EINE BEMERKUNG ÜBER HOMOGENE MENGEN IN ENDLICHEN GRUPPEN

Adalbert KERBER

G. Kreweras betrachtete in seinem Vortrag homogene Mengen, die er wie folgt definierte. Ist (M,\cdot) eine Menge mit innerer Verknüpfung, $m\in M$, dann sei

$$d(m) := |\{(x, y) \in t^2 \mid x.y = m\}|.$$

Ist diese Funktion d(-) konstant auf $T \subseteq M$, so heißt T homogen. Ein Beispiel hierfür is die Menge T der n-Zyklen in der symmetrischen Gruppe S_n . Das folgt aus der Tatsache, daß diese Menge eine Konjugiertenklasse ist (Bermerkung von Plesken : jede Teilmenge T, auf der eine Gruppe von Automorphismen von M transitiv operiert, ist homogen!).

Genauer noch kann man für endliche Gruppen M sogar einen expliziten Ausdruck für d(-) angeben, wenn T eine Konjugiertenklasse ist. Die Funktion d(-) ergibt sich dabei als Linearkombination von gewöhnlichen irreduziblen Charakteren, also Klassenfunktionen, was die Homogenität von Konjugiertenklassen bestätigt.

Der gewünschte Ausdruck ist eine direkte Konsequenz des folgenden wesentlich allgemeineren Satzes ([1], vgl. auch [2] (5.3.46) oder [3] für weitere Details):

SATZ. — Ist G eine endliche Gruppe, $h \in G$, und sind für $1 \le j \le k C_j$ Konjugiertenklassen von G, m_j und n_j natürliche Zahlen, dann ist die Anzahl der Lösungen $(g_1, \ldots, g_k) \in G^k$ der Gleichung

$$g_1^{n_1} \dots g_k^{n_k} = h,$$

mit den Nebenbedingungen $g_j^{m_j} \in C_j$ gleich

$$\sum_{i=1}^{s} \frac{f^{i}}{|G|} \prod_{j=1}^{k} \left(\frac{1}{f^{i}} \sum_{g_{j}} \zeta^{i}(g_{j}^{n_{j}}) \right) \zeta^{i}(h^{-1}) \qquad (g_{j}^{m_{j}} \in C_{j}).$$

Dabei sind ζ^1, \ldots, ζ^s die gewöhnlichen irreduziblen Charaktere von G, f^i deren Dimensionen : $f^i = \zeta^i(1)$.

A. KERBER

Daraus ergibt sich als Spezialfall unmittelbar die

FORGERUNG. — Ist T:=C eine Konjugiertenklasse von G, dann ist für jedes $t\in T$

$$d(t) = \frac{|T|^2}{|G|} \sum_{i} \frac{\zeta^{i}(t)^2 \zeta^{i}(t^{-1})}{f^{i}}.$$

Für die Klasse der n-Zyklen in S_n vereinfacht sich dies weiter dadurch, daß die einzigen irreduziblen Charaktere, die dort einen Wert ± 1 haben, die Charaktere $\zeta^{(n-r,1^r)}$ zu hakenförmigen Partitionen $(n-r,1^r)$ sind. Für diese gilt

$$\zeta^{(n-r,1^r)}((1\dots n)) = (-1)^r, \qquad \zeta^{(n-r,1^r)}(1) = \binom{n-1}{r}.$$

Das ergibt mit |T| = (n-1)!

Folgerung. — Man hat
$$d((1...n)) = \frac{(n-1)!}{n} \sum_{r=0}^{n-1} (-1)^r \binom{n-1}{r}^{-1}$$
.

Mit Hilfe des Ausdrucks für die alternierende Summe von Inversen von Binomialkoeffizienten, auf den Baron hinwies und für den dann Andrews und Hofbauer Herleitungen angaben, folgt schießlich

$$d((1...n)) = \begin{cases} \frac{2(n-1)!}{n+1}, & \text{falls } n \text{ ungerade}; \\ 0, & \text{sonst.} \end{cases}$$

Eine von vornherein speziell auf S_n zugeschnittene Herleitung dieses Ergebnisses findet man auch in [4].

HOMOGENE MENGEN

LITERATUR

- [1] Kerber (A.) u. Wagner (B.). Gleichungen in endlichen Gruppen, Archiv d. Math., t. **35**, 1980, p. 252–262.
- [2] James (G.D.) u. Kerber (A.). The representation theory of the symmetric group. Addison-Wesley, 1981.
- [3] Kerber (A.) u. Thürlings (K.-J.). Symmetrieklassen von Funktionen und ihre Abzählungstheorie II, Bayreuther Math. Schriften (in Vorbereitung).
- [4] Stanley (R.). Factorization of permutations into n-cycles, Discrete Math., t. 37, 1981, p. 255–262.

Adalbert Kerber, Lehrstuhl II für Mathematik, Universität Bayreuth, Postfach 3008, D-8580 Bayreuth.