Publ. I.R.M.A. Strasbourg, 1984, 229/S–08 Actes 8^e Séminaire Lotharingien, p. 31–36

EULERIAN NUMBERS, FOULKES CHARACTERS AND LEFSCHETZ CHARACTERS OF S_n

BY

Adalbert KERBER and Karl-Joseph THÜRLINGS

ABSTRACT. — The aim of this talk is to point out a connection between the characters which FOULKES introduced in order to give a representation theoretical generalization of Eulerian numbers and certain Lefschetz characters of S_n which A. BJÖRNER mentioned at his talk in Feuerstein and which were described in detail by R. STANLEY in [1]. The missing link is a theorem on the irreducible constituents of Foulkes' characters.

1. Eulerian numbers. — Let $\pi = (\pi(1) \dots \pi(n))$ be an element of the symmetric group S_n , e.g. $(13248765) \in S_8$ (list notation!) with the *up-and-down-sequence* $A(\pi)$ (rises indicated by +, falls denoted by -), for example

$$A((13248765)) = + - + + - - - -$$

The number of permutations with a given number of rises, i.e. of entries + in its up-down sequence, defines an *Eulerian number* :

$$A(n,k) := \left| \left\{ \pi \in S_n \mid A(\pi) \text{ has } k \text{ rises} \right\} \right|.$$

According to FOULKES, $A(\pi)$ yields a skew diagram via the rule

$$+ \leftarrow \times + - \downarrow -$$

This means, that to an entry + of $A(\pi)$ there corresponds a node \times that has to be added at the left of the last node added, and in the same row. Correspondingly to an entry - there corresponds a node that has to be added just below the last node. For example the sequence (+-++--)mentioned above gives

		\times	\times				+	\times
×	\times	\times			+	+	—	
×				according to	_			
X					_			
\times					_			

A. KERBER AND K.-J. THÜRLINGS

This resulting skew diagram is the rim part of $\lambda(A) : R_{11}^{\lambda(A)} = (431^3)/(2)$. Recall the definition of skew representation by the Littlewood-Richardson rule :

$$[\lambda/\mu] := \sum_{\nu} ([\mu][\nu], [\lambda])[\nu].$$

THEOREM (FOULKES). — The number of permutations with given up-down sequence A can be identified with a dimension of a skew representation :

$$|\{\pi \mid A(\pi) = A\}| = \dim[R_{11}^{\lambda(A)}].$$

For example, if we put A := + - + + - - - then the number of permutations with this sequence is the dimension of $[(431^3)/(2)]$ which has the decomposition $[421^2] + [41^4] + [3^21^2] + [321^3]$ and therefore the dimension 245. More generally we have the following generalization of Foulkes' result :

THEOREM (K/TH). — The decomposition of $[R_{11}^{\lambda(A)}]$ is obtained from A by successive applications of the rule

By this pictorial description we mean that to an entry + of A there corresponds a node \times which has to be added to the right of the last node, maybe in a higher row, while to an entry - there corresponds a node added to the left of the last node or in a lower row. Consider once more the example A = (+ - + + - - -). We start with a node \times , and the first entry of A is a +, so the corresponding node has to be added, according to the rule, to the right of the starting node, i.e. we obtain the diagram $\times \otimes$, where the last node added is encircled. Now the second entry of A is a minus sign, hence the corresponding addition of a node is again uniquely determined, and we get the diagram

$$\approx \times \times$$

The next entry of A is a plus sign, so that there are two places open for an additional node which are to the right of the node which was added last time :

$$\begin{array}{cccc} \times & \times & \otimes \\ \times & & & and & \times & \times \\ \times & & & \times & \otimes \end{array}$$

The next steps yield the following cascade of diagrams :

FOULKES AND LEFSCHETZ CHARACTERS

×	×	×	×	×	×	×	×	×	×	×	×	×	\times
×				\times	\otimes			\times	\times		\times	\times	\otimes
\otimes								\otimes					
		\downarrow			\downarrow				\downarrow			\downarrow	
\times	\times	\times	\times	×	×	×	×	\times	\times	\times	×	×	×
\times							~	\times	\times				
×					Х			×				×	X
X				\times				×			\times		
				\times							\times		
\times								\times					

Hence from A = (+ - + + - - -) we obtain the diagrams

$$[4, 1^4], [4, 2, 1^2], [3, 2, 1^3], [3^2, 1^2],$$

and each one of them exactly once.

Proof. — "By example"

$$\begin{aligned} R_{11}^{\lambda((+--+++-))} &= \det \begin{pmatrix} \begin{bmatrix} 2 & \begin{bmatrix} 3 & \begin{bmatrix} 6 & \begin{bmatrix} 7 & \begin{bmatrix} 11 \\ 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 5 & \begin{bmatrix} 9 \\ 9 \\ 0 & 1 & \begin{bmatrix} 3 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 8 \\ 0 & 0 & 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 5 \\ 0 & 0 & 0 & 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 5 \\ 0 & 0 & 0 & 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 5 \\ 0 & 1 & \begin{bmatrix} 3 \end{bmatrix} & \begin{bmatrix} 6 \end{bmatrix} & \begin{bmatrix} 7 \\ 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 5 \\ 0 & 1 & \begin{bmatrix} 3 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} \\ 0 & 0 & 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 4 \end{bmatrix} & \begin{bmatrix} 9 \\ 0 & 1 & \begin{bmatrix} 3 \end{bmatrix} & \begin{bmatrix} 8 \\ 0 & 0 & 1 & \begin{bmatrix} 5 \end{bmatrix} \\ \end{pmatrix} \\ &= \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} (7, 6, 6, 4) / (5, 5, 3, 3) \end{bmatrix} - \begin{bmatrix} (8, 7, 7, 5) / (6, 6, 4) \end{bmatrix} \\ &= \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} R_{11}^{\lambda((+--++-))} \end{bmatrix} - \begin{bmatrix} R_{11}^{\lambda((+--+++-++++))} \end{bmatrix}. \end{aligned}$$

Hence, the following lemma completes the proof.

LEMMA. — Let A denote an up-and-down sequence. Then, for each $k \in \mathbf{N}$ we have

$$[k+1][R_{11}^{\lambda(A)}] = [R_{11}^{\lambda((A++\dots+))}] + [R_{11}^{\lambda((A-+\dots+))}].$$

2. Foulkes characters. — Foulkes' result gives the following interpretation of Eulerian numbers as sums of dimensions of skew representations :

$$A(n,k) = \sum_{A,k \ ups} \dim[R_{11}^{\lambda(A)}],$$

while the above generalization gives a more general result in terms of characters :

$$\chi^{n,k} := \sum_{A,k \ ups} \chi^{R_{11}^{\lambda(A)}}$$

We suggest to call these characters *Foulkes characters*. They have the following remarkable properties :

THEOREM (FOULKES). —

- (i) no. of cycles of π = no. of cycles of $\rho \Rightarrow \chi^{n,k}(\pi) = \chi^{n,k}(\rho)$; (ii) $\chi^{n,0} = \zeta^{(1^n)}, \quad \chi^{n,n-1} = \zeta^{(n)}, \quad \chi^{n,k} = \zeta^{(1^n)} \otimes \chi^{n,n-1-k}$;
- (iii) The Foulkes characters satisfy the following recursion :

$$\chi_{\mu}^{n,k} = \chi_{\mu^*}^{n-1,k-1} - \chi_{\mu^*}^{n-1,k}, \mu^* := (\mu_1, \dots, \mu_{i-1}, \mu_i - 1, \mu_{i+1}, \dots).$$

FURTHER PROPERTIES.

- (i) $(\chi^{n,k},\zeta^{\lambda}) > 0 \Rightarrow \lambda_1 \le k+1, \quad \lambda'_1 \le n-k;$
- (ii) $(\chi^{n,k}, \zeta^{(j+1,1^{n-j-1})}) > 0 \Leftrightarrow j = k;$
- (iii) The $\chi^{n,k}$ are linearly independent;

(iv) If $\chi : S_n \to \mathbf{C}$ denotes a character, depending only on the number of cyclic factors, then we have

$$\chi = \sum_{i} \frac{(\chi, \zeta^{(i+1,1^{n-i-1})})}{f^{(i+1,1^{n-i-1})}} \chi^{n,i}.$$

Using 5.8.30 in KERBER-THÜRLINGS we obtain

THEOREM. — The "Pólya-character" χ , defined by

$$\chi(\pi) := m^{\text{no. of cycles of }\pi}$$

has the following decomposition into irreducibles :

$$\chi = \sum_{k} \binom{m+k}{n} \chi^{n,k}.$$

3. Foulkes tables. — This section contains the Foulkes tables $F_i := (\chi_j^{n,k})$ of the symmetric groups S_n , for $n \leq 7$. We recall that the *j*-th column of the Foulkes table contains in its *i*-th row the value of the Foulkes characters $\chi^{n,i}$ on the classes of elements which consist of *j* cyclic factors.

The 0-th row indicates the column numbers j, while the 0-th column shows the row numbers i.

$F_1 =$	$i \setminus j \\ 0$	$\frac{1}{1}, F_2 =$	$i \setminus j 2$ 0 1 1 1	$egin{array}{c} 1 \ -1 , \ 1 \end{array}$	$F_3 =$	$egin{array}{c} i igsin j \ 0 \ 1 \ 2 \end{array}$	$egin{array}{cccc} 3 & 2 \ 1 & - \ 4 & 0 \ 1 & 1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,
$F_4 = \begin{array}{c} i \backslash j \\ 0 \\ F_4 = \begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	4 1 - 11 - 11 1	$\begin{array}{cccc} 3 & 2 \\ -1 & 1 \\ -3 & -1 \\ 3 & -1 \\ 1 & 1 \end{array}$	$egin{array}{c} 1 \\ -1 \\ 3 \\ -3 \\ 1 \end{array}$	i $F_5 =$	$egin{array}{cccc} j & 5 \ 0 & 1 \ 1 & 26 \ 2 & 66 \ 3 & 26 \ 4 & 1 \end{array}$	$4 \\ -1 \\ -1 \\ 0 \\ 10 \\ 1$	$ \begin{array}{c} 3 \\ 1 \\ 0 \\ 2 \\ -6 \\ 2 \\ 1 \end{array} $	$\begin{array}{c} 2 \\ -1 \\ 2 \\ 6 \\ 0 \\ -2 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ -4 \\ 6 \\ -4 \\ 1 \end{array}$
	$F_6 =$	$\begin{array}{ccc} 0 & 1 \\ 1 & 5 \\ 2 & 30 \\ 3 & 30 \end{array}$	7 25	$ \begin{array}{cccc} 1 \\ 5 & 9 \\ 0 & -10 \\ -10 \\ 9 \\ \end{array} $	-1 -1	$ \begin{array}{r} 1 \\ -3 \\ 2 \\ -3 \end{array} $	$-1 \\ 5 \\ -10 \\ 10$,	
F_7	$i \downarrow j \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$	1191	$-1 \\ -56 \\ -245 \\ 0$	$ \begin{array}{r} 1 \\ 24 \\ 15 \\ -80 \\ 15 \end{array} $		$ \begin{array}{c} 1 \\ 0 \\ -9 \\ 16 \\ -9 \\ 0 \end{array} $	$-1 \\ 4 \\ -5 \\ 0 \\ 5 \\ -4$	$\begin{array}{c} 1 \\ -6 \\ 15 \\ -20 \end{array}$	

4. The connection with a result of Stanley. — We consider groups acting on posets M such that $x \leq y \Leftrightarrow gx \leq gy$. An important example is the action of S_n on 2^n , the power set of n, with the inclusion as partial order.

Denote by R a subset of the set of ranks, and by $K_R(M)$ a set of rank selected chains. Put $K_R(M, \mathbf{C}) := \mathbf{C}^{K_R(M)}$ and denote by $H_i(M_R, \mathbf{C})$ the homology group. Using these notions we can introduce

 $\kappa_R(g) :=$ trace of g on $K_R(M, \mathbf{C}), \gamma_{R,i}(g) :=$ trace of g on $H_i(M_R, \mathbf{C}),$

and

$$\nu_R(g) := \sum_{i=0}^r (-1)^{|R|-i} \gamma_{R,i}(g),$$

the *Lefschetz character*. Then, to begin with, we have the following well known facts :

$$\kappa_R = \sum_{T \subseteq R} \nu_T, \quad or, \ equivalently, \quad \nu_R = \sum_{T \subseteq R} (-1)^{|R \setminus T|} T.$$

THEOREM (STANLEY). — If $R := (n_1, \ldots, n_k)_<$, $\rho := (n_1, n_2 - n_1, \ldots, n_k - n_{k-1}, n - n_k)$; $\rho^* :=$ partition obtained by reordering, then

(i) $\kappa_R = \xi^{\rho^*}$, the Young character, $= \sum_{\lambda \vdash n} \left| ST^{\lambda'}(\rho^*) \right| \zeta^{\lambda}$ (standard

tableaux, shape λ' , content ρ^*).

(ii) $\nu_R = \sum_{\lambda \vdash n} \left| ST_R^{\lambda'}(1^n) \right| \zeta^{\lambda}$ (standard Young tableaux with R as set of events)

ascents).

Hence we obtain from the above discussion of Foulkes characters :

THEOREM.

$$\chi^{n,n-k-1} = \sum_{R} \nu_R \qquad (|R| = k).$$

This shows the connection between Foulkes characters and the Lefschetz characters of S_n on 2^n .

REFERENCES

- [1] FOULKES (H.O.). Eulerian numbers, Newcomb's problem and representations of symmetric groups, *Discrete Math.*, vol. **30**, 1980, p. 3–49.
- [2] KERBER (Adalbert) and THÜRLINGS (Karl-Josef). Symmetrieklassen von Funktionen und ihre Abzählungstheorie II (in print), III (in preparation), Bayreuther Math. Schriften.
- [3] STANLEY (Richard). Some aspects of groups acting on finite posets, J. Combinatorial Theory, Ser. A, vol. **32**, 1982, p. 132–161.

Adalbert KERBER and Karl-Josef THÜRLINGS, Lehrstuhl II für Mathematik, Universität Bayreuth, D-95440 Bayreuth, Deutschland email : kerber@btm2x6.mat.uni-bayreuth.de