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Abstract. We study the asymptotic behaviour of orthogonal polynomials in the complex
plane that are associated to a certain normal matrix model. The model depends on a param-
eter and the asymptotic distribution of the eigenvalues undergoes a transition for a special
value of the parameter, where it develops a corner-type singularity. In the double scaling
limit near the transition we determine the asymptotic behaviour of the orthogonal poly-
nomials in terms of a solution of the Painlevé IV equation. We determine the Fredholm
determinant associated to such solution and we compute it numerically on the real line,
showing also that the corresponding Painlevé transcendent is pole-free on a semiaxis.
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1 Introduction

In this work we consider the critical asymptotic behaviour for the orthogonal polynomials that
are associated to the matrix model described here. Over the set of normal n × n matrices
Nn := {M : [M,M?] = 0} ⊂ Matn×n(C) we consider the measure of the form

M → 1

Zn,N
e−N Tr(W (M))dM, Zn,N =

∫

Nn
e−N Tr(W (M))dM, (1.1)

where dM stands for the induced volume form on Nn, invariant under conjugation by unitary
matrices.

Since normal matrices are diagonalizable by unitary transformations, the probability den-
sity (1.1) can be reduced to the form [35]

1

Zn,N

∏

i<j

|λi − λj |2e
−N

n∑
j=1

W (λi)

dA(λ1) · · · dA(λn), (1.2)
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where λj are the complex eigenvalues of the normal matrix M [11] and dA(λ) = d Re(λ)d Im(λ)
is the area element in the complex plane.

Associated to the above data we consider the sequence of (monic) orthogonal polynomials
pn(z) = zn + · · · ,

∫

C
pn(λ)pm(λ)e−NW (λ)dA(λ) = hn,Nδn,m, hn,N > 0, n,m = 0, 1, . . . , (1.3)

where W : C→ R is the external potential.

Likewise in the standard GUE, the orthogonal polynomial pn(z) is also the expectation value
of the characteristic polynomial of the random normal matrix M : pn(z) = 〈det(z1 − M)〉,
where the expectation is with respect to the measure (1.1) (see, e.g., [18]). The statistical
quantities related to the eigenvalues of matrix models can be expressed in terms of the associated
orthogonal polynomials, pn(λ). In particular, the probability measure (1.2) can be written as
a determinantal point field (sometimes also called “process”) with Christoffel–Darboux kernel

K(λ, η) = e−N(W (λ)+W (η))/2
n−1∑

j=0

1

hj,N
pj(λ)pj(η).

The average density of eigenvalues is

ρn,N (λ) =
1

n
K(λ, λ)

and in the limit

n→∞, N →∞, N

n
→ 1

T
,

it converges to the unique probability measure, µ∗, in the plane which minimizes the func-
tional [19, 26]

I(µ) =

∫∫
log |λ− η|−1dµ(λ)dµ(η) +

1

T

∫
W (λ)dµ(λ).

The functional I(µ) is the Coulomb energy functional in two dimensions and the existence of
a unique minimizer is a well-established fact under mild assumptions on the potential W (λ) [37].
If W (λ) is twice continuously differentiable then the equilibrium measure is given by

dµ∗(λ) =
1

4πT
∆W (λ)χD(λ)dA(λ),

where χD is the characteristic function of the compact support set D = supp(µ∗) and ∆ = 4∂λ∂̄λ.
For example, if W (λ) = |λ|2, one has the Ginibre ensemble [23] and the measure dµ∗(λ) is the
uniform measure on the disk of radius

√
T . Following [4], we consider the external potential to

be of the form

W (λ) = |λ|2d − tλd − t̄λ̄d, λ ∈ C, d ∈ N, t ∈ C∗. (1.4)

The case d = 1 is reducible to Hermite polynomials and we will consider only d ≥ 2. Up to
a rotation λ 7→ eiθλ we can assume without loss of generality that t ∈ R+, leading to the external
potential and orthogonality measure

W (λ) = |λ|2d − t
(
λd + λ̄d

)
, λ ∈ C, e−N(|λ|2d−t(λd+λ̄d))dA(λ). (1.5)
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Figure 1. Domain D for different values of t: on the left t < tc, in the center t = tc and on the right

t > tc.

There remains a residual discrete rotational Zd-symmetry which allows us to further reduce the
problem as observed in [5] and [20]. The potential W in (1.5) can be written as W (λ) = 1

dQ
(
λd
)
,

and hence the equilibrium measure for W can be obtained from the equilibrium measure associ-
ated to Q by an unfolding procedure. Considering the particular case of (1.4), the potential Q
can be rewritten as

Q(u) = d|u|2 − dt(u+ ū) = d|u− t|2 − t2d,

which corresponds to the Ginibre ensemble whose equilibrium measure is the normalized area
measure of the disk centered at u = t and of radius tc

|u− t| ≤ tc, tc =

√
T

d
.

Pulling back to the λ-plane, we obtain the equilibrium measure of W

dµW =
d

πt2c
|λ|2(d−1)χDdA(λ),

where dA is the area measure and χD is the characteristic function of the domain D whose
boundary is a lemniscate

D :=
{
λ ∈ C,

∣∣λd − t
∣∣ ≤ tc

}
. (1.6)

A plot of the domain D for different values of t is shown in Fig. 1. Depending on the radius tc,
the domain D is either connected for t ≤ tc or has d connected components for t > tc. The cases
t > tc and t < tc were analysed in [4]. In this manuscript we study the critical regime t = tc.
Boundary points where ∆W > 0 have been classified by Sakai [38] and fall in the category
of regular points, cusps or double points. Details about the application of Sakai’s theory to
the setting when ∆W > 0 near a singular point can be found in several papers, e.g., [33].
The classification of boundary points when ∆W = 0 is still an open problem to the best of
our knowledge. In this manuscript we take a first step in considering a specific example when
∆W = 0. In particular we will study the asymptotic behaviour of the orthogonal polynomials
associated to this model.

The asymptotic analysis of orthogonal polynomials when the measure is of planar type, is
much harder than the orthogonality on contours. When the orthogonality planar measure is not
varying there are several studies like in [36] or [24]. In a very recent work [27] the asymptotic of
orthogonal polynomials for a varying planar measure was obtained in the regular case. Critical
regimes have been considered in [34], in [9, 32] studying a normal matrix model with cut-off, and
in [1] where new types of determinantal point fields, have emerged. The equilibrium problem
for a class of potentials to which our case belongs, was also recently considered in [2].
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Figure 2. The boundary of the domain D that describes the support of the eigenvalues distribution in

black and the level curve Ĉ in red at the critical time tc and for d = 5.

In this paper we derive the asymptotic behaviour for large n of the orthogonal polynomials
associated to the exponential weight (1.5) in the critical regime tc. The zeros of the polynomials
accumulate on the Szegö curve that was first observed in relation to the zeros of the Taylor poly-
nomials of the exponential function [40]. For large n we obtain the expansion of the orthogonal
polynomials in terms of a special solution of a Painlevé IV transcendent. We show that such
solution is pole free on the negative semi-axis. We obtain the Fredholm determinant associated
to such solution and compute it numerically on the real line. Painlevé IV critical asymptotic
was observed for orthogonal polynomials with deformed Laguerre weights [15]. Finally we re-
mark that normal matrix models are strictly related to the 2-dimensional Toda lattice, see,
e.g., [41, 43]. It would be interesting to study the critical case considered in this paper in this
perspective as done in [6] or [12, 13, 15] for the one-dimensional Toda lattice.

1.1 Zeros of orthogonal polynomials: statement of the result

The zeros of the orthogonal polynomials (1.3) in the critical case t = tc concentrate on the
curve Ĉ that is described below. Let us introduce the function

ϕ̂(λ) = log
(
tc − λd

)
+
λd

tc
− log tc, (1.7)

and consider the level curve Ĉ

Ĉ :=

{
λ ∈ C, Re ϕ̂(λ) = log

∣∣tc − λd
∣∣

tc
+

Reλd

tc
= 0,

∣∣λd − tc
∣∣ ≤ tc

}
. (1.8)

Observe that the level curve Ĉ consists of a closed contour contained in the set D defined in (1.6)

with t = tc because it is the pullback under the map z = 1− λd

tc
of the celebrated (closed) Szegö

curve
∣∣ze1−z∣∣ = 1 [40] (see Fig. 2).

Let us define the measure ν̂, associated with this family of curves, given by

dν̂(λ) =
1

2πid
dϕ̂(λ), (1.9)

and supported on Ĉ.

Lemma 1.1. The a-priori complex measure dν̂ in (1.9) is a probability measure on the contour Ĉ
defined in (1.8).
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When t = tc, the zeros of the orthogonal polynomials (1.3) behave in the following way.

Theorem 1.2. The zeros of the polynomials pn(λ) defined in (1.3) for t = tc =
√
T/d, behave

as follows

• for n = kd + d − 1, let ω = e
2πi
d . Then t

1
d , ωt

1
d , . . . , ωd−1t

1
d are zeros of the polynomials

pkd+d−1 with multiplicity k and λ = 0 is a zero with multiplicity d− 1.

• for n = kd+ `, ` = 0, . . . , d−2 the polynomial pn(λ) has a zero in λ = 0 with multiplicity `
and the remaining zeros in the limit n, N →∞ such that

N =
n− `
T

,

accumulate on the level curve Ĉ defined in (1.8). The measure ν̂ in (1.9) is the weak-star
limit of the normalized zero counting measure νn of the polynomials pn for n = kd + `,
` = 0, . . . , d− 2.

Our next result gives strong uniform asymptotics as n→∞ for the polynomials pn(λ) in the
complex plane. We consider the double scaling limit

t→ tc, k →∞, k =
n− `
d

,

in such a way that

lim
k→∞, t→tc

√
k

(
t2

t2c
− 1

)
= S,

with S in compact subsets of the real line. In the description of the asymptotic behaviour of the
orthogonal polynomials, pn(λ), in this double-scaling limit, the Painlevé IV transcendent (see
Section 2) with Θ0 = Θ∞ = γ

2 and γ = d−`−1
d ∈ (0, 1) plays a major role.

Theorem 1.3 (double scaling limit). The polynomials pn(λ) with n = kd+ `, ` = 0, . . . , d− 2,
γ = d−`−1

d ∈ (0, 1), have the following asymptotic behaviour when n, N →∞ in such a way that
NT = n− ` and

lim
k→∞, t→tc

√
k

(
t2

t2c
− 1

)
= S,

with S in compact subsets of the real line so that the solution Y (S) of the Painlevé IV equa-
tion (2.3) does not have poles. Below, the function Z = Z(S), U = U(S) and the Hamiltonian
H = H(S) are related to the Painlevé IV equation (2.3) by the relations (2.2) and (2.7), respec-
tively.

(1) For λ in compact subsets of the exterior of Ĉ one has

pn(λ) = λd−1
(
λd − tc

)k−γ
(

1− H(S)tc√
kλd

+O
(

1

k

))
,

with H(S) the Hamiltonian (2.7) of the Painlevé IV equation (2.3).

(2) For λ in the region near Ĉ and away from the point λ = 0 one has

pn(λ) = λd−1
(
λd − tc

)k−γ

×
(

1− H(S)tc√
kλd

+
Z(S)

U(S)

tce
−kϕ̂(λ)

λdk
1+γ
2

(
λd − tc
λd

)γ
+O

(
1

k

))
, (1.10)

with ϕ̂(λ) defined in (1.7).
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(3) For λ in compact subsets of the interior region of Ĉ and away from the point λ = 0 one
has

pn(λ) = λ`
(
λd − tc

)k e−kϕ̂(λ)

k
1
2

+γ

(
Z(S)

U(S)

tc
λd

+O
(

1

k

))
.

(4) In the neighbourhood of the point λ = 0 one has

pn(λ) = λ`
(
λd − tc

)k−γ e−
k
2
ϕ̂(λ)λdγ

(−2kϕ̂(λ))
γ
4

×





Ψ11

(√
−2kϕ̂(λ);S

)
+O

(
1
k

)
,

√
−ϕ̂(λ) ∈ Ω∞,

−Ψ12

(√
−2kϕ̂(λ);S

)
+O

(
1
k

)
,

√
−ϕ̂(λ) ∈ Ω0,

Ψ11

(√
−2kϕ̂(λ);S

)
−Ψ12

(√
−2kϕ̂(λ);S

)
+O

(
1
k

)
,
√
−ϕ̂(λ) ∈ Ω2,

where Ψ is the solution of the Painlevé IV Riemann–Hilbert Problem 2.1 with Stokes mul-
tipliers specified in (2.9) and (2.10) and the regions Ω0, Ω∞ and Ω2 are specified in Fig. 4.
Here Ψ11 and Ψ12 are the entries of the matrix Ψ.

We observe that, in compact subsets of the exterior of Ĉ, there are no zeros of the polyno-
mials pn(λ). The only possible zeros are located in λ = 0 and in the region where the second
term in parenthesis in the expression (1.10) is of order one. Since Re ϕ̂(λ) is negative inside Ĉ
and positive outside Ĉ, it follows that the possible zeros of pn(λ) lie inside Ĉ and are determined
by the condition

Re ϕ̂(λ) = −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
λd − tk
λd

∣∣∣∣
γ ∣∣∣∣
tcZ(S)

λdU(S)

∣∣∣∣
)

+
1

k
3
2

Re

(
tcH(S)

λd

)
+O

(
k−2

)
.

We conclude with the following proposition.

Proposition 1.4. The support of the counting measure of the zeros of the polynomials pn(λ) in
the limit n → ∞ outside an arbitrary small disk surrounding the point λ = 0 tends uniformly
to the curve Ĉ defined in (1.8). The zeros are within a distance O(1/k) from the curve defined
by (1.8).

This manuscript is organised as follows. In Section 2 we present the Lax pair and Riemann–
Hilbert problem for the Painlevé IV equation and we show how to associate for a particular
value of the Stokes matrices the solution of the Painlevé IV equation in terms of a Fredholm
determinant. We compute such solution numerically for several values of the parameter γ that
parametrizes the asymptotic behaviour of the orthogonal polynomials. In Section 3 we show how
to associate to the orthogonal polynomials on the planar domain a Riemann–Hilbert problem and
in Section 4 we perform the asymptotic analysis of this Riemann–Hilbert problem thus deriving
the asymptotic behaviour of the orthogonal polynomials pn(λ) as n→∞ in the complex plane.

2 Painlevé IV and Fredholm determinant

The purpose of this section is to introduce the Painlevé IV equation and study various aspects
related to it that are connected with the work that we will be doing in the following sections.

We will begin by introducing and deriving the general Painlevé IV equation following the
ideas outlined by Miwa, Jimbo and Ueno [30, 31]. In the sequence of this, we will also discuss
the associated Stokes’ phenomenon and the monodromy problem (see Wasow [42]).

The second part of this section will be devoted to applying the general setting of Painlevé IV
in a particular case, in order to obtain a special solution for it. This will correspond to a special
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Riemann–Hilbert problem whose properties will be outlined. The reason and motivation for
introducing this solution is the fact that this Riemann–Hilbert problem will be seen to be useful
in the following section.

The third and final part of this section will be devoted to the study of the Fredholm determi-
nant, as it has been established by Its [28], Harnad [25], Bertola and Cafasso [8], among others.
This will be used in order to study the τ -function of the special solution of Painlevé IV that we
introduced before and analyze its validity with respect to the value of the parameter s.

2.1 The general Painlevé IV

We recall the Lax pair formulation of the Painlevé IV equation as in the original work of Miwa,
Jimbo and Ueno [30, 31], with notation adapted to our purposes.

Consider the matrix–valued function Ψ, associated with Painlevé IV, as the fundamental
joint solution of the system of linear differential equations, the Lax pair, given by

∂

∂λ
Ψ = A(λ; s)Ψ,

∂

∂s
Ψ = B(λ; s)Ψ, (2.1)

where

A(λ; s) = −1

2
(λ+ s)σ3 +


 0

Z

U
−U 0


+

1

λ


Θ∞ − Z

(Θ∞ − Z)2 −Θ2
0

Y U
−UY Z −Θ∞


 ,

B(λ; s) = −1

2
λσ3 +


 0

Z

U
−U 0


 ,

where σ3 is the third Pauli matrix, Y , Z and U are functions of s whose dependence we now
derive, while Θ0 and Θ∞ are arbitrarily chosen constants. The compatibility of (2.1) yields the
zero-curvature equation

[∂λ −A, ∂s −B] ≡ 0,

which, in turn, yields the following system of nonlinear ODEs

U ′ = U(Y − s),

Z ′ = ZY +
−(Z −Θ∞)2 + Θ2

0

Y
,

Y ′ = −Y 2 + sY − 2Z + 2Θ∞. (2.2)

In the equations above the prime means differentiation with respect to s. By eliminating U , Z
from the above equations we obtain the classical form of the fourth Painlevé equation

Y ′′ =
1

2

(Y ′)2

Y
+

3

2
Y 3 − 2sY 2 +

(
1 +

s2

2
− 2Θ∞

)
Y − 2Θ2

0

Y
. (2.3)

2.1.1 Stokes’ phenomenon and the Monodromy problem

The review material of this section is mostly based on [21] and [30, 31]. The solution of the first
equation in (2.1) admits a formal sectorial expansion at λ =∞ of the form

Ψformal(λ) =

(
1 +

Ψ1(s)

λ
+

Ψ2(s)

λ2
+O

(
1

λ3

))
λΘ∞σ3e−θ(λ)σ3 ,
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e2πiΘ∞σ3

(
1 S−2

0 1

)

(
1 0

S−1 1

)

(
1 S0

0 1

)

(
1 0
S1 1

)

(
1 S−2

0 1

)

Γ0

Γ1

Γ2

Γ3

Γ4

Γ5

(0)

(I)

(II) (III)

(IV)(V)

1

Figure 3. Stokes’ phenomenon and the corresponding jumps in the Ψ(λ) Riemann–Hilbert problem.

Ψ1(s) =


H(s)

Z(s)

U(s)

U(s) −H(s)


 , (2.4)

Ψ2(s) =




1

2

(
H(s)2 + Z(s)− sH(s)

) Z(s)(Z(s)− γ − Y (s)s−H(s)Y (s))

U(s)Y (s)

U(s)H(s) + U(s)Y (s)− sU(s)
1

2

(
H(s)2 + Z(s) + sH(s)

)


 , (2.5)

θ(λ) =
λ2

4
+
s

2
λ, (2.6)

where

H =

(
s+

2Θ∞
Y
− Y

)
Z − Θ2

∞ −Θ2
0

Y
− Z2

Y
. (2.7)

In each of the sectors q = (0, I, II, III, IV,V) of Fig. 3 there exists a unique solution Ψ(q)(λ) which
is Poincaré asymptotic to Ψformal(λ), even though the latter is only a non-convergent (in general)
formal series. The matrices in Fig. 3 on the rays Γq are the Stokes’ matrices Sq (and the formal
monodromy on the negative axis) and relate the different solutions as follows: Ψ(q+1) = ΨqSq
(q modulo 6). The rays Γ1,5 can be chosen arbitrarily within the respective quadrants, or more
generally any smooth infinite arc within the quadrants that admits an asymptotic direction.

Each of these solutions of Painlevé IV for each sector q, Ψ(q)(λ), has an asymptotic expansion
near λ = 0 with the following behaviour

Ψ(q)(λ) = G(1 +O(λ))λΘ0σ3C(q),

where the matrices C(q) defined by this equation are called “connection matrices” and G is

a diagonalizing matrix for the 1
λ coefficient of A(λ; s). From this equation and using an argument

of analytic continuation, we obtain the following monodromy relation

C−1
(0)e2πiΘ0σ3C(0) =

(
1 −S−2

0 1

)(
1 0
−S1 1

)

×
(

1 −S0

0 1

)(
1 0
−S−1 1

)(
1 −S−2

0 1

)
e2πiΘ∞σ3 . (2.8)
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(
1 0
1 1

)
(

1 −1
0 1

)

eγπiσ3

Γ∞

Γ1

Ω∞

Ω2

Ω0

1

Figure 4. Jumps in the Ψ(λ) Riemann–Hilbert problem.

The remaining connection matrices C(q) are obtained from C(0) by multiplying it by an appro-

priate sequence of the Stokes’ matrices; for example C(V) = C(0)

(
1 S−2

0 1

)
.

The general solution to the isomonodromic equations (2.2) for given Θ0, Θ∞ is parametrized
by the choices of parameters S−1, . . . and connection matrix C(0) that satisfy (2.8).

2.2 Special Riemann–Hilbert problem Ψ(λ) and Painlevé IV

Several particular solutions of the Painlevé IV have been considered in the literature, see, e.g.,
[7, 14, 29]. In our work we only need special values for the Stokes’ parameters and Θ0,∞:

S1 = 1, S0 = 0, S−1 = −1, S−2 = −1, (2.9)

C(III) = C(IV) = 1, Θ0 =
γ

2
, Θ∞ =

γ

2
. (2.10)

The resulting Riemann–Hilbert problem is the one depicted in Fig. 4, where we have more
appropriately renamed Γ1 and Γ∞. It is formalized below:

Riemann–Hilbert Problem 2.1. The matrix Ψ(λ; s) is analytic in C \ (Γ1 ∪ Γ∞ ∪ R−) and
admits non-tangential boundary values. Moreover

1. The boundary values are related by (see Fig. 4):

Ψ+(λ; s) = Ψ−(λ; s)vΨ, λ ∈ ΣΨ,

vΨ =





(
1 −1

0 1

)
, λ ∈ Γ1,

(
1 0

1 1

)
, λ ∈ Γ∞,

eγπiσ3 , λ ∈ R−,

where Ψ± are the boundary values on the left and right of the oriented contour ΣΨ.

2. Near λ =∞ the matrix has the following sectorial behaviour

Ψ(λ; s) =

(
1 +O

(
1

λ

))
λ
γ
2
σ3e−θ(λ)σ3 , λ→∞.



10 M. Bertola, J.G. Elias Rebelo and T. Grava

0
ε

(
1 0

λ−γe2θ 1

)

(
1 2i sin(πγ) |λ|γ e−2θ

0 1

)

Γ∞

R−
Ω∞

Ω0

1

Figure 5. Jumps in the M(λ) Riemann–Hilbert problem.

3. Near λ = 0 in the region Ω∞, Ψ(λ; s) has the behaviour

Ψ(λ; s) = O(1)λ
γ
2
σ3 .

We remind the reader that subcripts ± denote the boundary values from the left (+) or
right (−) of an oriented countour. We will henceforth omit explicit notation for the s dependence
of Ψ.

We now proceed to do a further modification of this Ψ(λ)-Riemann–Hilbert problem, that
will be used in the next section for the study of the Fredholm determinant:

• move the jump contour Γ∞ = iR in the following way iR→ iR + ε, with ε > 0;

• join together (collapse) the two parts of the contour Γ1 and R−.

The use of the verb “move” means that we define a new matrix-valued function in the region
between the old and new position of the contours that analytically continues Ψ across the original
contours. This is possible because the jump matrices are all constants in λ. We still use the
symbol Ψ for the resulting function. Finally, we introduce M as follows

M(λ) := Ψ(λ)eθ(λ)σ3λ−
γ
2
σ3 .

The powers of λ are intended as the principal determination with arg(λ) ∈ (−π, π). The mat-
rix M solves a Riemann–Hilbert problem with jumps indicated in Fig. 5 and formalized below.

Riemann–Hilbert Problem 2.2. The matrix M(λ) is analytic in C \ (Γ∞ ∪R−) and admits
non-tangential boundary values. Moreover

1. The boundary values M± are related by (see Fig. 5):

M+(λ) = M−(λ)vM , λ ∈ ΣM ,

vM =





(
1 2i sin (πγ)|λ|γe−2θ(λ)

0 1

)
, λ ∈ R−,

(
1 0

λ−γe2θ(λ) 1

)
, λ ∈ Γ∞.

2. Near λ =∞ the matrix has the following sectorial behaviour:

M(λ) =

(
1 +O

(
1

λ

))
, λ→∞.

3. The matrix M(λ) is bounded in a full neighbourhood of λ = 0.
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2.3 Fredholm determinant and the τ -function of Painlevé IV

The Riemann–Hilbert Problem 2.2 is associated to an integral operator on L2(R− ∪Γ∞), where
Γ∞ = iR+ε, and will be used in the next section in order to compute the Fredholm determinant.
We first introduce some general definitions. Let (X,dν) be a measurable space and K(x, y) : X×
X → C a function. We define the operator K̂ : L2(X,dν)→ L2(X,dν) as

(
K̂f
)
(x) =

∫

X
K(x, y)f(y)dν(y).

If
∫∫
X2 |K(x, y)|2dxdy < +∞, the operator K̂ is a Hilbert–Schmidt operator and its spectrum is

purely discrete, the eigenvalues can accumulate only at 0 and all the multiplicities of the nonzero
eigenvalues are finite (see, e.g., [39]).

Definition 2.3. The τ -function is defined as the following Fredholm determinant

τ(ρ) = det
(

Id−ρK̂
)
,

where ρ is a nonzero complex parameter.

From the properties of the Fredholm determinant we know that τ(ρ) = 0 if and only if 1
ρ

is an eigenvalue of K̂. With this being said, since in our case we are interested in a different
parametric dependence of K̂ and not its spectral properties, we shall set ρ = 1 (see (2.13)).

2.3.1 Riemann–Hilbert problems and Fredholm determinants

Following [28] let us consider a set of contours Σ ⊂ C and f, g : Σ→ Cp matrix–valued (smooth)
functions that satisfy the condition fT(λ)g(λ) = 0. Then we define the following scalar kernel

K(λ, µ) :=
fT(λ)g(µ)

λ− µ .

We denote by K̂ : L2(Σ,Cp) → L2(Σ,Cp) the integral operator with kernel K(λ, µ). Let R be
the resolvent operator R := −K̂ ◦ (Id−K̂)−1.

Theorem 2.4 (see [28]). The kernel, R(λ, µ), of the resolvent operator R is given by

R(λ, µ) :=
fT(λ)AT(λ)A−T(µ)g(µ)

λ− µ ,

where the p× p matrix A(λ) solves the Riemann–Hilbert problem

A+(λ) = A−(λ)
(
1− 2πif(λ)gT(λ)

)
, λ ∈ Σ,

A(λ) = 1 +O
(
λ−1

)
, λ→∞.

Moreover, the above Riemann–Hilbert problem admits a unique solution if and only if the Fred-
holm determinant det

(
Id− K̂

)
is non-zero.

The case of interest to us, below, is with p = 2.
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2.3.2 Fredholm determinant and the Riemann–Hilbert problem M

The Riemann–Hilbert Problem 2.2 is a special example of the previous setup, as we now see.
We first define the following vectors

f(z) =

[
2i sin(πγ)|z| γ2 e−θ(z)χR−(z)

z−
γ
2 eθ(z)χ∞(z)

]
, (2.11)

g(z) = − 1

2πi

[
z−

γ
2 eθ(z)χ∞(z)

|z| γ2 e−θ(z)χR−(z)

]
, (2.12)

where χ∞ and χR− are the characteristic functions of Γ∞ and R−, respectively. This leads to
the following jump matrices for Theorem 2.4

1− 2πif(z)gT(z) =





(
1 2i sin (πγ)|z|γe−2θ(z)

0 1

)
, z ∈ R−,

(
1 0

z−γe2θ(z) 1

)
, z ∈ Γ∞,

which match those in the Riemann–Hilbert Problem 2.2 (1 denotes the 2× 2 identity matrix).
Let Σ = Γ∞ ∪ R−, as a consequence of this, we can now write the Riemann–Hilbert Prob-

lem (2.2) for the matrix M in the following way

M+(z) = M−(z)
(
1− 2πif(z)gT(z)

)
, z ∈ Σ,

M = 1 +O
(

1

z

)
, z →∞.

It should also be noted that, due to our construction, we have fT(z)g(z) ≡ 0.
Let us consider the operator K̂ : L2(Σ) → L2(Σ) associated to the above Riemann–Hilbert

problem. Due to the decomposition of L2(Σ) = L2(R−∪Γ∞) = L2(R−)⊕L2(Γ∞) and ϕ = ϕ0⊕ϕ1

with ϕ0 ∈ L2(R−) and ϕ1 ∈ L2(Γ∞), we can write the operator K̂ in the form

(
K̂ϕ
)
(z) =

∫

Σ

fT(z)g(w)

z − w ϕ(w)dw

= −2i sin (πγ)

2πi

(∫

Γ∞

w−
γ
2 eθ(w)ϕ1(w)

z − w dw

)
|z| γ2 e−θ(z)χR−(z)

− 1

2πi

(∫

R−

|w| γ2 e−θ(w)ϕ0(w)

z − w dw

)
z−

γ
2 eθ(z)χΓ∞(z). (2.13)

Due to this fact, the operator K̂ can now be written in block form K̂ij with

K̂00 : L2(R−)→ L2(R−),

K̂01 : L2(Γ∞)→ L2(R−),

K̂10 : L2(R−)→ L2(Γ∞),

K̂11 : L2(Γ∞)→ L2(Γ∞).

In our case, due to the form of the vectors f and g in (2.11), (2.12), the diagonal blocks are null
operators: K̂00 = K̂11 = 0, while

K̂01 : L2(Γ∞)→ L2(R−),
(
K̂01ϕ1

)
(z) =

∫

Γ∞

K0,1(z, w)ϕ1(w)dw,
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K01(z, w) = −2i sin (πγ)

(2πi)

w−
γ
2 |z| γ2 eθ(w)−θ(z)

z − w ,

K̂10 : L2(R−)→ L2(Γ∞),
(
K̂10ϕ0

)
(z) =

∫

R−

K1,0(z, w)ϕ0(w)dw,

K10(z, w) = −K01(w, z)

2i sin(πγ)
= − 1

(2πi)

|w| γ2 z− γ2 eθ(z)−θ(w)

z − w .

Following the Definition 2.3 of the tau function, we can now compute it for the case when K̂
is given by this operator

τ = det
(

Id−K̂
)

= det

([
10 0
0 11

]
−
[

0 K̂01

K̂10 0

])
= det

([
10 K̂01

0 11

] [
10 −K̂01

−K̂10 11

])

= det

[
10 − K̂01K̂10 0

−K̂10 11

]
,

where 10 = IdL2(R−), 11 = IdL2(Γ∞). We thus see that the determinant of K̂ can be written as

the Fredholm determinant of the operator on L2(R−) given by K̂01K̂10 and we are thus left with
the equality

det (Id−K̂) = det
[

IdL2(R−)−K̂01K̂10

]
. (2.14)

We define F̂ := K̂01K̂10 : L2(R−)→ L2(R−). The kernel of this operator is is finally written as

(
F̂ϕ0

)
(z) :=

(
K̂01K̂10ϕ0

)
(z) =

∫

R−
F (z, w)ϕ0(w)dw, (2.15)

F (z, w) =

∫

Γ∞

K0,1(z, x)K1,0(x,w)dx

=
2i sin (πγ)

4π2
|zw| γ2 e−θ(w)−θ(z)

∫

Γ∞

x−γe2θ(x)

(z − x)(w − x)
dx,

where we recall that θ(x) = x2/4 + sx/2 so that the operator F̂ = F̂(γ, s) depends on the
parameters s and γ. We observe that det

(
Id−K̂

)
is non zero as long as the sup-norm of the

operator F̂ is less than one. The values of s which satisfy this condition correspond to a regular
solution of the Painlevé IV equation. We also observe that the kernel F (z, w) is real-valued (and
symmetric) and hence the tau function is real-valued.

2.3.3 Norm estimate for small s

For s negative and sufficiently large in absolute value, we can estimate the norm of the operator
F̂ = K̂01K̂10 and guarantee that the determinant is non-zero. Introducing the quantities

h(z) :=

∫

Γ∞

i
x−γe

x2

2
+sx

z − x dx, a(z) = |z| γ2 e−
z2

4
− s

2
z, c0 =

sin (πγ)

2π
, (2.16)

we can write the operator F̂ in the form

(
F̂ϕ0

)
(z) =

∫

R−
F (z, w)ϕ0(w)dw = c0a(z)

∫

R−
a(w)ϕ0(w)

h(z)− h(w)

w − z
dw

π
.
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Next, we introduce the Hilbert transform (Pφ)(z) = −
∫
R−

φ(w)
z−w

dw
π which is a bounded operator

from L2(R−) to itself with norm one: |||P||| = 1. Here and below, we denote by

|||A||| = sup
f∈L2(R−), f 6≡0

‖Af‖L2(R−)

‖f‖L2(R−)
.

Given an essentially bounded function f ∈ L∞(R−), we denote by Mf the corresponding mul-
tiplication operator and recall that |||Mf ||| = ‖f‖∞. This leads to

∥∥(F̂ϕ0

)
(z)
∥∥
L2 =

∥∥∥∥
∫

R−
F (z, w)ϕ0(w)dw

∥∥∥∥
L2

= |c0|‖(MahPMa −MaPMah)(ϕ0)‖L2

≤ |c0|
(
‖MahPMaϕ0‖L2 + ‖MaPMahϕ0‖L2

)

≤ |c0|‖ϕ0‖L2

(
|||MahPMa|||+ |||MaPMah|||

)
.

As a result of this procedure, we obtain the following estimate for the norm of F̂
∣∣∣∣∣∣F̂

∣∣∣∣∣∣ ≤ sin (πγ)

π
‖a‖2∞‖h‖∞.

A calculus exercise shows that the function a(z) in (2.16), satisfies ‖a‖∞ ≤ 1, for z ∈ R−,
γ ∈ (0, 1), s < 0. We now estimate the values of ‖h‖∞. By setting x = ε + it, t ∈ R in the
formula for h(z) in (2.16) and s < 0 and ε = max(0,−s) we have

|h(z)| ≤
∫

iR−s
|dx| |x|

−γeRe
(
x2

2
+sx
)

|z − x| (|z − x| ≥ −s)

≤ 1

|s|

∫

iR−s
|dx||x|−γeRe

(
x2

2
+sx
)
≤ 1

|s|

∫

R
dt|−s+ it|−γe−

t2

2
− s

2

2

≤ e−
s2

2

|s| |s|
−γ
∫

R
dte−

t2

2 =
e−

s2

2

|s|1+γ

√
2π.

The estimate for
∣∣∣∣∣∣F̂

∣∣∣∣∣∣ becomes

∣∣∣∣∣∣F̂
∣∣∣∣∣∣ ≤ sin (πγ)

π

e−
s2

2

|s|1+γ

√
2π. (2.17)

At this point, we need to see for which values of s < 0 the norm of F̂ is smaller than 1,
which guarantees that the determinant (2.14) is not zero and hence that our Riemann–Hilbert
Problem 2.2 admits a solution. From (2.17) we have (recall γ ∈ (0, 1))

∣∣∣∣∣∣F̂
∣∣∣∣∣∣ ≤ sin (πγ)

π

e−
s2

2

|s|1+γ

√
2π ≤





√
2√
π

e−
s2

2

s2
, s ∈ [−1, 0),

√
2√
π

e−
s2

2

|s| , s < −1,

and we can easily see that the norm F̂ is less than one for s < s0 where s0 ' −0.7701449782.
In summary, we have proven

Theorem 2.5. The Riemann–Hilbert Problem 2.2 admits a solution for s ∈ (−∞, s0), s0 '
−0.7701449782. In particular, the solution of the fourth Painlevé equation (2.3) for our choice
of monodromy data (2.9), (2.10) is pole-free within that range.
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It would be desirable to show that the solution of the Painlevé equation (2.3) for our choice
of monodromy data (2.9), (2.10) is pole-free on the whole real line. However, the numerical
analysis which will be performed in the following section, shows that there is a discrete (in
principle infinite) number of values of s for which the Fredholm determinant (2.14) vanishes and
hence the solution of (2.3) has poles.

2.4 Gaussian quadrature and numerics

The following is an exposition, for the benefit of the reader, of the main idea of numerical eva-
luation of Fredholm determinants based on Nystrom’s method, as explained by Bornemann [10].
The simple idea is to suitably “discretize” the integral operator using appropriate Gaussian
quadrature (see [40]).

More specifically, the type of quadrature formulæ that we will use are the so-called “Gauss–
Hermite” quadratures, which are defined in the following way

Definition 2.6. Considering an integral of the form

∫ ∞

−∞
f(x)e−Λx2dx,

the Gauss–Hermite quadrature is an approximation of the value of this integral and is defined
as

∫ ∞

−∞
f(x)e−Λx2dx '

m∑

i=1

f
(
x

(m)
i

)
w

(m)
i , (2.18)

where m is the number of points used in this approximation: the points
{
x

(m)
j

}m
j=1

are called

the nodes and the coefficients
{
w

(m)
j

}m
j=1

are called the weights of the quadrature rule. The

nodes x
(m)
j are the roots of the m-th Hermite polynomial Hm

(√
Λx
)

and the weights w
(m)
i are

given by

w
(m)
i =

2m−1m!
√
π

√
Λm2

(
Hm−1

(√
Λx

(m)
i

))2 .

We will have to adapt this definition so that it is suitable to be applied to our case.
In order to use this technique for the computation of F (x, y) in (2.15) we rewrite it as

F (x, y) = e
−x2−y2

4 H(x, y),

H(x, y) :=
sin (πγ)

2π2
|x| γ2 |y| γ2 e−

s
2

(x+y)

∫

R
dt

(it+ ε)−γe−
t2

2 eit(s+ε)

(x− ε− it)(y − ε− it)
e
ε2

2
+sε.

Then Nystrom’s method states that the Fredholm determinant is approximated by

det L2(R−)

[
IdL2(R−)−F̂

]
' det n×n

[
Idn−

[
H
(
x

(2n)
i , x

(2n)
j

)√
w

(2n)
i w

(2n)
j

]n
i,j=1

]
,

where the nodes x
(2n)
i and the weights w

(2n)
i are chosen as in (2.18) with Λ = 1

2 and where we are
selecting only half of the nodes, namely n out of 2n that lie on the negative real axis. Therefore,
the matrix H = [Hjk]

n
j,k=1 that we are interested in computing is given by

[
Hjk

]n
j,k=1

:=
[
H
(
x

(2n)
j , x

(2n)
k

)√
w

(2n)
j w

(2n)
k

]n
j,k=1

,
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where

Hjk =
e
ε2

2
+sε sin (πγ)

2π2

∣∣x(2n)
j x

(2n)
k

∣∣ γ2 e−
s
2

(
x
(2n)
j +x

(2n)
k

)

×
√
w

(2n)
j w

(2n)
k

∫

R
dt

e−
t2

2 (it+ ε)−γeit(s+ε)

(
x

(2n)
j − ε− it

)(
x

(2n)
k − ε− it

) .

In order to compute the above integral, we once again apply the Gauss–Hermite quadrature

∫

R
dt

e−
t2

2 (it+ ε)−γeit(s+ε)

(
x

(2n)
j − ε− it

)(
x

(2n)
k − ε− it

) =

2n∑

`=1

w
(2n)
`

(
ix

(2n)
` + ε

)−γ
eix

(2n)
` (s+ε)

(
x

(2n)
j − ε− ix

(2n)
`

)(
x

(2n)
k − ε− ix

(2n)
`

) .

Note that, in the above, we use all the 2n nodes because the integral is over the whole R. In
principle, we could use a different number of nodes for this last quadrature, but this is the way
the code was actually implemented for simplicity.

The matrix H = [Hjk]
n
j,k=1 can now be written as

H =
[
Hjk

]n
j,k=1

=
e
ε2

2
+sε

2π2
sin (πγ)A.AT,

where A is the n× 2n matrix given by

Aj` = |xj |
γ
2
√
wje

− s
2
xj

(ix` + ε)−
γ
2 ei

x`
2

(s+ε)

(xj − ε− ix`)

√
w`,

and 1 ≤ j ≤ n and 1 ≤ ` ≤ 2n.
The result of this approximation is expressed in terms of the parameters s ∈ R, γ ∈ [0, 1)

and n ∈ N, which is the number of nodes in the Gaussian quadrature. Therefore, the final
approximation that we have for τ is

τ(s, γ, n) = det


1n×n −

e
ε2

2
+sε

2π2
sin (πγ)A.AT


.

We take ε = max [0,−s] so as to optimize the distance from the saddle-point of the function
θ(x) = x2/4 + sx/2 while respecting the condition that the relative interior of the contours R−
and Γ∞ do not intersect. It is worth pointing out that the value of the Fredholm determi-
nant (numerical considerations aside) is independent of ε thanks to Cauchy’s theorem. Various
numerical results are pictures in Figs. 6, 7, 8.

3 Orthogonal polynomials and their Riemann–Hilbert problem

The orthogonality relations for the polynomials pn can be rewritten

∫

C
pn(λ)λ̄jd+`e−NW (λ)dA(λ) = 0, j = 0, . . . , k − 1,

n = kd+ `, 0 ≤ ` ≤ d− 1.

As a consequence, the n-th monic orthogonal polynomial has a discrete symmetry

pn
(
e

2πi
d λ
)

= e
2πin
d pn(λ) ⇒ pn(λ) = λ`q

(`)
k

(
λd
)
.
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(a) γ = 0.1.
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(b) γ = 0.5.

Figure 6. τ -function with n = 30 points.
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(a) γ = 0.1.
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(b) γ = 0.5.

Figure 7. τ -function with n = 80 points.

Using this definition, the initial sequence of orthogonal polynomials {pn(λ)}∞n=0 can be split
in d sub-sequences, each of which labelled by the remainder ` ≡ n mod d. Through a change
of coordinate λd = u these sequences of monic orthogonal polynomials are seen to satisfy the
orthogonality relations

∫

C
q

(`)
k (u)ūj |u|−2γe−N(|u|2−tu−tū)dA(u) = 0, j = 0, . . . , k − 1, (3.1)

γ :=
d− `− 1

d
∈ [0, 1).

With the further change of coordinate u = −t(z − 1), z ∈ C, we introduce the transformed
monic polynomial

πk(z) :=
(−1)k

tk
q

(`)
k (−t(z − 1)), (3.2)

Next we transform the orthogonality on the plane to the orthogonality on a contour as in [4]
and [3]

Theorem 3.1 ([4, Theorem 2.1]). For any polynomial q(u) the following identity is satisfied

∫

C
q(u)ūj |u|−2γe−N(|u|2−tu−tū)dA(u) =

πΓ(j − γ + 1)

N j−γ+1

1

2πi

∮

Σ̃
q(u)

eNtu

(u− t)j+1

(
1− t

u

)γ
du,

where γ ∈ (0, 1), j is an arbitrary non-negative integer, and Σ̃ is a positively oriented simple
closed loop enclosing u = 0 and u = t.
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Figure 8. Arctan of the τ -function for γ = 0.1 and with n = 150 with an extended range of values for s

being considered.

0 1

Σ

1

Figure 9. The contour Σ.

Consider now q
(`)
k (u) to be the monic polynomial of degree k with the orthogonality rela-

tions (3.1). Then according to Theorem 3.1 the transformed monic polynomial πk(z) of degree k
given by (3.2), is characterised by the non-hermitian orthogonality relations

∮

Σ
πk(z)z

j e−Nt
2z

zk

(
z

z − 1

)γ
dz = 0, j = 0, 1, . . . , k − 1, (3.3)

where Σ is a simple, positively oriented contour encircling z = 0 and z = 1, as it can be seen in
Fig. 9, and the function

(
z
z−1

)γ
is analytic in C \ [0, 1] and tends to one for |z| → ∞.

3.1 The Riemann–Hilbert problem

We now consider the polynomials πk(z) in the limit k →∞ and N →∞ in such a way that, for
n = kd+ `, one has

T =
n− `
N

> 0.

We set the notation

V (z) =
z

z0
+ log z, z0 = z0(t,N) =

k

N

1

t2
, z0 =

t2c
t2
, t2c =

T

d
,

wk(z) := e−kV (z)

(
z

z − 1

)γ
.

The orthogonality relations (3.3) now read
∮

Σ
πk(z)z

jwk(z)dz = 0, j = 0, 1, . . . , k − 1.
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When the limit k →∞ is taken, three different regimes arise

• pre-critical case: 0 < t < tc, leading to z0 > 1,

• critical case: t = tc, leading to z0 = 1,

• post-critical case: t > tc, leading to z0 < 1.

The pre- and post-critical case were already analyzed in [4] and we are now interested in analyzing
the critical case. We begin by defining the so-called complex moments as

νj :=

∮

Σ
zjwk(z)dz,

where the dependency on k is omitted in order to simplify notation, and use this to introduce
the auxiliary polynomial

Πk−1(z) :=
1

det[νi+j ]0≤i,j≤k−1
det




ν0 ν1 . . . νk−1

ν1 ν2 . . . νk
...

...
νk−2 . . . ν2k−3

1 z . . . zk−1



.

It can be seen that this polynomial is not necessarily monic and its degree may be less than k−1.
In order to guarantee the existence of such a polynomial, the determinant in the denominator
must not vanish.

Proposition 3.2 ([4, Proposition 2.2]). The determinant det[νi+j ]0≤i,j≤k−1 does not vanish and
is given by

det[νi+j ]0≤i,j≤k−1 = (−1)k(k−1)/2(2i)k



k−1∏

j=0

t2j+2γ−2 N j−γ+1

Γ(j − γ + 1)




× det

[∫∫

C
ziz̄j |z − 1|−2γe−Nt

2|z|2dA(z)

]
.

We can now reformulate the condition of orthogonality for the polynomials πk(z) as a Rie-
mann–Hilbert boundary value problem. To do this, we define the matrix

Y (z) =




πk(z)
1

2πi

∫

Σ

πk(z
′)

z′ − z wk(z
′)dz′

−2πiΠk−1(z) −
∫

Σ

Πk−1(z′)

z′ − z wk(z
′)dz′


 ,

which is the unique solution of following Riemann–Hilbert problem for orthogonal polyno-
mials [22].

Riemann–Hilbert Problem 3.3. The matrix Y (z) is analytic in C\Σ, where Σ is the oriented
curve in Fig. 10. The limits Y±(z) exist and are continuous along Σ. Moreover

1. Jump on Σ: The continuous boundary values Y±(z) are such that

Y+(z) = Y−(z)

(
1 wk(z)
0 1

)
, z ∈ Σ.

This jump can be seen in Fig. 10.

2. Behaviour at infinity: Y (z) has the following behaviour as z →∞

Y (z) =

(
1 +O

(
1

z

))
zkσ3 .
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0 1

Σ

(
1 e−kV(z)

(
z
z−1

)γ

0 1

)

1

Figure 10. Jump in the Y (z) Riemann–Hilbert problem.

4 Riemann–Hilbert analysis

4.1 Transforming the Riemann–Hilbert problem

We will now begin by doing a simple transformation through the first undressing step and, after
that, use the steepest descent method of Deift–Zhou [16] to proceed with further transformations
and simplifications of our problem.

4.1.1 First undressing step

The first undressing step consists in a simplification of the Riemann–Hilbert Problem 3.3 that
is done by defining a new matrix-valued function Ỹ (z) as

Ỹ (z) := Y (z)

(
1− 1

z

)− γ
2
σ3

, z ∈ \(Σ ∪ [0, 1]).

Clearly the matrix Ỹ now satisfies a new Riemann–Hilbert problem whose simple formulation
we leave to the reader. From the solution of Riemann–Hilbert problem we can recover the
orthogonal polynomials through

πk(z) = Ỹ11(z)

(
1− 1

z

) γ
2

.

4.1.2 Transformation Ỹ → R

We now define the so-called g-function; this is a scalar function that is analytic off a contour Γr
(see Fig. 13), homotopically equivalent to Σ in C \ [0, 1] and suitably chosen. Following [4] let

g(z) =





z

z0
+ `, z ∈ Int(Γr),

log z, z ∈ Ext(Γr),
(4.1)

` := log r − r

z0
, r > 0,

where the logarithm is the principal determination and

Γr =
{
z ∈ C : Re(ϕ(z; r)) = 0, |z| ≤ z0

}
, 0 < r ≤ z0, (4.2)
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0 1

Σ

e−γπiσ3

(
e−k(g+−g−) ek

(
g++g−−`−V(z)

)

0 ek(g+−g−)

)

1

Figure 11. Jumps for the Riemann–Hilbert problem of the matrix R(z).

and

ϕ(z; r) =





log z − z

z0
− log r +

r

z0
, z ∈ Int(Γr),

z

z0
− log z + log r − r

z0
, z ∈ Ext(Γr),

or equivalently,

ϕ(z; r) = log r − r

z0
+ V − 2g(z). (4.3)

Note that g is such that

g+(z) + g−(z)− `− V (z) ≡ 0, ∀ z ∈ Γr. (4.4)

In order to establish the transformation Ỹ → R we will now deform the contour Σ to the
contour Γr. The choice of r will be explained later. For the time being we define the matrix R
as

R(z) = e−k
`
2
σ3 Ỹ (z)e−kg(z)σ3ek

`
2
σ3 , z ∈ C \ (Γr ∪ [0, 1]).

The matrix R(z) solves the following Riemann–Hilbert problem

Riemann–Hilbert Problem 4.1. The matrix R(z) is analytic in C \ (Γr ∪ [0, 1]) and admits
non-tangential boundary values that satisfy:

1. Jumps on Γr and [0, 1] (see Fig. 11):

R+(z) = R−(z)





(
e−k(g+−g−) ek(g++g−−`−V (z))

0 ek(g+−g−)

)
, z ∈ Γ,

e−γπiσ3 , z ∈ (0, 1).

(4.5)

2. Large z boundary behaviour:

R(z) =

(
1 +O

(
1

z

))
, z →∞.

3. Endpoint behaviour:

R(z) = O(1)z
γ
2
σ3 , z → 0,

R(z) = O(1)(z − 1)−
γ
2
σ3 , z → 1.
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e−γπiσ3
(

1 0
ek ϕ(z) 1

)(
0 1
−1 0

)(
1 0

ek ϕ(z) 1

)

Γe

Γr=1

Γi

Ω∞

Ω2

Ω1

Ω0
0 1 z0

1

Figure 12. Jumps in the T (z) Riemann–Hilbert problem.

The orhtogonal polynomials can be recovered from this Riemann–Hilbert problem through

πk(z) = R11(z)ekg(z)
(

1− 1

z

) γ
2

. (4.6)

4.1.3 Transformation R → T

The jump matrix of R(z) on z ∈ Γ given by (4.5) can be factorized in the following way

(
e−k(g+−g−) ek(g++g−−`−V )

0 ek(g+−g−)

)

=

(
1 0

ek(`+V−2g−) 1

)(
0 ek(g++g−−`−V )

−ek(g++g−−`−V ) 0

)(
1 0

ek(`+V−2g+) 1

)

=

(
1 0

ekϕ(z) 1

)(
0 1
−1 0

)(
1 0

ekϕ(z) 1

)
,

where, in order to write the second line, we have used the definition of the ϕ(z) function defined
in (4.3) and the function g(z) defined in (4.1) as well as the relation (4.4).

We will now consider three different loops Γi, Γr and Γe, so that the space is split into four
different domains Ω0, Ω1, Ω2 and Ω∞, as it can be seen in Fig. 12. Γi is in the interior of Γr
and Γe is in the exterior. Using this, we will now define a new matrix-valued function T (z) in
the following way

T (z) =





R(z), z ∈ Ω0 ∪ Ω∞,

R(z)

(
1 0

−ekϕ(z) 1

)
, z ∈ Ω1,

R(z)

(
1 0

ekϕ(z) 1

)
, z ∈ Ω2.

(4.7)

This matrix T (z) satisfies the following Riemann–Hilbert problem

Riemann–Hilbert Problem 4.2. The matrix T (z) is analytic in C \ (Γi∪Γr ∪Γe∪ [0, 1]) and
admits non-tangential boundary values. Moreover
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0 z0 = 1

Γr=1

Γr<1

1

Figure 13. The contours Γr for z0 = 1 and different values of 0 < r ≤ 1.

1. On ΣT = Γi ∪ Γr ∪ Γe ∪ [0, 1] the boundary values satisfy

T+(z) = T−(z)vT , z ∈ ΣT ,

where

vT =





(
1 0

ekϕ(z) 1

)
, z ∈ Γi,

(
0 1

−1 0

)
, z ∈ Γr,

(
1 0

ekϕ(z) 1

)
, z ∈ Γe,

e−γπiσ3 , z ∈ (0, 1).

(4.8)

2. Large z boundary behaviour:

T (z) =

(
1 +O

(
1

z

))
, z →∞.

3. Endpoint behaviour:

T (z) = O(1)z
γ
2
σ3 , z → 0,

T (z) = O(1)(z − 1)−
γ
2
σ3 , z → 1.

4.2 Choice of contour

Since our analysis will be performed in the critical case when z0 → 1, the choice of the contour Γr
with 0 < r ≤ z0 = 1 is forced (Fig. 13).

The corresponding contours Γi and Γe have to be chosen in such a way that the jump
matrix vT defined in (4.8) converges (as k → ∞ and hence also as n → ∞) exponentially
fast to a constant. We make the choice of the deformed contours Γi and Γe as in Fig. 14. This is
the correct choice because the sign of Reϕ(z) on the contours Γi and Γe is negative (see Fig. 15
where the region Reϕ(z) < 0 is plotted).

Therefore, the jump matrices on Γi and Γe converge exponentially fast to the identity matrix
in any Lp norm except p =∞ because ϕ(z = 1) = 0.

With this choice of contours we arrive to the following theorem (whose proof is a simple
inspection and hence omitted)
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e−γπiσ3
(

1 0
ek ϕ(z) 1

)(
0 1
−1 0

)(
1 0

ek ϕ(z) 1

)

Γe

Γr=1

Γi

Ω∞

Ω2

Ω1

Ω0
0 1 = z0

1

Figure 14. Contours in the critical case z0 = 1.

z0 = 1
0

Γi

Γr=1

Γe

Ω0Ω1Ω2

Ω∞

1

Figure 15. Contours Γ chosen for the critical case z0 = r = 1. The orange region corresponds to the

part of the complex plane where Re (ϕ(z)) < 0 and the green contour is the region where Re (ϕ(z)) > 0.

Theorem 4.3. The jump matrix vT converges exponentially fast as k → ∞ to the constant
jump matrix

v∞ =





(
1 0

0 1

)
, z ∈ (Γe ∪ Γi) \ D,

(
0 1

−1 0

)
, z ∈ Γ1,

e−γπiσ3 , z ∈ (0, 1),

(4.9)

where D is a small disk surrounding the point z = 1.

4.3 Approximate solutions to T (z)

We are now ready to approximate the matrix T (z) with two solutions, one outside a neigh-
bourhood of z = 1 and one inside. We call exterior parametrix the Riemann–Hilbert problem
solved by the matrix M(z) with jump v∞(z). We call local parametrix the solution P (z) of
the Riemann–Hilbert problem obtained within a neighbourhood of z = 1. These two solu-
tions are approximations of the exact solution, T (z), in the limit k → ∞. In order to obtain
the asymptotics of the orthogonal polynomials πk(z), we need sub-leading corrections to the
matrices N(z) and P (z) and this will be accomplished by evaluating perturbatively the error
matrix E(z), which is defined as

E(z) =

{
T (z)N(z)−1, z ∈ C \ D,
T (z)P (z)−1, z ∈ D.
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We will first construct the matrix N(z) and then the matrix P (z).

4.3.1 Exterior parametrix

The exterior parametrix, N(z), is the piecewise analytic 2× 2 matrix

N(z) =

(
1− 1

z

) γ
2
σ3 ( 0 1
−1 0

)χL
,

where χL is the characteristic function that is one on the left of the contour Γ̂r=1 and is zero
otherwise. By design, it satisfies N(∞) = 1 and

N+(z) = N−(z)v∞, z ∈ Γ1 ∪ [0, 1],

where v∞ has been defined in (4.9).

4.3.2 Local parametrix and double scaling limit

The local parametrix near the point z = 1 is the solution, P (z), of a matrix Riemann–Hilbert
problem that has the same jumps as T (z) and that matches N(z) on the boundary of a disc
centered at z = 1.

Riemann–Hilbert Problem 4.4. The matrix P (z) is analytic in D \ ΣP , ΣP = Γe ∪ Γr=1 ∪
Γi ∪ [0, 1] and admits non-tangential boundary values. Moreover

1. Jumps on ΣP :

P+(z) = P−(z)vP (z), z ∈ ΣP ∩ D,

where

vP (z) =





(
1 0

ekϕ(z) 1

)
, z ∈ Γi ∩ D,

(
0 1

−1 0

)
, z ∈ Γr ∩ D,

(
1 0

ekϕ(z) 1

)
, z ∈ Γe ∩ D,

e−γπiσ3 , z ∈ (0, 1) ∩ D,

which are the jumps that can be seen in Fig. 16.

2. Behaviour at the boundary ∂D:

P (z) = N(z)(1 + o(1)), as k →∞ and z ∈ ∂D. (4.10)

4.3.3 The double scaling limit

Let φ(z; z0) be defined by

φ(z; z0) =

(
z − 1

z0
− log z

)
.

We note that φ(z; z0) is the analytic continuation of ϕ(z; z0) (4.3) (setting r = 1) from the
exterior of Γ = Γ1. For z0 ∼ 1 we see that it has a single critical point in the neighbourhood of
z = 1; then
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e−γπiσ3

(
1 0

ek ϕ(z) 1

)

(
1 0

ek ϕ(z) 1

)

(
0 1
−1 0

)

(
0 1
−1 0

)

D

Ω∞Ω0

Ω1

Ω2

Ω2
Γe

Γr=1

Γi

0
1

1

Figure 16. Jumps of the Riemann–Hilbert problem for the matrix P (z).

Proposition 4.5. There exists a jointly analytic function ζ(z; z0) which is univalent in a fixed
neighbourhood of z = 1, with z0 in a neighbourhood of z0 = 1, and an analytic function A(z0)
near z0 = 1 such that

φ(z; z0) =
1

2
ζ2(z; z0) +A(z0)ζ(z; z0), ζ(1; z0) ≡ 0, A(1) = 0. (4.11)

Proof. The function φ(z; z0) has a critical point at z = z0 with critical value φcr = z0−1
z0
− ln z0.

Since we are interested in the values z0 ' 1 we observe that φcr = −1
2(z0 − 1)2(1 +O(z0 − 1)).

Hence we can write

φcr = −A(z0)2

2

with A(z0) an analytic series near z0 = 1. Moreover

φ(z; z0)− φcr =
1

2z2
0

(z − z0)2(1 +O(z − z0)).

Define

ζ(z; z0)√
2

:=

√
φ(z; z0) +

A2(z0)

2
− A(z0)√

2
.

This is a conformal map in a neighbourhood of z = z0 of uniform radius of convergence for
z0 ' 1; moreover, from φ(1; z0) = 0 follows that ζ(1; z0) ≡ 0. The equation (4.11) is trivially
satisfied. �

Remark 4.6. A simple computation yields the following first few terms for the expansion
(δ = z0 − 1)

ζ =

(
1 +

δ

3
+
δ2

4

)
(z − 1)− (z − 1)2

3

(
1− δ

4
+

11δ2

60

)
+O

(
(z − 1)3, δ3

)
,

A(δ) = −δ +
2

3
δ3 +O

(
δ3
)
.

From this it follows

√
kζ(z; z0) =

(
z − 1− (z − 1)2

3

)√
k +O(1),

which manifests the fact that
√
kζ homothetically expands the image of the disk D.
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Definition 4.7 (double-scaling limit). The double-scaling limit is defined by taking k →∞ and
A→ 0 (or equivalently z0 → 1) so that

lim
k→∞, z0→1

√
kA = S

with S in compact subsets of the complex plane. Equivalently, it can be defined as

A ∼ S√
k

or z0 ∼ 1− S√
k
. (4.12)

4.3.4 Model problem and the Painlevé IV equation

We will now recall the Riemann–Hilbert Problem 2.1 for the function Ψ(λ; s) associated to the
Painlevé IV equation. For convenience, we replace the contour Γ1 with Γ̂i and the contour Γ∞
with Γ̂e in order to be consistent with the notation we are using in this section.

Given that Θ∞ = Θ0 = γ
2 , the equations (2.2) and (2.7) reduce to a somewhat simpler form

U ′ = U(Y − s), Z =
1

2

(
sY + γ − Y ′ − Y 2

)
, H =

(
s+

γ

Y
− Y

)
Z − Z2

Y
, (4.13)

where Y = Y (s) solves the Painlevé IV equation (2.3) in the form

Y ′′ =
1

2

(Y ′)2

Y
+

3

2
Y 3 − 2sY 2 +

(
1 +

s2

2
− γ
)
Y − γ2

2Y
.

For our purposes, we need to modify the Riemann–Hilbert problem for Ψ(λ) to be able to
match the Riemann–Hilbert problem for P (z). Let us introduce the contour Γ̂r=1 on the λ
plane, which is a contour between Γ̂i and Γ̂e and passing through λ = 0. Then, let us define

Ψ̂(λ) = Ψ(λ)eθσ3
(

0 1
−1 0

)χL
,

where θ is given by (2.6) and χL is the characteristic function that is one on the left of the con-
tour Γ̂r=1 and is zero otherwise. It is now straightforward to check that the Riemann–Hilbert
problem for Ψ̂(λ) is given by

Riemann–Hilbert Problem 4.8. The matrix Ψ̂(λ)is analytic in C\Σ
Ψ̂

, Σ
Ψ̂

= Γ̂e∪Γ̂i∪Γ̂r=1∪
R− and admits non-tangential boundary values. Moreover

1. Jumps on Σ
Ψ̂

:

Ψ̂+(λ) = Ψ̂−(λ)v
Ψ̂

(λ), ζ ∈ Σ
Ψ̂
,

where

v
Ψ̂

(λ) =





(
1 0

e−2θ(λ) 1

)
, z ∈ Γ̂i,

(
0 1

−1 0

)
, z ∈ Γ̂r=1,

(
1 0

e2θ(λ) 1

)
, z ∈ Γ̂e,

e−γπiσ3 , z ∈ R−.

(4.14)



28 M. Bertola, J.G. Elias Rebelo and T. Grava

2. Behaviour for λ→∞

Ψ̂(λ) =

(
1 +

Ψ1

λ
+

Ψ2

λ2
+O

(
λ−3

))
λ
γ
2
σ3

(
0 1
−1 0

)χL
. (4.15)

Comparing the jump matrices for P (z) and Ψ̂(λ), we are now ready to obtain the local
parametrix P (z) defined by the Riemann–Hilbert Problem 4.4, which is given by

P (z) = N(z)

(
0 −1
1 0

)χL (√
kζ(z)

)− γ
2
σ3Ψ̂

(√
kζ(z);

√
kA
)
, (4.16)

where ζ(z) = ζ(z; z0) as defined in (4.5). We observe that the product of the first three terms
of (4.16) is holomorphic in the neighbourhood of z = 1 and therefore does not change the
Riemann–Hilbert problem. Furthermore, the first three terms have been inserted in order to
have the behaviour (4.10) for z ∈ ∂D in the limit k →∞ and A→ 0 in such a way that

lim
k→∞

√
kA = S.

In the analysis above and below, we assume that S belongs to compact sets where the solution
of the Painlevé IV equation does not have poles. Using (4.15), (2.4) and (2.5), we obtain in the
limit k →∞

P (z) = N(z)

(
0 −1
1 0

)χL (√
kζ(z)

)− γ
2
σ3

×


1 +

1√
kζ


H

Z

U
U −H


+O

(
k−1

)

(√kζ

) γ
2
σ3

(
0 1
−1 0

)χL

= N(z)


1 +

(
0 −1
1 0

)χL 1√
kζ


 H

(√
kζ
)−γ Z

U(√
kζ
)γ
U −H



(

0 1
−1 0

)χL
+O

(
k−1+γ/2

)



= N(z)
(
1 +O

(
k
γ−1
2
))
. (4.17)

From the above expansion we can see that the subleading terms are not uniformly small with
respect to γ as k → ∞ since γ ∈ [0, 1). Note that the source of the non-uniformity in the
error analysis is the element (2, 1) in (4.17). For this reason we need to introduce an improved
parametrix in the next section.

4.3.5 Improved parametrix

To construct an improved parametrix we define

Ñ(z) =

(
1 +

Bσ−
z − 1

)
N(z), σ− :=

[
0 0
1 0

]
, σ+ :=

[
0 1
0 0

]
, (4.18)

where B is to be determined. In the same way we define

P̃ (z) = Ñ(z)

(
0 −1
1 0

)χL (√
kζ(z)

)− γ
2
σ3

(
1− Uσ−√

kζ(z)

)
Ψ̂
(√
kζ(z);

√
kA
)
, (4.19)

where U is the (2, 1) entry of the subleading term of the expansion of Ψ̂(λ) for λ→∞. Now we
have in the limit k →∞

P̃ (z) = Ñ(z)


1 +

[
0 −1
1 0

]χL 1√
kζ


H (

√
kζ)−γ

Z

U
0 −H



[

0 1
−1 0

]χL
+O

(
k−1+γ/2

)



= Ñ(z)
(
1 +O

(
k−

1
2
))
.
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The improved parametrics Ñ(z) and P̃ (z) have the same jump discontinuities as before, but P̃ (z)
might have poles at z = 1. The constant B in (4.18) is then determined by the requirement
that P̃ (z) is bounded at z = 1. This gives the constant B as

B = Uk
γ−1
2 .

We are now ready to compute the error matrix E(z).

4.3.6 Error matrix

The error matrix E(z) is defined as

E(z) =

{
T (z)Ñ(z)−1, z ∈ C \ D,
T (z)P̃ (z)−1, z ∈ D,

(4.20)

where the boundary of D is oriented clockwise. The matrix has also jumps on Γ̂i ∪ Γ̂e \D which
are exponentially close to the identity matrix and can be ignored for the purposes of the analysis.
Then, the matrix E(z) satisfies the Riemann–Hilbert problem

E+(z) = E−(z)vE(z), z ∈ ∂D, vE(z) = Ñ(z)P̃−1(z).

In the double scaling limit k → ∞, after using (4.14), (4.15), (2.4), (2.5) and the last equation
in (4.10), the jump matrix vE(z) takes the form

vE(z) =

(
1 +

Uk
γ−1
2

z − 1
σ−

)(
z − 1√
kzζ

) γ
2
σ3

×




1−


H

Z

U
0 −H




√
kζ

+



H2 + sH − Z

2

HZY +HY + ZY 2

UY

sU − UY H2 − sH + Z

2




kζ2
+O

(
k−

3
2
)




×
(
z − 1√
kzζ

)− γ
2
σ3
(

1− Uk
γ−1
2

z − 1
σ−

)
= 1 +

v
(1)
E√
k

+
v

(2)
E

k
1
2

+ γ
2

+
v

(3)
E

k1− γ
2

+O
(
k−1

)
,

where the expansion is for z ∈ ∂D (while vE is exponentially close to the identity on ΓE \ D),
and

v
(1)
E = −H

ζ
σ3, v

(2)
E = −

(
z − 1

zζ

)γ ( Z

Uζ

)
σ+,

v
(3)
E =

((
z − 1

zζ

)−γ (s− Y )U

ζ2
− 2

HU

(z − 1)ζ

)
σ−,

where σ+ = ( 0 1
0 0 ). By the standard theory of small norm Riemann–Hilbert problems (see for

example [17, Chapter 7]), one has a similar expansion for E(z), namely

E(z) = 1 +
E(1)

√
k

+
E(2)

k
1
2

+ γ
2

+
E(3)

k1− γ
2

+O
(
k−1

)
,



30 M. Bertola, J.G. Elias Rebelo and T. Grava

so that

E
(j)
+ (z) = E

(j)
− (z) + v

(j)
E (z), z ∈ ∂D, j = 1, 2, 3.

By solving the corresponding Riemann–Hilbert problem, we obtain, using the Plemelj–Sokhtski
formula

E(j)(z) =
1

2πi

∫

∂D

v
(i)
E (ξ)

ξ − z dξ, j = 1, 2, 3,

which gives

E(1)(z) = −Resξ=1v
(1)
E (ξ)

z − 1
=

Hσ3

z − 1
, z ∈ C \ D,

E(2)(z) = −Resξ=1v
(2)
E (ξ)

z − 1
=

(Z/U)σ+

z − 1
, z ∈ C \ D,

E(3)(z) = −Resξ=1v
(3)
E (ξ)

(z − 1)
− Resξ=1(ξ − 1)v

(2)
E (ξ)

(z − 1)2

=

(
2

3

γ(2H + γ − s)γ +H + γ − s
z − 1

+
U(2H + Y − s)

z − 1

)
σ−, z ∈ C \ D, (4.21)

and

E(1)(z) = v
(1)
E −

Resξ=1v
(1)
E (ξ)

z − 1
= v

(1)
E +

Hσ3

z − 1
, z ∈ D,

E(2)(z) = v
(2)
E −

Resξ=1v
(2)
E (ξ)

z − 1
= v

(2)
E +

(Z/U)σ+

z − 1
, z ∈ D, (4.22)

E(3)(z) = v
(3)
E +

(
2

3

γ(2H + γ − s)γ +H + γ − s
z − 1

+
U(2H + Y − s)

z − 1

)
σ−, z ∈ D.

4.4 Asymptotics for the polynomials πk(z) and proof of Theorems 1.2 and 1.3

We are now ready to determine the asymptotic expansions for the orthogonal polynomials

πk(z) = ekg(z)
(

1− 1

z

) γ
2

[U(z)]11.

Using (4.6), (4.7) and (4.20) we have

πk(z) = ekg(z)
(

1− 1

z

) γ
2





[
E(z)Ñ(z)

]
11
, z ∈ (Ω∞ ∪ Ω0) \ D,[

E(z)Ñ(z)

(
1 0

ekϕ(z) 1

)]

11

, z ∈ Ω1 \ D,
[
E(z)Ñ(z)

(
1 0

−ekϕ(z) 1

)]

11

, z ∈ Ω2 \ D,
[
E(z)P̃ (z)

]
11
, z ∈ (Ω0 ∪ Ω∞) ∩ D,[

E(z)P̃ (z)

(
1 0

ekϕ(z) 1

)]

11

, z ∈ Ω1 ∩ D,
[
E(z)P̃ (z)

(
1 0

−ekϕ(z) 1

)]

11

, z ∈ Ω2 ∩ D.
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We want to analyze each distinct region. Using (4.21), (4.22), (4.19) and (4.18) we obtain the
following expressions:

The region Ω∞ \ D

πk(z) = ekg(z)
(

1− 1

z

)γ (
1 +

H√
k(z − 1)

+O
(

1

k

))

= zk
(

1− 1

z

)γ (
1 +

H√
k(z − 1)

+O
(

1

k

))
, (4.23)

with H defined in (4.13).

The region Ω0 \ D

πk(z) = ekg(z)

(
− Z

U(z − 1)k
1
2

+γ
+O

(
1

k

))
,

with Z and U defined in (4.13).

The region Ω1 \ D

πk(z) = ekg(z)
(
z − 1

z

)γ

×
(

ekϕ(z)

(
1 +

H√
k(z − 1)

)
− Z

U(z − 1)k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

))
, (4.24)

with H, U and Z defined in (4.13). In a similar way we can obtain the expansion in the
region Ω2 \ D.

The region Ω2 \ D

πk(z) = ekg(z)
(
z − 1

z

)γ (
1 +

H√
k(z − 1)

− Zekϕ(z)

U(z − 1)k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

))
. (4.25)

The region D. In the region (Ω0 ∪ Ω∞) ∩ D we have

πk(z) = ekg(z)
(
z − 1

z

)γ (Ψ̂11

(√
kζ(z);

√
kA
)

k
γ
4 ζ(z)

γ
2

+O
(

1

k
1
2

+ γ
4

))
,

where Ψ̂11 is the 11 entry of the Painlevé isomonodromic problem (4.8).

In the region Ω1 ∩ D and Ω2 ∩ D we have

πk(z) = ekg(z)
(
z − 1

z

)γ

×
(

Ψ̂11

(√
kζ(z);

√
kA
)
± ekϕ(z)Ψ̂12

(√
kζ(z);

√
kA
)

k
γ
4 ζ(z)

γ
2

+O
(

1

k
1
2

+ γ
4

))
,

where ± refers to the region Ω1 and Ω2, respectively, and Ψ̂12 is the 12 entry of the solution
Painlevé isomonodromic problem (4.8). Making the change of variables z = 1− λd

tc
, the proof of

Theorem 1.3 follows in a straightforward way from the above expansions. With these expansions,
we are able to locate the zeros of the orthogonal polynomials.
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Figure 17. Zeros of the polynomials πk(z) for k = 40, 60, 70. The values of the parameters are z0 = 1

and t = 2, d = 3 and ` = 0. The plot of the support of the limiting measure (Szegö curve) of the zeros

of the orthogonal polynomials πk(z) is in red.

Proposition 4.9. The support of the counting measure of the zeros of the polynomials πk(z)
outside an arbitrary small disk D surrounding the point z = 1 tends uniformly to the curve Γr=1

defined in (4.2) for z0 = 1. The zeros are within a distance o(1/k) from the curve defined by

log |z| − |z − 1|
|z0|

= −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
z

z − 1

∣∣∣∣
γ ∣∣∣∣

Z(S)

(z − 1)U(S)

∣∣∣∣
)
, (4.26)

where we recall from (4.12) that z0 =
√
k√

k+S and that the function Z = Z(S) and U = U(S)

are related to the Painlevé IV equation via (4.13). The curves in (4.26) approach Γr=1 at the
rate O(log k/k) and lie in Int(Γr=1). The normalized counting measure of the zeros of πk(z)
converges to the probability measure ν defined in (1.9).

Proof. Observing the asymptotic expansion (4.23) of πk(z) in Ω∞ \ D, it is clear that πk(z)
does not have any zeros in that region, since z = 0 and z = 1 do not belong to Ω∞ \ D. The
same reasoning applies to the region Ω0 \ D, where there are no zeros of πk(z) for k sufficiently
large.

From the relations (4.24) and (4.25), one has that in Ω1 ∪ Ω2 using the explicit expression
of g(z) defined in (4.1)

πk(z) = zk
(
z − 1

z

)γ (
1 +

H√
k(z − 1)

− e±kϕ(z)Z

U(z − 1)k
1+γ
2

(
z − 1

z

)−γ
+O

(
1

k

))
,

where ± refers to Ω2 and Ω1, respectively. The zeros of πk(z) may only lie asymptotically where
the expression

1 +
H√

k(z − 1)
=

e±kϕ(z)Z

U(z − 1)k
1+γ
2

(
z − 1

z

)−γ
, z ∈ Ω1 ∪ Ω2.

Since Ω2 ∪ Ω1 ⊂ {Re(ϕ) ≤ 0}, it follows that the zeros of πk(z) may lie only in the region Ω1

and such that Reϕ(z) = O(log k/k) (where z0 is the value given by the double scaling (4.12)).
Taking the logarithm of the modulus of the above equality, we obtain

Reϕ(z) = −1 + γ

2

log k

k
+

1

k
log

(∣∣∣∣
z

z − 1

∣∣∣∣
γ ∣∣∣∣

Z(S)

(z − 1)U(S)

∣∣∣∣
)

+
1

k
3
2

Re

(
H(S)

z − 1

)
+O

(
1

k2

)
.

Namely, the zeros of the polynomials πk(z) lie on the curve given by (4.26) with an error of
order O

(
1/k2

)
. Such curves converge to the curve Γr=1 defined in (4.2) with z0 = 1 at a rate

O(log k/k). �



Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane 33

The proof of Proposition 1.4 follows immediately from the proof of Proposition 4.9. The rest
of the proof of Theorem 1.2 follows the steps obtained in [4] and for this reason we omit it.
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