf)(x) =
f(x)− f(qx)

x− qx
, x 6= 0, (Dqf)(0) = f ′(0).

The Leibniz rule for the q-derivative is, see [10, Exercise 1.12(iv)],

Dn
q (fg) =

n∑
k=0

[
n

k

]
q

(T kq D
n−k
q f)Dk

q g =

n∑
k=0

[
n

k

]
q

Dn−k
q f

(
Tn−kq Dk

q g
)
, (8.1)

where (Tqf)(x) = f(xq) is the q-shift and
[
n
k

]
q

= (q;q)n
(q;q)k(q;q)n−k

is the q-binomial. In the context

of Section 2 we have ∂ = Dq, and D = Dq−1 .
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8.1 Big q-Jacobi polynomials

The big q-Jacobi polynomials are defined by

Pn(x; a, b, c; q) = 3ϕ2

(
q−n, abqn+1, x

aq, cq
; q; q

)
(8.2)

and using the q-integral
∫ aq
cq f(x)dqx = aq(1− q)

∑∞
k=0 f

(
aqk
)
qk − cq(1− q)

∑∞
k=0 f

(
cqk
)
qk, the

big q-Jacobi polynomials are orthogonal with respect to the weight function

w(x; a, b, c; q) =
(x/a, x/c; q)∞
(x, xb/c; q)∞

with respect to the discrete measure f 7→
∫ aq
cq f(x)w(x; a, b, cd; q)dqx, which corresponds to the

measure dµ(ν) of Section 2. In the correspondence of Section 2, let ν correspond to (a, b, c), and
ν + kσ corresponds to

(
qka, qkb, qkc

)
. Let V = {(a, b, c) | 0 < a < q−1, 0 < b < q−1, c < 0}, so

that the condition on V as in Section 2 is satisfied. Now Rν corresponds to Ra,b,c = M−1a,b,c ◦Dq ◦
Maq,bq,cq:(

Ra,b,cf
)
(x) =

(1− x/aq)(1− x/cq)f(x)− (1− x)(1− xb/c)f(xq)

(1− q)x

and the p
(ν)
n (x) of Section 2 correspond to the big q-Jacobi polynomials

(aq, cq; q)n

(ac)nqn(n+1)(1− q)n
Pn(x; a, b, c; q) (8.3)

by [19, equation (3.5.9–10)]. The adjoint Lν of Rν equals Dq−1 , since Dq−1 is the formal adjoint
of ∂ = Dq for the (unweighted) q-integral.

8.1.1 First form of the Leibniz formula (8.1)

Put η = Tq, α
n
k =

[
n
k

]
q
, Tk,n = Dk

q , so that
ηk(wν+kσ)(x)

wν(x)
corresponds to

w
(
xqk; qka, qkb, qkc; q

)
w(x; a, b, c; q)

= (x, xb/c; q)k.

Using (8.3), Theorem 2.1 gives the operational formula

(
Ra,b,cRaq,bq,cq · · ·Raqn−1,bqn−1,cqn−1f

)
(x) =

n∑
k=0

[
n

k

]
q

(x, xb/c; q)k
(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k

× Pn−k
(
xqk; aqk, bqk, cqk; q

)(
Dk
q f
)
(x). (8.4)

Corollary 2.2 for the big q-Jacobi polynomials then follows using (8.3) and [19, equation (3.5.7)].
We have to take into account that [19, equation (3.5.7)] is

(
DqPn

)
(·; a, b, c; q) =

q1−n(1− qn)
(
1− abqn+1

)
(1− q)(1− aq)1− cq)

(
TqPn−1

)
(·; aq, bq, cq; q) =⇒

(
Dk
qPn

)
(·; a, b, c; q) = (−1)kq

1
2
k(k+1)

(
q−n, abqn+1; q

)
k

(1− q)n(aq, cq; q)k

(
T kq Pn−k

)(
·; aqk, bqk, cqk; q

)
(8.5)

taking into account the relation DqTq = qTqDq. After simplification, Corollary 2.2 is

Pn+m(x; a, b, c; q) =

n∧m∑
k=0

(
q−n, q−m, abq2n+m+1, x, xb/c; q

)
k(

q, aq, cq, aqn+1, cqn+1; q
)
k

(ac)kqk
2+2k+nk
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× Pn−k
(
xqk; aqk, bqk, cqk; q

)
Pm−k

(
xqk; aqn+k, bqn+k, cqn+k; q

)
. (8.6)

Note that the left hand side is obviously symmetric in n and m, but the right hand side is not.

Corollary 2.3 gives∫ aq

cq

n∑
k=0

[
n

k

]
q

(x, xb/c; q)k
(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k

× Pn−k
(
xqk; aqk, bqk, cqk; q

)(
Dk
q f
)
(x)xpw(x; a, b, c; q)dqx = 0 (8.7)

for p < n. Take f(x) = eq(−tx) = 1
(−tx;q)∞ in (8.7) assuming t 6∈ −a−1q−N ∪ −c−1q−N, so that

there are no poles in the support of the measures involved. Then f is an eigenfunction of the

q-derivative; Dk
q f =

( −t
(1−q)

)k
f , so that

∫ aq

cq

n∑
k=0

[
n

k

]
q

(x, xb/c; q)k
(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k

× Pn−k
(
xqk; aqk, bqk, cqk; q

)( −t
(1− q)

)k 1

(−tx; q)∞
xpw(x; a, b, c; q)dqx = 0

for p < n. Take the limit b ↓ 0, i.e., specialize to the big q-Laguerre polynomials [19, Section 3.11].
So in particular, we find an expression for the orthogonal polynomials with respect to the measure∫ aq

cq

1

(−tx; q)∞
w(x; a, 0, c; q)dqx =

∫ aq

cq
w(x; a,−tc, c; q)dqx,

which is again the orthogonality measure for a big q-Jacobi polynomial. Hence, we find the
following equality up to a constant, which is determined by considering leading coefficients or
by evaluating at x = 1, after replacing t by −b/c:

n∑
k=0

(q−n, x; q)k
(q, aq, cq; q)k

(−abqn)kq
1
2
k2+ 3

2
kPn−k

(
xqk; aqk, 0, cqk; q

)
= Pn(x; a, b, c; q). (8.8)

The result (8.8) seems not be easily provable using a generating function, see, e.g., (3.9) for the
classical counterpart provable as a convolution identities from generating functions.

The other natural candidate for f in (8.7) is f(x) = Eq(−xt) = (xt; q)∞. Note that

Dk
q (x 7→ Eq(−xt)) =

(
−t

1− q

)k
q

1
2
k(k−1) (tx; q)∞

(tx; q)k
,

so that we can only get orthogonal polynomials for the measure modified by the big q-exponential
Eq(−xt) if cancellation in (x,xb/c;q)k

(tx;q)k
occurs. This happens precisely for t = 1 or t = b/c.

In particular, taking t = b/c we see that the polynomials of degree n defined by

n∑
k=0

[
n

k

]
q

(x; q)k
(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k
Pn−k

(
xqk; aqk, bqk, cqk; q

)(−b/c
1− q

)k
q

1
2
k(k−1)

are orthogonal with respect to

f 7→
∫ aq

cq
f(x)(xb/c; q)∞w(x; a, b, c; q)dqx =

∫ aq

cq
f(x)

(x/a, x/c; q)∞
(x; q)∞

dqx.
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Since this is the measure for the big q-Laguerre polynomials, i.e., big q-Jacobi polynomials (8.2)
with b = 0, see, e.g., [19, Section 4.11], we also know the orthogonal polynomials as big q-
Laguerre polynomials. This gives the following expansion up to a constant, which is determined
by evaluating at x = 1:

n∑
k=0

(q−n, x; q)k
(q, aq, cq; q)k

(−ab)kqk(k+n+1)Pn−k
(
xqk; aqk, bqk, cqk; q

)
= Pn(x; a, 0, c; q) (8.9)

and (8.9) can be considered as a kind of inverse to (8.8).
The other case, t = 1, can be dealt with similarly. We see that the polynomials

n∑
k=0

[
n

k

]
q

(xb/c; q)k
(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k
Pn−k

(
xqk; aqk, bqk, cqk; q

)( −1

1− q

)k
q

1
2
k(k−1)

are orthogonal with respect to the measure

f 7→
∫ aq

cq
f(x)(x; q)∞w(x; a, b, c; q)dqx =

∫ aq

cq
f(x)

(x/a, x/c; q)∞
(xb/c; q)∞

dqx

=
∣∣∣c
b

∣∣∣ ∫ bq

abq/c
f
(xc
b

) (x/b, xc/ab; q)∞
(x; q)∞

dqx

after a change of variable in the q-integral. This measure is the orthogonality measure for the
big q-Laguerre polynomials, or, more precisely, for the big q-Jacobi polynomials with (a, b, c)
replaced by (b, 0, ab/c). So we find (8.10) for the orthogonal polynomials orthogonal with respect
to this measure, where the constant is determined by evaluating at x = c/b and using the q-
Saalschütz formula [10, equation (1.7.2)]:

n∑
k=0

(q−n, xb/c; q)k
q, aq, cq; q)k

(ac)kqk(k+n+1)Pn−k
(
xqk; aqk, bqk, cqk; q

)
=
(c
b

)n (bq, abq/c; q)n
(aq, cq; q)n

Pn(xb/c; b, 0, ab/c; q). (8.10)

8.1.2 Second form of the Leibniz formula (8.1)

As in Section 4 we can consider the Leibniz expansion (8.1) in two different ways to fit it in the

form (2.4). Now we take η = I, αnk =
[
n
k

]
q
, Tk,n = Tn−kq Dk

q , so that
ηk(wν+kσ)(x)

wν(x)
corresponds to

w
(
x; qka, qkb, qkc; q

)
w(x; a, b, c; q)

=
(
xq−k/a, xq−k/c; q

)
k

Using (8.3), Theorem 2.1 gives(
Ra,b,cRaq,bq,cq · · ·Raqn−1,bqn−1,cqn−1f

)
(x)

=
n∑
k=0

[
n

k

]
q

(
xq−k/a, xq−k/c; q

)
k

(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k

× Pn−k
(
x; aqk, bqk, cqk; q

)(
Tn−kq Dk

q f
)
(x)

as an alternative for (8.4).
Corollary 2.2, by (8.3) and (8.5), gives the following alternative for (8.6);

Pn+m(x; a, b, c; q) =

n∧m∑
k=0

(
q−n, q−m, abq2n+m+1, xq−k/a, xq−k/c; q

)
k(

q, aq, cq, aqn+1, cqn+1; q
)
k

(ac)kqk(k+n+2)
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× Pn−k
(
x; aqk, bqk, cqk; q

)
Pm−k

(
xqn; aqn+k, bqn+k, cqn+k; q

)
.

As in Section 8.1.1 we can try to relate to explicit orthogonal polynomials using Corollary 2.3
and a suitable choice for f . This orthogonality involves

(
Tn−kq Dk

q f
)
(x), but using f(x) = eq(−xt)

or Eq(−xt) does not give rise to polynomial orthogonality in∫ aq

cq

n∑
k=0

[
n

k

]
q

(
xq−k/a, xq−k/c; q

)
k

(
aqk+1, cqk+1; q

)
n−k(

acq2k
)n−k

q(n−k)(n−k+1)(1− q)n−k

× Pn−k
(
x; aqk, bqk, cqk; q

)(
Tn−kq Dk

q f
)
(x)xpw(x; a, b, c; q)dqx = 0 (8.11)

for p < n, since

(
Tn−kq Dk

q

)
eq(−tx) =

(
−t

1− q

)k 1

(−txqn−k; q)∞
=

(
−t

1− q

)k (−tx; q)n−k
(−tx; q)∞

,

(
Tn−kq Dk

q

)
Eq(−tx) =

(
−t

1− q

)k
q

1
2
k(k−1)(qntx; q)∞ =

(
−t

1− q

)k
q

1
2
k(k−1) (tx; q)∞

(tx; q)n
.

So (8.11) cannot be rewritten as orthogonality for a family of orthogonal polynomials for these
choices of f .

9 Burchnall’s identities for the Askey–Wilson polynomials

The top level in the q-analogue of the Askey-scheme is the family of Askey–Wilson polynomials.
In order to apply the results we need the Askey–Wilson q-difference operator. For a function f ,
we define f̆(z) = f

(
1
2

(
z + z−1

))
, so that f̆(z) = f̆

(
z−1
)
. Then the Askey–Wilson q-difference

operator is

(Dqf)(x) =
f̆
(
q1/2z

)
− f̆

(
q−1/2z

)
1
2

(
q1/2 − q−1/2

)(
z − z−1

) , x =
1

2

(
z + z−1

)
.

Note that the denominator is the same as the numerator in case f(x) = x, and that the right
hand side is symmetric in z ↔ z−1. The Askey–Wilson polynomials are defined by

pn(x; a, b, c, d|q) = a−n(ab, ac, ad; q)n 4ϕ3

(
q−n, abcdqn−1, az, a/z

ab, ac, ad
; q; q

)
,

x =
1

2

(
z + z−1

)
.

The weight on [−1, 1] is given by, using x = cos θ, z = eiθ,

w(x; a, b, c, d|q) =
1√

1− x2

(
z±2; q

)
∞(

az±1, bz±1, cz±1, dz±1; q
)
∞

=
2i

z

(
z2, qz−2; q

)
∞(

az±1, bz±1, cz±1, dz±1; q
)
∞
,

assuming that a, b, c, d ∈ R with max(|a|, |b|, |c|, |d|) < 1 and using the notation (ez±1; q)∞ =
(ez, e/z; q)∞, see, e.g., [10, Chapter 7], [19, Section 3.1]. Note that the numerator is a theta-
product. So V = {(a, b, c, d) | max(|a|, |b|, |c|, |d|) < 1} ⊂ R4 in the notation of Section 2. In this
situation σ corresponds to

(
q1/2, q1/2, q1/2, q1/2

)
and letting ν correspond to a = (a, b, c, d), we

identify ν + nσ with aqn/2 =
(
aqn/2, bqn/2, cqn/2, dqn/2

)
.

The raising operator Rν corresponds to Ra = M−1a ◦ Dq ◦Maq1/2 . Explicitly, again using

x = 1
2

(
z + z−1

)
,

(Raf)(x) = A(z)f̆
(
q1/2z

)
−A

(
z−1
)
f̆
(
q−1/2z

)
,
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A(z) =
−2(1− az)(1− bz)(1− cz)(1− dz)

z(1− q)
(
1− z2

)
Using [19, equation (3.1.12)] we see that p

(ν)
n corresponds to

2n(q − 1)−nq−
1
4
n(n−1)pn(x; a, b, c, d | q). (9.1)

The corresponding Leibiz formula for Dq is given by, see [13, equation (1.22)],

Dnq (fg) =
n∑
k=0

[
n

k

]
q

q
1
2
k(k−n)(ηkqDn−kq f

)(
ηk−nq Dkq g

)
, (9.2)

where (ηqf)(x) = f̆
(
q1/2z

)
, x = 1

2

(
z + z−1

)
. So in the context of Section 2 we have αnk =[

n
k

]
q
q

1
2
k(k−n), η = ηq and Tk,n = ηk−nq Dkq . Then

ηk(wν+kσ)(x)
wν(x)

corresponds to

(−1)kq−
1
2
k2z−2k(az, bz, cz, dz; q)k.

Applying Theorem 2.1 we get the following operational expansion, after simplification,(
RaRaq1/2 · · ·Raq(n−1)/2f

)
(x)

=
2nq

1
4
n(n−1)

(q − 1)n

n∑
k=0

[
n

k

]
q

q−nkq
1
4
k(k+1)

2k
(1− q)k(az, bz, cz, dz; q)k (9.3)

× z−2kpn−k
(

1

2

(
qk/2z + q−k/2z−1

)
; aqk/2, bqk/2, cqk/2, dqk/2|q

)(
ηk−nq Dkq f

)
(x).

To make Corollary 2.2 explicit we iterate [19, equation (3.1.9)]

Dkqpn(x; a, b, c, d|q)

=
(−2)kq

1
4
k(2n−k+3)

(1− q)k
(
q−m, abcdqn−1; q

)
k
pn−k

(
x; aqk/2, bqk/2, cqk/2, dqk/2|q

)
,

so that we find the following expansion from Corollary 2.2 for the Askey–Wilson polynomials
using (9.1) and x = 1

2

(
z + z−1

)
:

pn+m(x; a, b, c, d|q) =

n∧m∑
k=0

(
q−n, q−m, abcdq2n+m−1; q

)
k

(q; q)k
z−2k(az, bz, cz, dz; q)k

× q−k2+k+
1
2
nm+ 1

2
km+nkpn−k

(
1

2

(
qk/2z + q−k/2z−1

)
; aqk/2, bqk/2, cqk/2, dqk/2|q

)
(9.4)

× pm−k
(

1

2

(
q(k−n)/2z + q(n−k)/2z−1

)
; aq(k+n)/2, bq(k+n)/2, cq(k+n)/2, dq(k+n)/2|q

)
.

Note that (9.4) is the q-analogue of (6.2). In this case we can also reinterpret the Leibniz formu-
la (9.2) as in Section 4, but the resulting identities are equivalent because of the invariance
z ↔ z−1 for the Askey–Wilson polynomials.

Since we have the Askey–Wilson polynomials on top of the q-analogue of the Askey-scheme,
we can easily specialize (9.3) and (9.4) to its subclasses and limiting cases, such as e.g. the con-
tinuous q-Hahn polynomials (d = 0), the Al-Salam–Chihara polynomials (c = d = 0), Rogers’s
continuous q-ultraspherical polynomials (a, b, c, d) =

(√
β,−
√
β, q1/2

√
β,−q1/2

√
β
)
, see [19, Sec-

tion 4] for more limit transitions.
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Note that an interesting special case is obtained by taking the case that a = b = c = d = 0
leading to the continuous q-Hermite polynomials Hn(x|q), which is the limit β → 0 of the
continuous q-ultraspherical polynomials. Explicitly,

lim
a→0

pn

(
1

2

(
z + z−1

)
; a, 0, 0, 0|q

)
= lim

a→0
(az; q)nz

−n
2ϕ1

(
q−n, 0

q1−n/az
; q,

qz

a

)
= z−n 2ϕ0

(
q−n, 0

−
; q, qnz2

)
= Hn

(
1

2

(
z + z−1

)
|q
)
,

using the rewrite of the Al-Salam–Chihara polynomials as a 2ϕ1-series, cf. [19, Section 3.8]. In
particular, (9.3) then gives

2−n(q − 1)nq−
1
4
n(n−1)(Rn0f)(x)

=

n∑
k=0

[
n

k

]
q

q−nkq
1
4
k(k+1)2−k(1− q)kz−2kHn−k

(
1

2

(
qk/2z + q−k/2z−1

)
|q
)(

ηk−nq Dkq f
)
(x)

=
n∑
k=0

(q−n; q)k
(q; q)k

(
−1

2

)k
q−

1
2
nkq

1
4
k(k+3)(1− q)kz−n−k 2ϕ0

(
q−n, 0

−
; q, qnz2

)(
ηk−nq Dkq f

)
(x).

The special case of (9.4) for the continuous q-Hermite polynomials is

Hn+m(x|q) =

n∧m∑
k=0

(q−n, q−m; q)k
(q; q)k

z−2kq−k
2+k+ 1

2
nm+ 1

2
km+nk (9.5)

×Hn−k

(
1

2

(
qk/2z + q−k/2z−1

)
|q
)
Hm−k

(
1

2

(
q(k−n)/2z + q(n−k)/2z−1

)
|q
)
.

Note that (9.5) is different from the inverse linearization formula for the continuous q-Hermite
polynomials as derived from the β → 0 limit of the corresponding inverse linearization formula
for the continuous q-ultraspherical polynomials in [10, Exercise 8.12].
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[6] Basor E., Chen Y., Ehrhardt T., Painlevé V and time-dependent Jacobi polynomials, J. Phys. A: Math.
Theor. 43 (2010), 015204, 25 pages, arXiv:0905.2620.

[7] Burchnall J.L., A note on the polynomials of Hermite, Quart. J. Math., Oxford Ser. 12 (1941), 9–11.

[8] Carlitz L., A note on the Laguerre polynomials, Michigan Math. J 7 (1960), 219–223.

[9] Casas F., Murua A., Nadinic M., Efficient computation of the Zassenhaus formula, Comput. Phys. Commun.
183 (2012), 2386–2391, arXiv:1204.0389.

[10] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications,
Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.

[11] Gekhtman M., Hamiltonian structure of non-abelian Toda lattice, Lett. Math. Phys. 46 (1998), 189–205.

[12] Gould H.W., Hopper A.T., Operational formulas connected with two generalizations of Hermite polynomials,
Duke Math. J. 29 (1962), 51–63.

[13] Ismail M.E.H., The Askey–Wilson operator and summation theorems, in Mathematical Analysis, Wavelets,
and Signal Processing (Cairo, 1994), Contemp. Math., Vol. 190, Editors M.E.H. Ismail, M.Z. Nashed, A.I. Za-
yed, A.F. Ghaleb, Amer. Math. Soc., Providence, RI, 1995, 171–178.

[14] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics
and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2009.

[15] Ismail M.E.H., Koelink E., Román P., in preparation.

[16] Kametaka Y., On the Euler–Poisson–Darboux equation and the Toda equation. I, Proc. Japan Acad. Ser. A
Math. Sci. 60 (1984), 145–148.

[17] Kametaka Y., On the Euler–Poisson–Darboux equation and the Toda equation. II, Proc. Japan Acad. Ser. A
Math. Sci. 60 (1984), 181–184.

[18] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their q-analogues,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.

[19] Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-
analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology,
1998, http://aw.twi.tudelft.nl/~koekoek/askey/.

[20] Koelink H.T., Van Der Jeugt J., Convolutions for orthogonal polynomials from Lie and quantum algebra
representations, SIAM J. Math. Anal. 29 (1998), 794–822, q-alg/9607010.

[21] Koornwinder T.H., Compact quantum groups and q-special functions, in Representations of Lie Groups and
Quantum Groups (Trento, 1993), Pitman Res. Notes Math. Ser., Vol. 311, Longman Sci. Tech., Harlow,
1994, 46–128.

[22] Magnus W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl.
Math. 7 (1954), 649–673.

[23] Nielsen N., Recherches sur les polynomes d’Hermite, Det Kgl. Danske Videnskabernes Selskab. Math.-Fys.
Meddelelser I 6 (1918), 1–78.

[24] Rainville E.D., Special functions, The Macmillan Co., New York, 1960.

[25] Singh R.P., Operational formulae for Jacobi and other polynomials, Rend. Sem. Mat. Univ. Padova 35
(1965), 237–244.

[26] Zhedanov A., The Toda chain: solutions with dynamical symmetry and classical orthogonal polynomials,
Theoret. and Math. Phys. 82 (1990), 6–11.

[27] Zhedanov A., Elliptic solutions of the Toda chain and a generalization of the Stieltjes–Carlitz polynomials,
Ramanujan J. 33 (2014), 157–195, arXiv:0712.0058.

https://doi.org/10.1088/1751-8113/43/1/015204
https://doi.org/10.1088/1751-8113/43/1/015204
https://arxiv.org/abs/0905.2620
https://doi.org/10.1093/qmath/os-12.1.9
https://doi.org/10.1307/mmj/1028998429
https://doi.org/10.1016/j.cpc.2012.06.006
https://arxiv.org/abs/1204.0389
https://doi.org/10.1017/CBO9780511526251
https://doi.org/10.1023/A:1007579806383
https://doi.org/10.1215/S0012-7094-62-02907-1
https://doi.org/10.1090/conm/190/02300
https://doi.org/10.3792/pjaa.60.145
https://doi.org/10.3792/pjaa.60.145
https://doi.org/10.3792/pjaa.60.181
https://doi.org/10.3792/pjaa.60.181
https://doi.org/10.1007/978-3-642-05014-5
http://aw.twi.tudelft.nl/~koekoek/askey/
https://doi.org/10.1137/S003614109630673X
https://arxiv.org/abs/q-alg/9607010
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1007/BF01028245
https://doi.org/10.1007/s11139-013-9515-x
https://arxiv.org/abs/0712.0058

	1 Introduction
	2 Generalized Burchnall-type identities
	3 Example: classical orthogonal polynomials
	3.1 Example: Hermite polynomials
	3.2 Example: Laguerre polynomials
	3.3 Example: Jacobi polynomials

	4 The backward shift operator 
	4.1 The Meixner polynomials
	4.1.1 The Leibniz rule with =1
	4.1.2 The Leibniz rule with =S

	4.2 The Charlier polynomials
	4.2.1 The Leibniz rule with =1
	4.2.2 The Leibniz rule with =S


	5 The difference operator x
	5.1 The Meixner–Pollaczek polynomials

	6 Burchnall's identity for the Wilson polynomials
	7 Relation with the Toda lattice
	8 Burchnall's identities for the q-Hahn scheme
	8.1 Big q-Jacobi polynomials
	8.1.1 First form of the Leibniz formula (8.1)
	8.1.2 Second form of the Leibniz formula (8.1)


	9 Burchnall's identities for the Askey–Wilson polynomials
	References

