EULERIAN NUMBERS, FOULKES CHARACTERS AND LEFSCHETZ CHARACTERS OF S_{n}

 BYAdalbert KERBER and Karl-Joseph ThÜRLINGS

Abstract

The aim of this talk is to point out a connection between the characters which Foulkes introduced in order to give a representation theoretical generalization of Eulerian numbers and certain Lefschetz characters of S_{n} which A. Björner mentioned at his talk in Feuerstein and which were described in detail by R. Stanley in [1]. The missing link is a theorem on the irreducible constituents of Foulkes' characters.

1. Eulerian numbers. - Let $\pi=(\pi(1) \ldots \pi(n))$ be an element of the symmetric group S_{n}, e.g. (13248765) $\in S_{8}$ (list notation!) with the up-and-down-sequence $A(\pi)$ (rises indicated by + , falls denoted by -), for example

$$
A((13248765))=+-++---
$$

The number of permutations with a given number of rises, i.e. of entries + in its up-down sequence, defines an Eulerian number :

$$
A(n, k):=\mid\left\{\pi \in S_{n} \mid A(\pi) \text { has } k \text { rises }\right\} \mid .
$$

According to Foulkes, $A(\pi)$ yields a skew diagram via the rule

$$
+\leftarrow \begin{gathered}
\times \\
\downarrow-
\end{gathered}
$$

This means, that to an entry + of $A(\pi)$ there corresponds a node \times that has to be added at the left of the last node added, and in the same row. Correspondingly to an entry - there corresponds a node that has to be added just below the last node. For example the sequence $(+-++---)$ mentioned above gives

A. KERBER AND K.-J. THÜRLINGS

This resulting skew diagram is the rim part of $\lambda(A): R_{11}^{\lambda(A)}=\left(431^{3}\right) /(2)$. Recall the definition of skew representation by the Littlewood-Richardson rule :

$$
[\lambda / \mu]:=\sum_{\nu}([\mu][\nu],[\lambda])[\nu] .
$$

Theorem (Foulkes). - The number of permutations with given up-down sequence A can be identified with a dimension of a skew representation :

$$
|\{\pi \mid A(\pi)=A\}|=\operatorname{dim}\left[R_{11}^{\lambda(A)}\right] .
$$

For example, if we put $A:=+-++---$ then the number of permutations with this sequence isthe dimension of $\left[\left(431^{3}\right) /(2)\right]$ which has the decomposition $\left[421^{2}\right]+\left[41^{4}\right]+\left[3^{2} 1^{2}\right]+\left[321^{3}\right]$ and therefore the dimension 245. More generally we have the following generalization of Foulkes' result :

Theorem (K/Th). - The decomposition of $\left[R_{11}^{\lambda(A)}\right]$ is obtained from A by successive applications of the rule

By this pictorial description we mean that to an entry + of A there corresponds a node \times which has to be added to the right of the last node, maybe in a higher row, while to an entry - there corresponds a node added to the left of the last node or in a lower row. Consider once more the example $A=(+-++---)$. We start with a node \times, and the first entry of A is a + , so the corresponding node has to be added, according to the rule, to the right of the starting node, i.e. we obtain the diagram $\times \otimes$, where the last node added is encircled. Now the second entry of A is a minus sign, hence the corresponding addition of a node is again uniquely determined, and we get the diagram

$$
\begin{array}{ll}
\times & \times . \\
\infty & .
\end{array}
$$

The next entry of A is a plus sign, so that there are two places open for an additional node which are to the right of the node which was added last time :

$$
\begin{array}{cccc}
\times & \times & \otimes & \text { and } \\
\times
\end{array} \quad \begin{array}{lll}
\times & \times \\
\times & \otimes
\end{array} .
$$

The next steps yield the following cascade of diagrams :

Hence from $A=(+-++---)$ we obtain the diagrams

$$
\left[4,1^{4}\right],\left[4,2,1^{2}\right],\left[3,2,1^{3}\right],\left[3^{2}, 1^{2}\right],
$$

and each one of them exactly once.
Proof. - "By example"

$$
\begin{aligned}
& R_{11}^{\lambda((+--+++--+++))}=\operatorname{det}\left(\begin{array}{ccccc}
{[2]} & {[3]} & {[6]} & {[7]} & {[11]} \\
1 & {[1]} & {[4]} & {[5]} & {[9]} \\
0 & 1 & {[3]} & {[4]} & {[8]} \\
0 & 0 & 1 & {[1]} & {[5]} \\
0 & 0 & 0 & 1 & {[4]}
\end{array}\right) \\
& =[4] \operatorname{det}\left(\begin{array}{cccc}
{[2]} & {[3]} & {[6]} & {[7]} \\
1 & {[1]} & {[4]} & {[5]} \\
0 & 1 & {[3]} & {[4]} \\
0 & 0 & 1 & {[1]}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cccc}
{[2]} & {[3]} & {[6]} & {[11]} \\
1 & {[1]} & {[4]} & {[9]} \\
0 & 1 & {[3]} & {[8]} \\
0 & 0 & 1 & {[5]}
\end{array}\right) \\
& =[4][(7,6,6,4) /(5,5,3,3)]-[(8,7,7,5) /(6,6,4)] \\
& =[4]\left[R_{11}^{\lambda((+--++-))}\right]-\left[R_{11}^{\lambda((+--++-++++))}\right] \text {. }
\end{aligned}
$$

Hence, the following lemma completes the proof.
Lemma. - Let A denote an up-and-down sequence. Then, for each $k \in \mathbf{N}$ we have

$$
[k+1]\left[R_{11}^{\lambda(A)}\right]=\left[R_{11}^{\lambda((A++\cdots+))}\right]+\left[R_{11}^{\lambda((A-+\cdots+))}\right] .
$$

2. Foulkes characters. - Foulkes' result gives the following interpretation of Eulerian numbers as sums of dimensions of skew representations :

$$
A(n, k)=\sum_{A, k u p s} \operatorname{dim}\left[R_{11}^{\lambda(A)}\right],
$$

A. KERBER AND K.-J. THÜRLINGS

while the above generalization gives a more general result in terms of characters :

$$
\chi^{n, k}:=\sum_{A, k \text { ups }} \chi^{R_{11}^{\lambda(A)}} .
$$

We suggest to call these characters Foulkes characters. They have the following remarkable properties :

Theorem (Foulkes). -
(i) no. of cycles of $\pi=$ no. of cycles of $\rho \Rightarrow \chi^{n, k}(\pi)=\chi^{n, k}(\rho)$;
(ii) $\chi^{n, 0}=\zeta^{\left(1^{n}\right)}, \quad \chi^{n, n-1}=\zeta^{(n)}, \quad \chi^{n, k}=\zeta^{\left(1^{n}\right)} \otimes \chi^{n, n-1-k}$;
(iii) The Foulkes characters satisfy the following recursion :

$$
\chi_{\mu}^{n, k}=\chi_{\mu^{*}}^{n-1, k-1}-\chi_{\mu^{*}}^{n-1, k}, \mu^{*}:=\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i}-1, \mu_{i+1}, \ldots\right) .
$$

Further Properties.
(i) $\left(\chi^{n, k}, \zeta^{\lambda}\right)>0 \Rightarrow \lambda_{1} \leq k+1, \quad \lambda_{1}^{\prime} \leq n-k$;
(ii) $\left(\chi^{n, k}, \zeta^{\left(j+1,1^{n-j-1}\right)}\right)>0 \Leftrightarrow j=k$;
(iii) The $\chi^{n, k}$ are linearly independent;
(iv) If $\chi: S_{n} \rightarrow \mathbf{C}$ denotes a character, depending only on the number of cyclic factors, then we have

$$
\chi=\sum_{i} \frac{\left(\chi, \zeta^{\left(i+1,1^{n-i-1}\right)}\right)}{f^{\left(i+1,1^{n-i-1}\right)}} \chi^{n, i} .
$$

Using 5.8.30 in KERBER-THÜRLINGS we obtain
Theorem. - The "Pólya-character" χ, defined by

$$
\chi(\pi):=m^{\text {no. of cycles of } \pi}
$$

has the following decomposition into irreducibles :

$$
\chi=\sum_{k}\binom{m+k}{n} \chi^{n, k} .
$$

3. Foulkes tables. - This section contains the Foulkes tables $F_{i}:=\left(\chi_{j}^{n, k}\right)$ of the symmetric groups S_{n}, for $n \leq 7$. We recall that the j-th column of the Foulkes table contains in its i-th row the value of the Foulkes characters $\chi^{n, i}$ on the classes of elements which consist of j cyclic factors.

FOULKES AND LEFSCHETZ CHARACTERS

The 0 -th row indicates the column numbers j, while the 0 -th column shows the row numbers i.

$$
\begin{aligned}
& F_{1}=\begin{array}{cc}
i \backslash j & 1 \\
0 & 1
\end{array}, F_{2}=\begin{array}{ccc}
i \backslash j & 2 & 1 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}, F_{3}=\begin{array}{cccc}
i \backslash j & 3 & 2 & 1 \\
0 & 1 & -1 & 1 \\
1 & 4 & 0 & -2 \\
2 & 1 & 1 & 1
\end{array}, \\
& F_{4}=\begin{array}{ccccccccccc}
i \backslash j & 4 & 3 & 2 & 1 & i \backslash j & 5 & 4 & 3 & 2 & 1 \\
0 & 1 & -1 & 1 & -1 \\
1 & 11 & -3 & -1 & 3 & 1 & -1 & 1 & -1 & 1 \\
2 & 11 & 3 & -1 & -3 \\
3 & 1 & 1 & 1 & 1 & 26 & -10 & 2 & 2 & -4 \\
2 & 66 & 0 & -6 & 0 & 6 \\
3 & 26 & 10 & 2 & -2 & -4 \\
4 & 1 & 1 & 1 & 1 & 1
\end{array}, \\
& \begin{array}{ccccccc}
i \backslash j & 6 & 5 & 4 & 3 & 2 & 1
\end{array} \\
& \begin{array}{lllllll}
0 & 1 & -1 & 1 & -1 & 1 & -1
\end{array} \\
& \begin{array}{lllllll}
1 & 57 & -25 & 9 & -1 & -3 & 5
\end{array} \\
& F_{6}=\begin{array}{lllllll}
2 & 302 & -40 & -10 & 8 & 2 & -10, \\
3 & 302 & 40 & -10 & -8 & 2 & 10
\end{array} \\
& \begin{array}{ccccccc}
3 & 302 & 40 & -10 & -8 & 2 & 10 \\
4 & 57 & 25 & 9 & 1 & -3 & -5
\end{array} \\
& \begin{array}{ccccccc}
4 & 57 & 25 & 9 & 1 & -3 & -5 \\
5 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& F_{7}=\begin{array}{cccccccc}
i \backslash j & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
0 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & 120 & -56 & 24 & -8 & 0 & 4 & -6 \\
2 & 1191 & -245 & 15 & 19 & -9 & -5 & 15 \\
3 & 2416 & 0 & -80 & 0 & 16 & 0 & -20 \\
4 & 1191 & 245 & 15 & -19 & -9 & 5 & 15 \\
5 & 120 & 56 & 24 & 8 & 0 & -4 & -6 \\
6 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} .
\end{aligned}
$$

4. The connection with a result of Stanley. - We consider groups acting on posets M such that $x \leq y \Leftrightarrow g x \leq g y$. An important example is the action of S_{n} on 2^{n}, the power set of n, with the inclusion as partial order.

Denote by R a subset of the set of ranks, and by $K_{R}(M)$ a set of rank selected chains. Put $K_{R}(M, \mathbf{C}):=\mathbf{C}^{K_{R}(M)}$ and denote by $H_{i}\left(M_{R}, \mathbf{C}\right)$ the homology group. Using these notions we can introduce

$$
\kappa_{R}(g):=\operatorname{trace} \text { of } g \text { on } K_{R}(M, \mathbf{C}), \gamma_{R, i}(g):=\text { trace of } g \text { on } H_{i}\left(M_{R}, \mathbf{C}\right)
$$

and

$$
\nu_{R}(g):=\sum_{i=0}^{r}(-1)^{|R|-i} \gamma_{R, i}(g),
$$

A. KERBER AND K.-J. THÜRLINGS

the Lefschetz character. Then, to begin with, we have the following well known facts :

$$
\kappa_{R}=\sum_{T \subseteq R} \nu_{T}, \quad \text { or, equivalently, } \quad \nu_{R}=\sum_{T \subseteq R}(-1)^{|R \backslash T|} T \text {. }
$$

Theorem (Stanley). - If $R:=\left(n_{1}, \ldots, n_{k}\right)_{<,} \rho:=\left(n_{1}, n_{2}-\right.$ $\left.n_{1}, \ldots, n_{k}-n_{k-1}, n-n_{k}\right) ; \rho^{*}:=$ partition obtained by reordering, then
(i) $\kappa_{R}=\xi^{\rho^{*}}$, the Young character, $=\sum_{\lambda \vdash n}\left|S T^{\lambda^{\prime}}\left(\rho^{*}\right)\right| \zeta^{\lambda}$ (standard tableaux, shape λ^{\prime}, content ρ^{*}).
(ii) $\nu_{R}=\sum_{\lambda \vdash n}\left|S T_{R}^{\lambda^{\prime}}\left(1^{n}\right)\right| \zeta^{\lambda}$ (standard Young tableaux with R as set of ascents).

Hence we obtain from the above discussion of Foulkes characters :
Theorem.

$$
\chi^{n, n-k-1}=\sum_{R} \nu_{R} \quad(|R|=k)
$$

This shows the connection between Foulkes characters and the Lefschetz characters of S_{n} on 2^{n}.

REFERENCES

[1] Foulkes (H.O.). - Eulerian numbers, Newcomb's problem and representations of symmetric groups, Discrete Math., vol. 30, 1980, p. 3-49.
[2] Kerber (Adalbert) and Thürlings (Karl-Josef). - Symmetrieklassen von Funktionen und ihre Abzählungstheorie II (in print), III (in preparation), Bayreuther Math. Schriften.
[3] Stanley (Richard). - Some aspects of groups acting on finite posets, J. Combinatorial Theory, Ser. A, vol. 32, 1982, p. 132-161.

Adalbert Kerber and Karl-Josef Thürlings,
Lehrstuhl II für Mathematik,
Universität Bayreuth,
D-95440 Bayreuth, Deutschland
email : kerber@btm2x6.mat.uni-bayreuth.de

